
Programming with Java, Swing and Squint

Thomas P. Murtagh
Williams College

DRAFT!

DO NOT DISTRIBUTE WITHOUT PRIOR PERMISSION

Printed on August 8, 2008

c©2007 Thomas P. Murtagh

Comments, corrections, and other feedback appreciated

tom@cs.williams.edu

Contents

1 What is Programming Anyway? 1
1.1 Without Understanding . 2
1.2 The Java Programming Language . 6
1.3 Your First Sip of Java . 7

1.3.1 Simple Responsive Programs . 7
1.3.2 “Class” and other Magic Words . 10
1.3.3 Under Construction . 12
1.3.4 Discourse on the Method . 13
1.3.5 The Name Game . 14

1.4 Programming Tools . 15
1.5 Graphical User Interface Components . 18

1.5.1 Constructing GUI Components . 19
1.5.2 Additional GUI Event-handling Methods . 23
1.5.3 GUI Component Layout . 25

1.6 To Err is Human . 27
1.7 Summary . 30

2 What’s in a name? 31
2.1 Modifying Objects . 31
2.2 Instance Variable Declarations . 33
2.3 Assigning Meanings to Variable Names . 34
2.4 Local Variables . 37
2.5 GUI Layout with Panels . 39
2.6 More on Declarations . 41

2.6.1 Initializers . 43
2.6.2 Making it final . 43
2.6.3 Declaring Collections of Similar Names . 45

2.7 ints and Strings . 45
2.8 Comments . 47
2.9 Summary . 49

3 Probing Questions 51
3.1 Accessor Methods . 51
3.2 Statements and Expressions . 53
3.3 Working with GUI Components . 56

iii

3.3.1 Common Features . 57
3.3.2 Menu Methods . 57
3.3.3 Components that Display Text . 60
3.3.4 Summary of Methods for GUI Components 68

3.4 Identifying Event Sources . 72
3.5 Using Variables to Remember . 76
3.6 Summary . 78

4 Let’s Talk 81
4.1 Protocols . 81

4.1.1 The Client/Server Paradigm . 83
4.1.2 Mail Servers and Clients . 84
4.1.3 The Transmission Control Protocol . 86
4.1.4 Talking SMTP . 89

4.2 Using NetConnections . 92
4.2.1 An Interface for an SMTP Client . 93
4.2.2 Making Connections . 96
4.2.3 The Ins and Outs of NetConnections . 97
4.2.4 A Closing Note . 100
4.2.5 What’s Next . 100
4.2.6 Network Event Notification . 103
4.2.7 Summary of NetConnection constructions and methods 106

4.3 Summary . 107

5 Pro-Choice 109
5.1 Either/or Questions . 109

5.1.1 Numbers and Strings . 113
5.1.2 A Simple if Statement . 116

5.2 if Statements are Statements . 117
5.3 The Truth about Curly Braces . 120

5.3.1 Multi-way Choices . 122
5.4 Something for Nothing . 123
5.5 Synonyms, Homographs, and Scopes . 126
5.6 Summary . 132

6 Class Action 135
6.1 Second Class . 136
6.2 Constructor Parameters . 139

6.2.1 Parameter Correspondence . 142
6.2.2 Choosing Colors . 144

6.3 Method Madness . 145
6.4 Analyze This . 149
6.5 Talking Back . 151
6.6 Defining Accessor Methods . 156
6.7 Invisible Objects . 158
6.8 Private Parts . 163

iv

6.9 Summary . 168

7 Primitive Technology 169
7.1 Planning a Calculator . 169
7.2 Smooth Operators . 173

7.2.1 Relational Operators and boolean Values . 177
7.2.2 Primitive Ways . 179
7.2.3 Logical Arguments . 182

7.3 double Time . 185
7.3.1 Seeing double . 186
7.3.2 Choosing a Numeric Type . 187
7.3.3 Arithmetic with doubles and ints . 189
7.3.4 Why are Rational Numbers Called double? 191

7.4 boolean Variables . 192
7.5 Summary . 196

8 String Theory 197
8.1 Cut and Paste . 197
8.2 Search Options . 201
8.3 Separate but .equals() . 204
8.4 Methods and More Methods . 208
8.5 Online Method Documentation . 209
8.6 What a character! . 214
8.7 Summary . 216

8.7.1 Summary of String Methods . 217

9 Doomed to Repeat 221
9.1 Repetition without Loops . 221
9.2 Worth Your While . 224
9.3 Count to Ten . 228
9.4 Nesting Instinct . 233
9.5 Line by Line . 236

9.5.1 Sentinels . 240
9.6 Accumulating Loops . 245
9.7 String Processing Loops . 248
9.8 Summary . 257

10 Recurring Themes 259
10.1 Long Day’s Journey . 260
10.2 Journeys End . 268
10.3 Overload . 271
10.4 Recurring Methodically . 275

10.4.1 Case by Case . 275
10.4.2 Understanding Recursive Methods . 278
10.4.3 Blow by Blow . 279
10.4.4 Summing Up . 284

v

10.5 Lovely spam! Wonderful spam! . 284
10.6 Nothing Really Matters . 286
10.7 Recursive Removal . 290
10.8 Wrapping Up . 294
10.9 Summary . 297

11 Tables of Content 299
11.1 A Picture is Worth 754 Words . 299
11.2 Matrices, Vectors, and Arrays . 301
11.3 Array Declarations . 303
11.4 Array Constructions . 304
11.5 SImages and JLabels . 307
11.6 Image Files . 308
11.7 Think Negative . 312
11.8 for by for . 316
11.9 Moving Experiences . 317
11.10Arrays of Arrays . 325
11.11Summing Up . 329
11.12Purple Cows? . 333
11.13Summary . 337

Index 338

vi

Chapter 1

What is Programming Anyway?

Most of the machines that have been developed to improve our lives serve a single purpose. Just
try to drive to the store in your washing machine or vacuum the living room with your car and this
becomes quite clear. Your computer, by contrast, serves many functions. In the office or library,
you may find it invaluable as a word processor. Once you get home, slip in a DVD and your
computer takes on the role of a television. Start up a flight simulator and it assumes the properties
of anything from a hang glider to a Learjet. Launch an mp3 player and you suddenly have a music
system. This, of course, is just a short sample of the functions a typical personal computer can
perform. Clearly, the computer is a very flexible device.

While the computer’s ability to switch from one role to another is itself amazing, it is even more
startling that these transformations occur without making major physical changes to the machine.
Every computer system includes both hardware, the physical circuitry of which the machine is
constructed, and software, the programs that determine how the machine will behave. Everything
described above can be accomplished by changing the software used without changing the machine’s
actual circuitry in any way. In fact, the changes that occur when you switch to a new program
are often greater than those you achieve by changing a computer’s hardware. If you install more
memory or a faster network card, the computer will still do pretty much the same things it did
before but a bit faster (hopefully!). On the other hand, by downloading a new application program
through your web browser, you can make it possible for your computer to perform completely new
functions.

Software clearly plays a central role in the amazing success of computer technology. Very few
computer users, however, have a clear understanding of what software really is. This book provides
an introduction to the design and construction of computer software in the programming language
Java. By learning to program in Java, you will acquire a useful skill that will enable you to construct
software of your own or participate in the implementation or maintenance of commercial software.
More importantly, you will gain a clear understanding of what a program really is and how it is
possible to radically change the behavior of a computer by constructing a new program.

A program is a set of instructions that a computer follows. We can therefore learn a good bit
about computer programs by examining the ways in which instructions written for humans resemble
and differ from computer programs. In this chapter we will consider several examples of instructions
for humans in order to provide you with a rudimentary understanding of the nature of a computer
program. We will then build on this understanding by presenting a very simple but complete
example of a computer program written in Java. Like instructions for humans, the instructions

1

that make up a computer program must be communicated to the computer in a language that it
comprehends. Java is such a language. We will discuss the mechanics of actually communicating
the text of a Java program to a computer so that it can follow the instructions contained in the
program. Finally, you have undoubtedly already discovered that programs don’t always do what
you expect them to do. When someone else’s program misbehaves, you can complain. When
this happens with a program you wrote yourself, you will have to figure out how to change the
instructions to eliminate the problem. To prepare you for this task, we will conclude this chapter
by identifying several categories of errors that can be made when writing a program.

1.1 Without Understanding

You have certainly had the experience of following instructions of one sort or another. Electronic
devices from computers to cameras come with thick manuals of instructions. Forms, whether they
be tax forms or the answer sheet for an SAT exam, come with instructions explaining how they
should be completed. You can undoubtedly easily think of many other examples of instructions
you have had to follow.

If you have had to follow instructions, it is likely that you have also complained about the quality
of the instructions. The most common complaint is probably that the instructions take too long to
read. This, however, may have more to do with our impatience than the quality of the instructions.
A more serious complaint is that instructions are often unclear and hard to understand.

It seems obvious that instructions are more likely to be followed correctly if they are easy to
understand. This “obvious” fact, however, does not generalize to the types of instructions that make
up computer programs. A computer is just a machine. Understanding is something humans do,
but not something machines do. How can a computer understand the instructions in a computer
program? The simple answer is that it cannot. As a result, the instructions that make up a
computer program have to satisfy a very challenging requirement. It must be possible to follow
them correctly without actually understanding them.

This may seem like a preposterous idea. How can you follow instructions if you don’t understand
them? Fortunately, there are a few examples of instructions for humans that are deliberately
designed so that they can be followed without understanding. Examining such instructions will
give you a bit of insight into how a computer must follow the instructions in a computer program.

First, consider the “mathematical puzzle” described below. To appreciate this example, don’t
just read the instructions. Follow them as you read them.

1. Pick a number between 1 and 40.

2. Subtract 20 from the number you picked.

3. Multiply by 3.

4. Square the result.

5. Add up the individual digits of the result.

6. If the sum of the digits is even, divide by 2.

7. If the result is less than 5 add 5, otherwise subtract 4.

2

8. Multiply by 2.

9. Subtract 6.

10. Find the letter whose position in the alphabet is equal to the number you have obtained (a=1,
b=2, c=3, etc.)

11. Think of a country whose name begins with this letter.

12. Think of a large mammal whose name begins with the second letter of the country’s name.

You have probably seen puzzles like this before. The whole point of such puzzles is that you
are supposed to be surprised that it is possible to predict the final result produced even though
you are allowed to make random choices at some points in the process. In particular, this puzzle
is designed to leave you thinking about elephants. Were you thinking about an elephant when you
finished? Are you surprised we could predict this?

The underlying reason for such surprise is that the instructions are designed to be followed
without being understood. The person following the instructions thinks that the choices they get
to make in the process (choosing a number or choosing any country whose name begins with “D”),
could lead to many different results. A person who understands the instructions realizes this is an
illusion.

To understand why almost everyone who follows the instructions above will end up thinking
about elephants, you have to identify a number of properties of the operations performed. The
steps that tell you to multiply by 3 and square the result ensure that after these steps the number
you are working with will be a multiple of nine. When you add up the digits of any number that is
a multiple of nine, the sum will also be a multiple of nine. Furthermore, the fact that your initial
number was relatively small (less than 40), implies that the multiple of nine you end up with is
also relatively small. In fact, the only possible values you can get when you sum the digits are 0,
9 and 18. The next three steps are designed to turn any of these three values into a 4 leading you
to the letter “D”. The last step is the only point in these instructions where something could go
wrong. The person following them actually has a choice at this point. There are several countries
whose names begin with “D” including Denmark, Djibouti, Dominica and the Dominican Republic.
Luckily, for most readers of this text, Denmark is more likely to come to mind than any of the
other countries (even though the Dominican Republic is actually larger in both land mass and
population).

This example should make it clear that it is possible to follow instructions without understanding
how they work. It is equally clear that it is not possible to write instructions like those above without
understanding how they work. This contrast provides an important insight into the relationship
between a computer, a computer program and the author of the program. A computer follows
the instructions in a program the way you followed the instructions above. It can comprehend and
complete each step individually but has no understanding of the overall purpose of the program, the
relationships between the steps, or the ways in which these relationships ensure that the program
will accomplish its overall purpose. The author of a program, on the other hand, must understand
its overall purpose and ensure that the steps specified will accomplish this purpose.

Instructions like this are important enough to deserve a name. We call a set of instructions
designed to accomplish some specific purpose even when followed by a human or computer that
has no understanding of their purpose an algorithm.

3

There are situations where specifying an algorithm that accomplishes some purpose can actually
be useful rather than merely amusing. To illustrate this, consider the standard procedure called
long division. A sample of the application of the long division procedure to compute the quotient
13042144/32 is shown below:

32
407567

)13042144
128

242
224
181
160
214
192
224
224

0

Although you may be rusty at it by now, you were taught the algorithm for long division
sometime in elementary school. The person teaching you might have tried to help you understand
why the procedure works, but ultimately you were probably simply taught to perform the process
by rote. After doing enough practice problems, most people reach a point where they can perform
long division but can’t even precisely describe the rules they are following, let alone explain why
they work. Again, this process was designed so that a human can perform the steps without
understanding exactly why they work. Here, the motivation is not to surprise anyone. The value of
the division algorithm is that it enables people to perform division without having to devote their
mental energies to thinking about why the process works.

Finally, to demonstrate that algorithms don’t always have to involve arithmetic, let’s con-
sider another example where the motivation for designing the instructions is to provide a pleasant
surprise. Well before you learned the long division algorithm, you were probably occasionally en-
tertained by the process of completing a connect-the-dots drawing like the one shown in Figure 1.1.
Go ahead! It’s your book. Connect the dots and complete the picture.

A connect-the-dots drawing is basically a set of instructions that enable you to draw a pic-
ture without understanding what it is you are actually drawing. Just as it wasn’t clear that the
arithmetic you were told to perform in our first example would lead you to think of elephants, it
is not obvious looking at Figure 1.1 that you are looking at instructions for drawing an elephant.
Nevertheless, by following the instructions “Connect the dots” you will do just that (even if you
never saw an elephant before).

This example illustrates a truth of which all potential programmers should be aware. It is
harder to devise an algorithm to accomplish a given goal than it is to simply accomplish the goal.
The goal of the connect-the-dots puzzle shown in Figure 1.1 is to draw an elephant. In order to
construct this puzzle, you first have to learn to draw an elephant without the help of the dots.
Only after you have figured out how to draw an elephant in the first place will you be able to figure
out where to place the dots and how to number them. Worse yet, figuring out how to place and
number the dots so the desired picture can be drawn without ever having to lift your pencil from
the paper can be tricky. If all you really wanted in the first place was a picture of an elephant, it

4

Figure 1.1: Connect dots 1 through 82 (c©2000 Monkeying Around)

5

would be easier to draw one yourself. Similarly, if you have a division problem to solve (and you
don’t have a calculator handy) it is easier to do the division yourself than to try to teach the long
division algorithm to someone who doesn’t already know it so that they can solve the problem for
you.

As you learn to program, you will see this pattern repeated frequently. Learning to convert
your own knowledge of how to perform a task into a set of instructions so precise that they can
be followed by a computer can be quite challenging. Developing this ability, however, is the key
to learning how to program. Fortunately, you will find that as you acquire the ability to turn an
informal understanding of how to solve a class of problems into a precise algorithm, you will be
developing mental skills you will find valuable in many other areas.

1.2 The Java Programming Language

An algorithm starts as an idea in one person’s mind. To become effective, it must be communicated
to other people or to a computer. Communicating an algorithm requires the use of a language. A
program is just an algorithm expressed in a language that a computer can comprehend.

The choice of the language in which an algorithm is expressed is important. The numeric
calculation puzzle that led you to think of Danish elephants was expressed in English. If our
instructions had been written in Danish, most readers of this text would not understand them.

The use of language in a connect-the-dots puzzle may not be quite as obvious. Note, however,
that we could easily replace the numbers shown with numbers expressed using the roman numerals
I, II, III, IV, ... LXXXII. Most of you probably understand Roman numerals, so you would still
be able to complete the puzzle. You would probably have difficulty, however, if we switched to
something more ancient like the numeric system used by the Babylonians or to something more
modern like the binary system that most computers use internally, in which the first few dots would
be labeled 1, 10, 11, 100, 101, and 110.

The use of language in the connect-the-dots example is interesting from our point of view
because the language used is quite simple. Human languages like English and Japanese are very
complex. It would be very difficult to build a computer that could understand a complete human
language. Instead, computers can only interpret instructions written in simpler languages designed
specifically for computers. Computer languages are much more expressive than a system for writing
numbers like the Roman numerals, but much simpler in structure than human languages.

One consequence of the relative simplicity of computer languages is that it is possible to write
a program to translate instructions written in one computer language into another computer lan-
guage. These programs are called compilers. The internal circuitry of a computer usually can only
interpret commands written in a single language. The existence of compilers, however, makes it
possible to write programs for a single machine using many different languages. Suppose that you
have to work with a computer that can understand instructions written in language A but you
want to write a program for the machine in language B. All you have to do is find (or write) a
program written in language A that can translate instructions written in language B into equivalent
instructions in language A. This program would be called a compiler for B. You can then write
your programs in language B and use the compiler for B to translate the programs you write into
language A so the computer can comprehend the instructions.

Each computer language has its own advantages and disadvantages. Some are simpler than
others. This makes it easier to construct compilers that process programs written in these languages.

6

At the same time, a language that is simple can limit the ways you can express yourself, making it
more difficult to describe an algorithm. Think again about the process of constructing the elephant
connect-the-dot puzzle. It is easier to draw an elephant if you let yourself use curved lines than if
you restrict yourself to straight lines. To describe an elephant in the language of connect-the-dot
puzzles, however, you have to find a way to use only straight lines. On the other hand, a language
that is too complex can be difficult to learn and use.

In this text, we will teach you how to use a language named Java to write programs. Java pro-
vides some sophisticated features that support an approach to programming called object-oriented
programming that we emphasize in our presentation. While it is not a simple language, it is one
of the simpler languages that support object-oriented programming.

Java is a relatively young computer language. It was designed in the early 90’s by a group at
Sun Microsystems. Despite its youth, Java is widely used. Compilers for Java are readily available
for almost all computer systems. We will talk more about Java compilers and how you will use
them once we have explained enough about Java itself to let you write simple programs.

Our approach to programming includes an emphasis on what is known as event-driven program-
ming . In this approach, programs are designed to react to events generated by the user or system.
The programs that you are used to using on computers use the event-driven approach. You do
something – press a button, select an item from a menu, etc. – and the computer reacts to the
“event” generated by that action. In the early days of computing, programs were started with a
collection of data all provided at once and then run to completion. Many text books still teach
that approach to programming. In this text we take the more intuitive event-driven approach to
programming. Java is one of the first languages to make this easy to do as a standard part of the
language.

1.3 Your First Sip of Java

The task of learning any new language can be broken down into at least two parts: studying the
language’s rules of grammar and learning its vocabulary. This is true whether the language is a
foreign language, such as French or Japanese, or a computer programming language, such as Java.
In the case of a programming language, the vocabulary you must learn consists primarily of verbs
that can be used to command the computer to do things like “show the number 47.2 on the screen”
or “send the next email message to the server.” The grammatical structures of a computer language
enable you to form phrases that instruct the computer to perform several primitive commands in
sequence or to choose among several primitive commands based on a user’s input.

When learning a new human language, one undertakes the tasks of learning vocabulary and
grammar simultaneously. One must know at least a little vocabulary before one can understand
examples of grammatical structure. On the other hand, developing an extensive vocabulary without
any knowledge of the grammar used to combine words would just be silly. The same applies
to learning a programming language. Accordingly, we will begin your introduction to Java by
presenting a few sample programs that illustrate fundamentals of the grammatical structure of Java
programs, using only enough vocabulary to enable us to produce somewhat interesting examples.

1.3.1 Simple Responsive Programs

The typical program run on a personal computer reacts to a large collection of actions the user
can perform using the mouse and keyboard. Selecting menu items, typing in file names, pressing

7

Figure 1.2: Window displayed by a very simple program

buttons, and dragging items across the screen all produce appropriate reactions from such pro-
grams. The details of how a computer responds to a particular user action are determined by the
instructions that make up the program running on the computer. The examples presented in this
section are intended to illustrate how this is done in a Java program.

To start things off simply, we will restrict our attention to programs that involve only one form
of user input mechanism: buttons. The programs we consider in this section will only specify how
the computer should respond when the user clicks on a button in the program’s window.

As a very simple first example, consider the structure of a program which simply displays some
text on the screen each time a button is clicked. When this program is started, all that will appear
in its window is a single button as shown in Figure 1.2. The window remains this way until the user
positions the mouse cursor within the button and presses the mouse button. Once this happens,
the program displays the phrase

I’m Touched

in the window as shown in Figure 1.3. If the user clicks the mouse again, the program displays a
second copy of the phrase “I’m Touched” in the window. Eventually, if the user clicks often enough,
the whole window will be filled with copies of this phrase. That is all it does! Not exactly Microsoft
Word, but it is sufficient to illustrate the basic structure of many of the programs we will discuss.

The text of such a Java program is shown in Figure 1.4. A brief examination of the text of
the program reveals features that are certainly consistent with our description of this program’s
behavior. There is the line

contentPane.add(new JLabel("I’m Touched"));

which includes the word “add” and the message to be displayed. This line comes shortly after a line
containing the words “button clicked” (all forced together to form the single word buttonClicked)

8

Figure 1.3: Window displayed by a very simple program

import squint.*;
import javax.swing.*;

public class TouchyButton extends GUIManager {

private final int WINDOW_WIDTH = 150;
private final int WINDOW_HEIGHT = 300;

public TouchyButton() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(new JButton("Click Here"));

}

public void buttonClicked() {
contentPane.add(new JLabel("I’m Touched"));

}

}

Figure 1.4: Our first Java program

9

which suggest when the new message will appear. Similarly, a few lines earlier, a line containing
the word createWindow is followed by a line containing the words new JButton. These two lines,
describe actions that should happen when the program initially begins to run. These suggestive
tidbits are unfortunately obscured by a considerable amount of text that is probably indecipherable
to the novice. Our goal is to guide you through the details of this program in a way that will enable
you to understand its basic structure.

1.3.2 “Class” and other Magic Words

Our brief example program contains many words that have special meaning to Java. Unfortunately,
it is relatively hard to give a precise explanation of many of the terms used in Java to someone
who is just beginning to program. For example, to fully appreciate the roles of the terms import,
public and extends one needs to appreciate the issues that arise when constructing programs
that are orders of magnitude larger than we will discuss in the early chapters of this text. We will
attempt here to give you some intuition regarding the purpose of these words. However, you may
not be able to understand them completely until you learn more about Java. Until then, we can
assure you that you will do fine if you are willing to regard just a few of these words and phrases
as magical incantations that must be recited appropriately at certain points in your program. For
example, the first two lines of nearly every program you read or write while studying this book will
be identical to the first two lines in this example:

import squint.*;
import javax.swing.*;

In fact, these two lines are so standard that we won’t even show them in the examples beyond the
first two chapters of this text.

The Head of the Class

Most of your programs will also contain a line very similar to the third line shown in our example:

public class TouchyButton extends GUIManager {

This line is called a class header. The programs you write will all contain a line that looks just
like this except that you will replace the word TouchyButton with a word of your own choosing.
TouchyButton is just the name we have chosen to give to our program. It is appropriate to give a
program a name that reflects its behavior.

This line is called a class header because it informs the computer that the text that follows
describes a new class. Why does Java call the specification that describes a program a “class”?
Java uses the word class to refer to:

“A set, collection, group, or configuration containing members regarded as having cer-
tain attributes or traits in common.” (From the American Heritage Dictionary)

If several people were to run the program shown above at the same time but on different computers,
each would have an independent copy of the program described by this class. If one person clicked
on the button, the message “I’m Touched” would only appear on that person’s computer. The other
computers running the same program would be unaffected. Thus, the running copies of the program
are independent but they form a collection very similar objects. Java refers to such a collection of
objects as a class.

10

Using Software Libraries

The class header of TouchyButton indicates that it extends something called GUIManager. This
means that our program depends on previously written Java instructions.

Programs are rarely built from scratch. The physical circuits of which a computer is constructed
are only capable of performing very simple operations like changing the color of a single dot on the
screen. If every program was built from scratch, every program would have to explicitly describe
every one of the primitive operations required to accomplish its purpose. Instead, libraries have
been written containing collections of instructions describing useful common operations like drawing
a button on the screen. Programs can then be constructed using the operations described by the
library in addition to the operations that can be performed by the basic hardware.

This notion of using collections of previously written Java instructions to simplify the construc-
tion of new programs explains the mysterious phrases found in the first two lines of our program.
Lines that start with the words import inform Java which libraries of previously written instruc-
tions our program uses. In our example, we list two libraries, javax.swing and squint. The
library named javax.swing is a collection of instructions describing common operations for build-
ing programs that use interface mechanisms like buttons and menus. The prefix “javax” reveals
that this library is a standard component of the Java language environment used by many Java
programs.

The second library mentioned in our import specifications is Squint. This is a library designed
just for this text to make the Java language more appropriate as an environment for teaching
programming. Recall that the class header of our example program mentions that TouchyButton
extends GUIManager. GUIManager refers to a collection of Java instructions that form part of this
Squint library. A GUIManager is an object that coordinates user and program activities that involve
Graphical User Interface (GUI) components like buttons, menus, and scrollbars. If a program was
nothing but a GUIManager, then all that would happen when it was run would be that a window
would appear on the screen. Nothing would ever appear within the window. Our GUIManager class
specification extends the functionality of the GUIManager by telling it exactly what GUI components
to display (a button and “labels” that display the message “I’m Touched”) and when they should
be displayed.

Getting Braces

The single open brace (“{”) that appears at the end of the class header for TouchyButton introduces
an important and widely used feature in Java’s grammatical structure. Placing a pair consisting
of an open and closing brace around a portion of the text of a program is Java’s way of letting the
programmer indicate that the enclosed text describes a single, logical unit. If you scan quickly over
the complete example, you will see that braces are used in this way in several parts of this program
even though it is quite short.

The open brace after the class header

public class TouchyButton...

is matched by the closing brace on the last line of the program. This indicates that everything
between these two braces (i.e., everything left in the example) should be considered part of the
description of the class named TouchyButton. The text between these braces is called the body of
the class.

11

Within the body of this class, there are two other examples of structures composed of a header
line followed by a body that is enclosed in curly braces. The first begins with the header line

public TouchyButton() {

and the second begins with the header

public void buttonClicked() {

Like the class header, both of these lines start with the word public. Unlike the class header, these
lines don’t include the word class or the phrase extends GUIManager. Finally, both of these
headers end with a name followed by a pair of empty parentheses. The names included before the
parentheses reveal that these lines are the headers of similar but distinct grammatical structures
in Java. The first is the header of a structure called a constructor. It specifies the actions to be
performed when this program is first started. We can tell this because the name included in this
header is the same as the name of the class we are defining, TouchyButton. The second is the
header of a construct called a method definition. We discuss these two constructs in the following
sections.

1.3.3 Under Construction

In order to appreciate the role of a constructor, one has to appreciate Java’s notion that a class
doesn’t describe a single object, but instead describes a whole collection of similar objects. Given a
blueprint for a house, you can build multiple copies of the house. Similarly, given a class definition,
you “build” a new copy of the program defined each time you run the program. Just as you have
to build a house to live in it, you must construct a copy or instance of a class definition before you
can interact with it. This is what happens when you actually run a program described by a class
definition. The role of the constructor within a class definition is to specify the details of the steps
that should be performed to construct an instance of a class definition.

With this background, let us take a close look at the constructor included in the definition of
the TouchyButton class:

public Touchybutton() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(new JButton("Click Here"));

}

The header of this constructor is quite simple. The key elements are the word public, the name
of the class in which the constructor appears, and a set of empty parentheses. Eventually, we will
learn that it is possible to provide additional information between the parentheses, but for at least
a few chapters, all of our constructor headers will take this simple form.

The interesting part of the constructor is its body. The body of a constructor contains a list
of instructions telling the computer what operations to perform when it is told to create a new
instance of the object described by its class definition. In our constructor for the TouchyWindow
class we include the two instructions:

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(new JButton("Click Here"));

12

These two instructions tell the computer that when this program begins to execute it should create
a new window on the screen for this program’s use and then display a button in that window.

Both of the instructions included in this constructor use a notation we will be seeing quite
frequently. Both instructions have the general form

name.action(...);

This form of instruction is used to tell some component of the program, identified by the name that
appears before the period, to perform the action described after the period. It is called a method
invocation. In the first method invocation the name is this and the action is createWindow. The
name this refers to the program itself. It may seem odd, but in this command, the program is
telling itself to create a new window. In the second instruction, the name is contentPane and the
action is add The name contentPane refers to the interior of the program window — the part that
holds the window’s contents. This second command tells the content pane that it should add a new
button to the items it displays.

In each of the method invocations used in this constructor, extra information that is needed to
specify how to perform the desired action is provided between the parentheses that appear after
the action name. These extra pieces of information are called the arguments or actual parameters
of the method invocation. For example, in the first line of the constructor the arguments included
determine the size of the window we are instructing the program to create.

Obviously, by changing the contents of these instructions, we can change the way in which this
program behaves. For example, if we replaced the second instruction in the constructor’s body
with the line:

contentPane.add(new JButton("Click Me"));

the button displayed in the window would contain the words “Click Me” instead of “Click Here”.
Accordingly, you cannot simply view the instructions placed within a constructor as magical incan-
tations. Instead, you must carefully consider each component so that you understand its purpose.

1.3.4 Discourse on the Method

The last few lines in the body of the class TouchyButton look like:

public void buttonClicked() {
contentPane.add(new JLabel("I’m Touched"));

}

This text is an example of another important grammatical form in Java, the method definition. A
method is a named sequence of program instructions. A method definition consists of a method
header, which includes the name to be associated with the instructions, followed by a method body
(which is bracketed by braces just like the body of the constructor). In this case, the method being
defined is named buttonClicked, and its body contains the single instruction:

contentPane.add(new JLabel("I’m Touched"));

In the method header, the method’s name is preceded by the words public void and followed
by an empty pair of parentheses. Unfortunately, for now, you must just trust that these words and
parentheses are necessary. They will appear in all of the methods we examine in this chapter. On

13

the other hand, a programmer is free to choose any appropriate name for a method. The method
name can then be used in other parts of the program to cause the computer to obey the instructions
within the method’s body.

Within a class that extends GUIManager, certain method names have special significance. In
particular, if such a class contains a method which is named buttonClicked then the instructions
in that method’s body will be followed by the computer whenever any button displayed in the
program’s window is pressed using the mouse. That is why this particular program reacts to a
button click as it does.

The single line that forms the body of our buttonClicked method:

contentPane.add(new JLabel("I’m Touched"));

is another example of a method invocation. It specifies that a new “label” displaying the phrase

I’m Touched

should be added to the contentPane associated with the program.
In addition to buttonClicked, other special method names (menuItemSelected, for example)

can be used to specify how to react to other actions the user may perform when interacting with a
program. All such methods are called event-handling methods. We will provide a complete list of
such methods later.

1.3.5 The Name Game

The constructor definition in this program is preceded by the lines

private final int WINDOW_WIDTH = 150;
private final int WINDOW_HEIGHT = 300;

These two lines are not instructions that the computer will follow when it needs to react to some
event. They are definitions that tell the computer what meanings should be associated with the
names WINDOW WIDTH and WINDOW HEIGHT throughout this program’s execution.

We could have written this program without defining these names. If we replaced the first line
in the constructor with the line

this.createWindow(150, 300);

we could remove the two definitions that precede the constructor and the program would still behave
in the same way. We used the names WINDOW WIDTH and WINDOW HEIGHT for two reasons. First,
their use illustrates good programming style. When writing a program it is not only important to
give the computer the correct instructions, it is also important to write the instructions in a way
that will make it as easy as possible for someone else to read and understand them. Even as a
beginner, it is pretty easy to guess that the command

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

has something to do with setting the program’s window size. This isn’t as obvious with the
command

this.createWindow(150, 300);

14

As one learns to write large, complicated programs, taking care to write them in a style that will
be as easy to understand as possible becomes very important.

Our other reason for using these names is just to give you a hint about how important names
are in computer programs. We have already seen that names like this and contentPane are used
to refer to elements of your program. The meanings associated with these names are built into
Java and the libraries we are using. Names like WINDOW WIDTH and WINDOW HEIGHT are interesting
because they show that it is also possible for you as a programmer to associate meanings with
names. This important ability is the main topic of the next chapter.

1.4 Programming Tools

Writing a program isn’t enough. You also have to get the program into your computer and convince
your computer to follow the instructions it contains.

A computer program like the one shown in the preceding section is just a fragment of text.
You already know ways to get other forms of textual information into a computer. You use a
word processor to write papers. When entering the body of an email message you use an email
application like Eudora or Outlook. Just as there are computer applications designed to allow you
to enter these forms of text, there are applications designed to enable you to enter the text of a
program.

Entering the text of your program is only the first step. As explained earlier, unless you write
your program in the language that the machine’s circuits were designed to interpret, you need to
use a compiler to translate your instructions into a language the machine can comprehend. Finally,
after this translation is complete you still need to somehow tell the computer to treat the file(s)
created by the translation process as instructions and to follow them.

Typically, the support needed to accomplish all three of these steps is incorporated into a single
application called an integrated development environment or IDE. It is also possible to provide
separate applications to support each step. Which approach you use will likely depend on the
facilities available to you and the inclination of the instructor teaching you to program. There are
too many possibilities for us to attempt to cover them all in this text. To provide you with a sense
of what to expect, however, we will sketch how two common integrated development environments,
BlueJ and Eclipse, could be used to enter and run the TouchyButton program. These sketches are
not intended to provide you with the detailed knowledge required to actually use either of these
IDEs effectively. We will merely outline the main steps that are involved.

The IDEs we will describe share several important properties:

• Implementations of both IDEs are available for a wide range of computer systems including
Windows systems, MacOS, and Unix and its variants.

• Both IDEs are available for free and can be downloaded from the web.

They also differ in major ways. BlueJ was designed by computer science faculty members with the
primary goal of providing a Java development system for use when teaching students to program.
Eclipse was developed to meet the needs of professional programmers.

Just as it is helpful to divide a book into chapters, it is helpful to divide large programs into
separate text files describing individual components of the program. Within a Java IDE, the
collection of text files that constitute a program is called a project. In fact, most Java IDEs expect
all programs, even programs that are quite small, to be organized as projects. As a result, even

15

Figure 1.5: An Eclipse project window

though our TouchyButton program is only 13 lines long and will definitely only require one text
file, the first step performed to enter and run this program using either Eclipse or BlueJ will be to
use an entry in the application’s “File” menu to create a new project.

The IDE will then display a number of dialog boxes asking for information about the project
we wish to create. Among other things, we will be asked to specify a name for the project and
to select a location in our computer’s file system to store the file(s) that will hold the text of our
program.

Once a project has been created, the IDE will display a window representing the state of the
project. The window Eclipse would present is shown in Figure 1.5 and the window BlueJ would
present is shown in Figure 1.6.

The next step is to tell the IDE that we wish to create a new file and enter the text of our
program. With BlueJ, we do this by pressing the “New Class...” button seen in the upper left of
the window shown in Figure 1.6. With Eclipse, we select a “New Class” menu item. In either case,
the IDE will then ask us to enter information about the class, including its name, in a dialog box.
Then the IDE will present us with a window in which we can type the text of our program much
as we would type within a word processor. Such program text is often called code.

In Figures 1.7 and 1.8 we show how the windows provided by Eclipse and BlueJ would look
after we ask the IDE to create a new class and enter the code for the class. Eclipse incorporates the
text entry window as a subwindow of the project window. BlueJ displays a separate text window.

In both the BlueJ project window and the BlueJ window holding the text of the TouchyButton
class there is a button labeled “Compile”. Pressing this button instructs BlueJ that we have
completed entering our code and would like to have it translated into a form the machine can more
easily interpret. Under most Java IDEs, compiling a class definition will produce a file storing a
translation of the definition into a language called Java virtual machine code or byte code. After

16

Figure 1.6: A BlueJ project window

Figure 1.7: Entering the text of TouchyButton under Eclipse

17

Figure 1.8: Entering the text of TouchyButton under BlueJ

this is done, we can ask Java to run the program by depressing the mouse on the icon that represents
the TouchyButton class within the BlueJ project window and selecting the “new TouchyButton”
item from the pop-up menu that appears. BlueJ will then display a new window controlled by the
instructions included in our program. When the mouse is clicked on the button in this window,
the words “I’m touched” will appear as shown in Figure 1.9.

With Eclipse, compiling a program and running it can be combined into a single step. We first
create what Eclipse calls a run configuration. This involves specifying things like the size of the
window created when the program starts running. We will not discuss the details of this process
here. Once we have created a run configuration, we can compile and run our program by pressing
an icon displayed at the top of the Eclipse window. Like BlueJ, Eclipse then displays a new window
in which we can interact with our program.

In this discussion of how to enter and run a program we have overlooked one important fact. It
is quite likely that you will make a mistake at some point in the process, leaving the IDE confused
about how to proceed. As a result, in order to work effectively with an IDE you need some sense
of what kinds of errors you are most likely to make and how the IDE will react to them. We will
return to this issue after we teach you a bit more about how to actually write Java programs.

1.5 Graphical User Interface Components

Most current computer programs interact with their users through mechanisms like buttons, menus,
and scroll bars. These mechanisms are called Graphical User Interface Components, or GUI com-

18

Figure 1.9: Running a program under BlueJ

ponents for short. The Java program we have considered thus far has involved one obvious example
of a GUI component, a button. In fact, this program uses two forms of GUI components. The
phrase displayed by the program, “I’m touched”, is clearly part of the means through which the
program interacts with its users. As such, even though clicking on this phrase doesn’t have any
effect, it is still part of the program’s graphical user interface. Such phrases are called labels.

In this section we will discuss the use of buttons and labels in more detail and we will introduce
several additional types of GUI components that we will use in the Java programs we write. In
particular, we will show you how to include fields where users can type text into your programs
and how to create simple menus.

Your knowledge of Java is still so limited at this point that we won’t be able to do much with
these GUI components. For example, although you will learn how to add a text field to a program’s
interface, you won’t have any way to determine what the user has typed into that field. Introducing
these components now, however, will enable us to explore several aspects of how GUI components
are used in programs. In particular, we will learn more about how a program can be written to
respond when users modify the settings of GUI components and we will learn a little about how to
control how the GUI components that make up a program’s interface are arranged relative to one
another in the program’s window.

1.5.1 Constructing GUI Components

Let’s begin by taking a closer look at some of the details of the TouchyButton program shown in
Figure 1.4. If you examine the line in the constructor of TouchyButton that instructs the computer

19

Figure 1.10: An interface for entering postal addresses

to display a button:

contentPane.add(new JButton("Click Here"));

you should notice that it is very similar to the line from the buttonClicked method that tells the
computer to display the phrase “I’m Touched”:

contentPane.add(new JLabel("I’m Touched"));

Both lines are invocations instructing the contentPane to add additional components to the display.
In addition, the phrases used to describe the arguments to these two method invocations have very
similar structures. Both phrases have the form

new TypeOfObject(. . .)

In Java, a phrase of this form is called a construction. Each construction tells the computer to create
a new object of the kind described by the “TypeOfObject” specified. We can use constructions like
these to create all kinds of GUI components, and, as we will see later, many other objects within
our programs.

The actual details of how GUI components should behave in a Java program are described as
part of the Swing library that is imported for use by this program. The designers of Swing decided
to name the class of objects that implement buttons JButton and to name pieces of text displayed
alone on the screen JLabels Therefore, we have to include these names to describe the types of
objects we would like created by the two constructions in the TouchyButton program.

As in a method invocation, extra information required to construct the desired object can be
provided in the parentheses after the specification of the type of the object to be constructed.
Again, such pieces of information are called arguments or actual parameters. When creating a
JButton, we provide the words we would like displayed in the button as an actual parameter.
These words must be enclosed in quotes as shown.

Once you understand the basic form of a construction, it is easy to learn how to construct
GUI components of other types. All you need to know is the name assigned by Swing to the type
of component you want to create and the actual parameters to use to specify the details of the
components. This information is provided in the documentation for the Swing libraries that is
available online.

For example, suppose you were working on a program in which the user needed to enter a
postal address and you therefore wanted to provide components in your program’s interface like
those shown in Figure 1.10. First, you should recognize that there are only two types of GUI
components used in this interface. The phrases “Street Addr:”, “City:”, “State:”, and “Zip:” are

20

public AddressWindow() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

contentPane.add(new JLabel("Street Addr:"));
contentPane.add(new JTextField(29));

contentPane.add(new JLabel("City:"));
contentPane.add(new JTextField(18));

contentPane.add(new JLabel("State:"));
contentPane.add(new JTextField(2));

contentPane.add(new JLabel("Zip:"));
contentPane.add(new JTextField(5));

}

Figure 1.11: Code to construct the interface shown in Figure 1.10

just examples of JLabels. The fields where the user would type the required information are
examples of what Swing calls JTextFields.

Given that you know that the fields are called JTextFields, you now know that the construc-
tions that instruct the computer to create them will all take the form

new JTextField(. . .)

All we have to figure out is what, if any, actual parameters should take the place of the “ . . . ”s.
If you look at Figure 1.10 again, you can see that the only difference between one of the

JTextFields used in this example and another is how large each field is. The actual parameter
in the construction is used to control the size of a JTextField in a fairly simple way. Each time
you create a JTextField, you specify the number of characters you expect the user to type as an
argument in the construction. For example, the construction for the zip code field would look like

new JTextField(5)

while the state field would be created by the construction

new JTextField(2)

This is all you need to understand the code used to construct the desired components shown in
Figure 1.11.

There are other options available to you when you want to create a JTextField. Sometimes it
is useful to be able to place some text in a JTextField when it is first created. Suppose that you
first used a window like that shown in Figure 1.10 to have a user enter a home address and then
wanted to display a similar window in which they could enter a work address. You might want the
JTextField for the state information to appear already filled in with the state that was entered
for the home address in the hope of saving the user a bit of time in the common case that they
lived and worked in the same state. In a situation like this, you can provide two arguments in the

21

JTextField constructor. For example, you could create a JTextField that would initially contain
the abbreviation for California by using the construction

new JTextField("CA", 2);

The user of the program could still change the contents of the JTextField when the window
appeared if California was not the correct state for the work address.

We mention this to highlight a few important facts about constructions. First, while all of our
preceding examples of constructions involved a single actual parameter, there are also examples of
constructions that involve two or more parameters. There are also occasions when you will write
constructions that involve no parameters. For example, the construction

new JButton()

would create an unlabeled button. Note that even if there are no arguments included in a con-
struction, the parentheses are still required. This is also true for method invocations.

Second, we wanted you to see that in some cases Java provides you with several options to
choose from when you want to construct a new object. Depending on the requirements of your
program you will find some situations where you want JTextFields that are initially empty and
others where you want to fill them in. It is nice to have the option to do it either way.

Finally, we don’t want you to think Java is more flexible than it really is. Having learned that
you can write

new JTextField("CA", 2);

to create a JTextField, it might be tempting to assume that writing

new JTextField(2, "CA");

would have the same effect. This is not the case at all. If you included the second construction in
a program, Java would reject the program as erroneous. Java is very particular about the order
in which actual parameter values are included in constructions and method invocations. You have
to make sure you place the parameters in the required order whenever you write a construction
involving multiple actual parameters. We will tell you the correct parameter order for each method
we introduce. Later, we will explain how to access the online documentation for the Swing library,
which provides this information for all methods provided in the library.

There is one other GUI component we will find useful in many of our programming examples.
In Swing, this component is called a JComboBox although it is more common to call it a menu or
pop-up menu. Figure 1.12 includes two examples of JComboBoxes showing how they might look
when they are idle and in use.

Obviously, the construction for one of these menus will look something like

new JComboBox(. . .)

The tricky part is specifying the argument for the construction. The argument can be used to
specify what items should be included in the menu. Typically, we want several items in the menu,
but Java expects us to provide this list of items wrapped up together as a single object. To do this,
we have to use a special form of construction that packages up several pieces of text as a single
entity. For example, to create the yes-no-maybe menus shown in Figure 1.12 we used constructions
of the form

22

Figure 1.12: Examples of Java pop-up menus

new JComboBox(new String[] { "Yes", "No", "Maybe so" })

The first new in this phrase tells the computer we want it to construct a new JComboBox. The
second new tells it we want it to package up the list of words “Yes”, “No”, and “Maybe so” as a
single object so that this object can be used as the argument that specifies the items that will be
included in the menu. You may be wondering why the square brackets (“[]”) are included in this
construction. Unfortunately, we won’t be able to give a satisfying explanation of the interpretation
of this notation for a while. You will just have to accept it as another magic incantation until then.
Fortunately, it is easy to imitate this example without fully understanding the notation. As an
example, the construction

new JComboBox(new String[] { "AM", "PM" })

could be used to create an AM/PM menu that might be helpful when entering the time of day.

1.5.2 Additional GUI Event-handling Methods

In the TouchyButton program, we defined a method with a special name, buttonClicked, as a
way of telling the computer how we wanted our program to react when a user clicked on the button
in our program. There are similar event-handling methods that can be defined to associate actions
with other GUI components. In particular, instructions placed in a method named textEntered
will be executed whenever a user presses the return or enter key while typing text in a JTextField,
and instructions placed in a method named menuItemSelected will be executed when a user selects
an item from a JComboBox menu.

As we mentioned above, at this point, you don’t know enough about Java to actually use the
information a user types into a JTextField or to find out which item has been selected from
a JComboBox. This makes it a bit hard to construct a realistic example to illustrate the use of
these additional event-handling methods. We can, however, show you a somewhat silly example
program to make things a bit more concrete. The program we have in mind will display menus like
those shown in Figure 1.12. Whenever a person using this program selects an item from either of
the menus shown, the program will encourage the user by enthusiastically displaying the message
“What a good choice!” as shown in Figure 1.13. Just as our TouchyButton program would fill
the window with copies of the message “I’m Touched” if its button was pressed several times, this
program will display multiple copies of its message if the user selects menu items repeatedly. Note
that at this point, when the menuItemSelected method is executed, not only doesn’t it know which
menu item was selected, it can’t even tell whether the item was selected from the menu on the left
or the menu on the right. This is an issue we will address in the next chapter. The complete code
for the program is shown in Figure 1.14.

23

Figure 1.13: Reacting to JComboBox events

import squint.*;
import javax.swing.*;

public class TwoComboBoxes extends GUIManager {
private final int WINDOW_WIDTH = 300;
private final int WINDOW_HEIGHT = 200;

public TwoComboBoxes() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(

new JComboBox(new String[] {"Yes", "No", "Maybe so" })
);

contentPane.add(
new JComboBox(new String[] {"Yes", "No", "Maybe so" })
);

}

public void menuItemSelected() {
contentPane.add(new JLabel("What a good choice!"));

}
}

Figure 1.14: Handling JComboBox selection events

24

The code shown in Figure 1.14 illustrates one simple but useful fact about the process of entering
your Java code. You don’t have to type each command you write on a single line. Note that in
typing in the command

contentPane.add(
new JComboBox(new String[] {"Yes", "No", "Maybe so" })
);

we split it up over three lines so that the construction of the JComboBox would stand out on a line
by itself. Java allows you to start a new line anywhere other than in the middle of a word or in the
middle of a text surrounded by quotes. That is, while the example above is fine, Java would not
be happy if you typed

contentPane.add(new JCombo
Box(new String[] {"Yes", "No", "Maybe so" })
);

because the word JComboBox has been split into two words. Java would also complain if you entered
the code

contentPane.add(new JComboBox(new String[] {"Yes", "No", "Maybe
so" })

);

because the quoted text "Maybe so" has been split over two lines. Basically, outside of quoted
text, wherever you can type a single space in a Java program, you can type as many spaces, tabs,
and/or new lines as you like. You can (and should!) use this feature to ensure that your code is
formatted in a way that will make it as easy to read and understand as possible.

1.5.3 GUI Component Layout

When a program’s interface involves a complex collection of buttons, menus, and other GUI compo-
nents, the physical layout of these components on the screen can become an important concern. You
may have noticed, however, that in all the example code we have shown you there have never been
any instructions to the computer that explicitly say anything about how to arrange the components
on the screen. The truth is that we are cheating a bit.

Java provides extensive mechanisms to enable a programmer to tell it how the components of a
program’s interface should be arranged. Unfortunately, learning how to use these mechanisms takes
time, and there are many other things that are more important to learn as a beginning programmer.
Accordingly, in our examples we have been using a very simple (but limited) approach to the layout
of our GUI interfaces that we will expect you to use in many of your programs as well.

In the Java mechanisms for GUI layout, an object called a layout managers is associated with the
content pane in which GUI components are displayed. The program can control the positioning of
components by giving instructions to the layout manager. By default, a very simple layout manager
is associated with the content pane of every program that is written by extending GUIManager. This
layout manager is called a FlowLayout. With this layout manager, there are really only two factors
that determine the arrangement of components in a program’s window — the order in which the
components are added to the window and the size of the window.

25

Figure 1.15: A component layout illustrating FlowLayout centering

Figure 1.16: A component layout where FlowLayout falls short

The operation of a FlowLayout manager can be understood by thinking about how a word
processor places words on a page as you type. Basically, as you type words into a word processor, it
places as many words as it can on the first line. Then, when it reaches the point that it can’t fit your
next word on the first line, it starts a second line of words. Again, it keeps putting the words you
enter on this second line until the line fills up, then it starts a third line and so on. A FlowLayout
manager does the same thing with GUI components. It puts as many GUI components as it can
fit on the first line of your screen, then it fills up a second line, and so on until you stop adding
components. Take a quick look at the layout of the components shown in Figure 1.10. You can see
that it was only possible to fit two components, the JLabel “Street Addr:” and one JTextField,
on the first line. The remaining six components all fit on the second line. Importantly, notice that
all eight components appear in the order in which they were added to the content pane.

The big difference between the way a FlowLayout positions components and a word processor
positions words is that once a line is filled, the FlowLayout will center all the components on that
line within the window rather than always starting at the left edge of the window. To see this,
suppose that we increased the value associated with WINDOW WIDTH in the program that creates the
components shown in Figure 1.10 so that the program window becomes wider. The resulting layout
might look like that shown in Figure 1.15. In this wider window, the first four GUI components
added to the content pane now fit across the first line of the window. This leaves only four com-
ponents remaining. These components don’t fill the second line of the window, so the FlowLayout
manager centers them in the window.

The display of the components in Figure 1.15 isn’t quite as nice as that in Figure 1.10, but it
is still reasonable. That is where we are cheating. The simple process followed by a FlowLayout
manager does not always result in reasonable positioning of the components. For example, if we
change the window size again to make it narrower but taller, we can get a layout like that shown
in Figure 1.16. It would be much nicer to move the JLabel “Zip:” to the next line so that it would
still be attached to the JTextField it is supposed to label, but the FlowLayout manager does not
know enough to do this.

26

Despite such limitations, we believe that for our purposes, the simplicity of the FlowLayout
manager outweighs its weaknesses. We will introduce one mechanism in the next chapter that can
be used to fix problems like the misplaced “Zip” shown in Figure 1.16, but beyond that we will
postpone exploring the more advanced features Java provides to control component layout. There
are many more interesting aspects of programming in Java that we would rather explore first.

1.6 To Err is Human

We all make mistakes. Worse yet, we often make the same mistakes over and over again.
If we make a mistake while giving instructions to another person, the other person can frequently

figure out what we really meant. For example, if you give someone driving directions and say “turn
left” somewhere you should have said “turn right” chances are that they will realize after driving
in the wrong direction for a while that they are not seeing any of the landmarks the remaining
instructions mention, go back to the last turn before things stopped making sense, and try turning
in the other direction. Our ability to deal with such incorrect instructions, however, depends on
our ability to understand the intent of the instructions we follow. Computers, unfortunately, never
really understand the instructions they are given so they are far less capable of dealing with errors.

There are several distinct types of errors you can make while writing or entering a program.
The computer will respond differently depending on the type of mistake you make. The first type
of mistake is called a syntax error. The defining feature of a syntax error is that the IDE can detect
that there is a problem before you try to run your program. As we have explained, a computer
program must be written in a specially designed language that the computer can interpret or at
least translate into a language which it can interpret. Computer languages have rules of grammar
just like human languages. If you violate these rules, either because you misunderstand them or
simply because you make a typing mistake, the computer will recognize that something is wrong
and tell you that it needs to be corrected.

The mechanisms used to inform the programmer of syntactic errors vary from one IDE to
another. Eclipse constantly examines the text you have entered and indicates fragments of your
program that it has identified as errors by underlining them and/or displaying an error icon on the
offending line at the left margin. If you point the mouse at the underlined text or the error icon,
Eclipse will display a message explaining the nature of the problem. For example, if we accidentally
left out the curly brace that terminates the body of the TouchyButton constructor while entering
the program shown in Figure 1.4, Eclipse would underline the semicolon at the end of the last line
of the constructor. Pointing the mouse at the underlined semicolon would cause Eclipse to display
the message “Syntax error, insert ‘}’ to complete MethodBody” as shown in Figure 1.17.

The bad news is that your IDE will not always provide you with a message that pinpoints your
mistake so clearly. When you make a mistake, your IDE is forced to try to guess what you meant
to type. As we have emphasized earlier, your computer really cannot be expected to understand
what your program is intended to do or say. Given its limited understanding, it will often mistake
your intention and display error messages that reveal its confusion. For example, if you type

public void buttonClicked {

instead of

public void buttonClicked() {

27

Figure 1.17: Eclipse displaying a syntax error message

as the header of the buttonClicked method of our example program, Eclipse will underline the word
“buttonClicked” and display the message “void is an invalid type for the variable buttonClicked.”
In such cases, the error message is more likely to be a hindrance than a help. You will just have to
examine what you typed before and after the position where the IDE identified the error and use
your knowledge of the Java language to identify your mistake.

BlueJ is more patient about syntax errors. It ignores them until you press the Compile button.
Then, before attempting to compile your code it checks it for syntactic errors. If an error is found,
BlueJ highlights the line containing the error and displays a message explaining the problem at the
bottom of the window containing the program’s text. Figure 1.18 shows how BlueJ would react
to the mistake of leaving out the closing brace at the end of the TouchyButton constructor. Note
that different IDEs may display different messages and, particularly in the case where the error is
an omission, associate different points in the code with the error. In this case, Eclipse flags the line
before the missing brace while BlueJ highlights the line after the error.

A program that is free from syntax errors is not necessarily a correct program. Think back to
the instructions for performing calculations that were designed to leave you thinking about Danish
elephants that we presented in Section 1.1. If while typing these instructions we completely omitted
a line, the instructions would still be grammatically correct. Following them, however, would no
longer lead you to think of Danish elephants. The same is true for the example of saying “left”
when you meant to say “right” while giving driving directions. Mistakes like these are not syntactic
errors; they are instead called logic errors or simply bugs. They result in an algorithm that doesn’t
achieve the result that its author intended. Unfortunately, to realize such a mistake has been
made, you often have to understand the intended purpose of the algorithm. This is exactly what

28

Figure 1.18: BlueJ displaying a syntax error message

computers don’t understand. As a result, your IDE will give you relatively little help correcting
logic errors.

As a simple example of a logical error, suppose that while typing the buttonClicked method for
the TouchyButton program you got confused and typed menuItemSelected instead of buttonClicked.
The result would still be a perfectly legitimate program. It just wouldn’t be the program you meant
to write. Your IDE would not identify your mistake as a syntax error. Instead, when you ran the
program it just would not do what you expected. When you clicked the button, nothing would
happen at all. Since there is no JComboBox in which you could select an item, the code in the
menuItemSelected method would never be executed.

This may appear to be an unlikely error, but there is a very common error which is quite similar
to it. Suppose instead of typing the name buttonClicked you typed the name buttonlicked. Look
carefully. These names are not the same. buttonlicked is not the name of one of the special event
handling methods discussed in the preceding sections. In more advanced programs, however, we
will learn that it is sometimes useful to define additional methods that do things other than handle
events. The programmer is free to choose any name for such a method. buttonlicked would be a
legitimate (if strange) name for such a method. That is, a program containing a method with this
name has to be treated as a syntactically valid program by any Java IDE. As a result, your IDE
would not recognize this as a typing mistake, but when you ran the program Java would think you
had decided not to associate any instructions with button clicking events. As before, the text “I’m
Touched” would never appear in the window.

There is an even more subtle way this error can occur. Suppose that instead of typing
buttonClicked you typed buttonclicked. That is, you didn’t capitalize the “c” in “clicked”. Java
considers upper and lower case letters used in names completely distinct. Therefore, buttonclicked
is considered just as different from buttonClicked as the name buttonlicked. Changing the capi-

29

tal “C” to a lower case “c” would therefore confuse Java enough that the code in the method would
not be executed when a button was clicked.

There are many other examples of logical errors a programmer can make. In larger programs
the possibilities for making such errors just increase. You will find that careful, patient, thoughtful
examination of your code as you write it and after errors are detected is essential.

1.7 Summary

Programming a computer to say “I’m Touched.” is obviously a rather modest achievement. In the
process of discussing this simple program, however, we have explored many of the principles and
practices that will be developed throughout this book. We have learned that computer programs are
just collections of instructions. These instructions, however, are special in that they can be followed
mechanically, without understanding their actual purpose. This is the notion of an algorithm, a
set of instructions that can be followed to accomplish a task without understanding the task itself.
We have seen that programs are produced by devising algorithms and then expressing them in a
language which a computer can interpret. We have learned the rudiments of the language we will
explore further throughout this text, Java. We have also explored some of the tools used to enter
computer programs, translate them into a form the machine can follow, and run them.

Despite our best efforts to explain how these tools interact, there is nothing that can take the
place of actually writing, entering and running a program. We strongly urge you to do so before
proceeding to read the next chapter. Throughout the process of learning to program you will
discover that it is a skill that is best learned by practice. Now is a good time to start.

30

Chapter 2

What’s in a name?

An important feature of programming languages is that the vocabulary used can be expanded
by the programmer. Suppose you were given the task of writing a web browser and one of the
desired features was a menu which would list the user’s favorite web pages. How would you write
the commands to create such a menu? You could not actually type in the desired menu items
because they would not be known until later when the program was actually being used. In fact,
the contents of the menu might change based on user input while the program was running. What
you must do instead is introduce a name that will function as a place holder for the information
that belongs in the menu. You can use such a name to describe the contents of the menu as long as
elsewhere in the program you include instructions that tell the computer what information should
be associated with the name. Such names are somewhat like proper names used to refer to the
characters in a story. You cannot determine their meanings by simply looking them up in a standard
dictionary. Instead, the information that enables you to interpret them is part of the story itself.
In this chapter, we will continue your introduction to programming in Java by discussing how to
introduce and use such names in Java programs. In addition, we will introduce several details of
the primitives used to manipulate GUI components.

2.1 Modifying Objects

Instructions like:

contentPane.add(new JButton("Continue"));

provide the means to place a variety of GUI components on a computer screen. Many programs
that use GUI components, however, do more than just place them on the screen and respond when
users interact with the GUI components. They also modify the GUI components in various ways
to reflect changes in the state of the program. For example, when you try to save a new file in an
application, the program is likely to display a dialog box containing a text field in which you can
type a name for the file, and a “Save” button to click once you finish typing the name. Typically,
the “Save” button is initially disabled, but as soon as you type in a potential name for the file, the
program somehow changes the state of the button by enabling it. Similarly, many word processing
programs contain menus of styles you can apply to text. These programs usually also allow you
to add new styles. When you add a new style, the program has to somehow modify the menu it
created earlier by adding new items.

31

At some level, adding a new item to a menu is actually quite similar to adding a new GUI
component to the display. Therefore, it should not come as a surprise that just as we use a method
invocation to add components to the window, we can also use method invocations to add items to
menus and to modify GUI components in many other ways.

Recall that, in general, a method invocation has the form:

name.action(. . . arguments . . .)

where

action is the name of a method that describes the action we want performed,

name is a name associated with the object that we want to perform this action, and

arguments are 0 or more pieces of extra information that more precisely describe the action to
be performed.

In order to write a method invocation that will modify a GUI component in a particular way,
we need to know exactly what to use in place of the name, action, and arguments components that
comprise a complete invocation. The action, and arguments are actually fairly simple. Associated
with each type of GUI component there is a collection of methods that can be used to perform
actions that affect GUI components of that type. We can look up the names of these methods in
the documentation that comes with the Java language. In this documentation, we will also find
descriptions of each method’s behavior and of the arguments that each method expects.

For example, with a JLabel, a method named setText can be used to change the text displayed
on the screen by the label. When this method is used, a single argument giving the new text to be
displayed must be included. Thus, if statusMessage is a name that refers to a JLabel, then the
method invocation

statusMessage.setText("Host www.yhoo.com not responding");

could be used to replace whatever message had been previously displayed by the label with the
warning message “Host www.yhoo.com not responding”.

Similarly, a method named setEnabled can be used to tell a JButton to become enabled (or
disabled). This method also expects a single argument. If the argument provided is true, the
button will become enabled. If the argument is false, the button will become disabled. Thus, if
saveButton is a name that refers to a button, the instruction

saveButton.setEnabled(false);

can be used to disable that button.
In fact, the setEnabled action can be performed by any GUI component. So, if you wanted to

disable a menu you could type something like

historyMenu.setEnabled(false);

This example illustrates why we have to provide the name of the object that should perform the
desired action in a method invocation. If we just typed

setEnabled(false);

32

Figure 2.1: Behavior of proposed NotSoTouchy program

in a program that included both a button and a menu in its interface, Java would have no way to
decide which one we wanted to disable. In general, to apply a method to a particular object, Java
expects us to provide a name or some other means of identifying the object followed by a period
and the name of the method to be used. So, in order to learn to use method invocations effectively,
we need to learn how to associate names with GUI components and other entities in our programs.

2.2 Instance Variable Declarations

To introduce the process of associating a name with an object in Java we will construct another
version of the TouchyButton program that we used as an example in the preceding chapter. In the
original version, each time someone clicked the button, a new copy of the message “I’m touched”
appeared on the screen. Our new version will be less repetitive. Rather than filling the screen with
multiple copies of its message, the new version will only display its message once no matter how
many times the button is pressed. We will name the new program NotSoTouchy

To accomplish this, we will make the program take a different approach to displaying its message.
Instead of constructing a new JLabel each time the button is pressed, we will change the program
so that the JLabel is created and displayed in the constructor before the button is pressed. Initially,
instead of displaying “I’m touched” we will make the label display instructions telling the user to
click the button. Then, when the button is pressed, we will use setText to make the label display
the message “I’m touched”. Figure 2.1 illustrates the behavior we have in mind. If the button is
pressed again, the program will use setText to make the label display the message “I’m touched”
again, but since it already is displaying this message nothing will change on the screen.

Before we can use setText to change the appearance of a JLabel, we have to choose a name
to associate with the label. Java puts a few restrictions on the names we can pick. Names that
satisfy these restrictions are called identifiers. An identifier must start with a letter. After the
first letter, you can use either letters, digits or underscores. So we could name our label something
like message, status or message2user. Case is significant. Java would treat userStatus and
userstatus as two completely distinct names. An identifier can be as long (or short) as you like,
but it must be just one word (i.e., no blanks or punctuation marks are allowed in the middle of an
identifier). A common convention used to make up for the inability to separate parts of a name
using spaces is to start each part of a name with a capital letter. For example, we might use a name
like importantMessage. It is also a convention to use identifiers starting with lower case letters to
name objects to help distinguish them from the names of classes like TouchyButton and constants
like WINDOW WIDTH. Finally, words like class and public that are used as part of the Java language
itself cannot be used as identifiers. These are called reserved words or keywords.

33

We can use a sequence of letters, numbers and underscores as an identifier in a Java program
even if it has no meaning in English. Java would be perfectly happy if we named our label e2d iw0.
It is much better, however, to choose a name that suggests the role of an object. Such names make
it much easier for you and others reading your code to understand its meaning. With this in mind,
we will use the name message for the label as we complete this example.

There are two steps involved in associating a name with an object. Java requires that we
first introduce each name we plan to use by including what is called a declaration of the name.
Then, we associate a particular meaning with the name using an assignment statement. We discuss
declarations in this section and introduce assignments in the following section.

The syntax of a declaration is very simple. For each name you plan to use, you enter the
word private followed by the name of the type of object to which the name will refer and finally
the name you wish to introduce. In addition, like commands, each declaration is terminated by a
semi-colon. So, to declare the name message, which we intend to use to refer to a JLabel, we type
the declaration:

private JLabel message;

The form and placement of a declaration within a program determines where in the program
the name can be used. This region is called the scope of the name. In particular, we will eventually
want to refer to the name message in both the constructor for the NotSoTouchy class and in the
buttonClicked method. The declaration of a name that will be shared between a constructor and
a method or between several methods should be placed within the braces that surround the body
of our class, but outside of the constructor and method bodies. Names declared in this way are
called instance variables. We recommend that instance variable declarations be placed before the
constructor and method definitions. The inclusion of the word private in an instance variable
declaration indicates that only code within the class we are defining should be allowed to refer
to this name. The public qualifier that we include in method declarations, by way of contrast,
indicates that the method is accessible outside of the class.

The declaration of an instance variable does not determine to which object the name will refer.
Instead, it merely informs Java that the name will be used at some point in the program and
tells Java the type of object that will eventually be associated with the name. The purpose of
such a declaration is to enable Java to give you helpful feedback if you make a mistake. Suppose
that after deciding to use the name “message” in a program we made a typing mistake and typed
“massage” in one line where we meant to type “message”. It would be nice if when Java tried
to run this program it could notice such a mistake and provide advice on how to fix the error
similar to that provided by a spelling checker. To do this, however, Java needs the equivalent of a
dictionary against which it can check the names used in the program. The declarations included
in a program provide this dictionary. If Java encounters a name that was not declared it reports it
as the equivalent of a spelling mistake.

Based on this discussion, the contents of the program we want to write might begin with the
code shown in Figure 2.2.

2.3 Assigning Meanings to Variable Names

Before a name can be used in a command like:

message.setText("I’m touched");

34

import squint.*;
import javax.swing.*;

public class NotSoTouchy extends GUIManager {

private final int WINDOW_WIDTH = 170;
private final int WINDOW_HEIGHT = 100;

private JLabel message;

public NotSoTouchy() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(new JButton("Click Here"));

. . .
}

. . .
}

Figure 2.2: Declaring message in the NotSoTouchy program

we must associate the name with a particular object using a command Java calls an assignment
statement. An assignment statement consists of a name followed by an equal sign and a phrase
that describes the object we would like to associate with that name. As an example, an assignment
statement to associate the name message with a JLabel that initially displayed instructions for
the user of our program might look like:

message = new JLabel("Click the button above");

In this assignment statement, we use the construction that creates the JLabel as a sub-phrase to
describe the object we want associated with the name message.

Ordering is critical in an assignment. The name being defined must be placed on the left side
of the equal sign while the phrase that describes the object to which the name should refer belongs
on the right side. Java will reject the command as nonsense if we interchange the order of the
name and the construction. It may be easier to remember this rule if you recognize that the correct
ordering of the parts of an assignment statement is similar to the way definitions are presented in
a dictionary. The name being defined comes before its definition.

Java will also reject an assignment statement that attempts to associate a name with an object
that is not of the type included in the name’s declaration. The declaration included in Figure 2.2
states that message will be used to refer to a JLabel. If we included the assignment

message = new JButton("Click Here");

in our program, it would be identified as an error because it attempts to associate the name with
an object that is a JButton rather than with a JLabel.

When we use a construction of a GUI component as an argument in a method invocation of
the form

35

import squint.*;
import javax.swing.*;

public class NotSoTouchy extends GUIManager {

private final int WINDOW_WIDTH = 170;
private final int WINDOW_HEIGHT = 100;

private JLabel message;

public NotSoTouchy() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(new JButton("Click Here"));
message = new JLabel("Click the button above");
contentPane.add(message);

}

public void buttonClicked() {
message.setText("I’m touched");

}
}

Figure 2.3: Complete program illustrating use of an instance variable

contentPane.add(new JLabel("I’m Touched"));

as we have in all our earlier examples, the command both creates the specified GUI component and
adds it to the program’s display. When a GUI component construction is instead used as a sub-
phrase of an assignment, execution of the assignment instruction creates the object and associates a
name with it but does not add it to the display. So, if all we do is execute the assignment statement

message = new JLabel("Click the button above");

nothing new will appear in the program’s window.
This gives us a chance to immediately show how we can make use of the name message. We

want the label to appear on the screen. To make something appear on the screen we have to provide
it as an argument to the contentPane’s add method. The name message now refers to the label
we want to add. So, using this name as an argument to the add method as in

contentPane.add(message);

will now make the label appear in the display. Basically, once we have used an assignment to
associate a name with an object, we can use that name whenever we want to tell the computer to
do something with that object.

Given this introduction to associating names with objects, we can now show the complete code
for our NotSoTouchy program. The code is shown in Figure 2.3. Even though it is very short and
simple, this program includes examples of all three of the basic steps involved in using variable
names: declarations, assignments, and references.

36

• The declaration:

private JLabel message;

appears at the beginning of the class body.

• An assignment of a meaning to the name appears on the third line of the constructor:

message = new JLabel("Click the button above");

• References to the label through its name appear in both the last line of the constructor :

contentPane.add(message);

and the only instruction in the buttonClicked method:

message.setText("I’m touched");

We emphasize these three aspects of using variable names because they apply not just to this
example but to almost any use of a variable name in Java. To illustrate this, suppose someone
pointed out that it seemed silly to be able to click the button in our program over and over when
it really only did something on the first click. We could address this complaint by disabling the
button after it was clicked using the setEnabled method. To do this, we would follow the same
three steps identified above. Assuming that we decided to call the button theButton, we would
first add a declaration of the form:

private JButton theButton;

just before or after the declaration of message. Then, we would associate the name with an actual
JButton by replacing the line

contentPane.add(new JButton("Click Here"));

with the pair of lines

theButton = new JButton("Click Here");
contentPane.add(theButton);

Finally, we would add the instruction

theButton.setEnabled(false);

to the buttonClicked method.

2.4 Local Variables

In the examples considered in the last section, the variables we used were essential to the instruc-
tions we wanted to write in two distinct sections of the program’s code, the constructor and the
buttonClicked method. The GUI components associated with these names were constructed and
added to the content pane in the constructor, but modified later in buttonClicked. Whenever a

37

variable is associated with an object that is shared between a constructor and a method or between
several methods in this way, the variable should be declared as what we call an instance variable.
This is done by placing its declaration outside of the bodies of the constructor and the methods
(and typically before the constructor and method definitions).

There are other situations, however, where all the operations we wish to perform with some
object occur within the constructor or within a single method. In such situations, Java allows
us to define names in such a way that their meanings only apply within the section of code in
which they are needed. Such names are called local variables. Using local variables rather than
instance variables when possible is considered good programming style. As your knowledge of
programming increases and you write larger and larger programs, you will quickly discover that
the overall structure of a program can become very complex. One way to minimize this overall
complexity is to specify any details of the program that don’t need to be known globally in such a
way that they are local to the part of the program for which they are relevant. Using local variables
is a good example of this practice.

To illustrate the use of a local variable, let’s make a simple, cosmetic change to the NotSoTouchy
program shown in Figure 2.3. In particular, let’s make the text “Click Here” appear in red instead
of the default black.

When GUI components are drawn on the screen, the computer uses one color, the foreground
color, for the text shown, and another color, the background color, to fill the remainder of the
component. By default, the foreground color is black and the background color is white. The
methods setForeground and setBackground can be invoked to change the colors used. Both
methods expect a single argument specifying the color to use. The names Color.RED, Color.BLUE,
Color.GREEN, and a few other similar names can be used to describe common colors.1 So, if the
name theButton were associated with our program’s button, the invocation

theButton.setForeground(Color.RED);

could be used to make the words “Click Here” appear in red.
If this is all we want to do with the button (in particular, if we don’t want to try to disable it

in the buttonClicked method), then all the operations that involve the button will occur in the
constructor. We will construct the button in the constructor, we will set its foreground color, and
we will add it to the content pane. In such a situation, it is best to declare theButton as a local
variable within the constructor rather than as an instance variable.

Declaring a local variable is quite simple. The main difference between local variable declarations
and instance variable declarations is that the line that declares a local variable is placed inside the
body of the constructor or method where the name will be used rather than outside of the definitions
of the constructors and methods. Doing this tells Java that the name will be private, not just to
its class, but to the constructor or method in which it is declared. Therefore, the word private is
not included in a local variable declaration. The revised definition of the NotSoTouchy constructor
would contain the code shown in Figure 2.4.

1These names are actually defined in a library known as the Abstract Windowing Toolkit (or AWT) rather than
in Squint or Swing. Therefore, to use these names we have to add an import for the library “java.awt.*” to our
program. Java also provides a complete mechanism to describe custom colors which we will discuss later.

38

public NotSoTouchy() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

JButton theButton;
theButton = new JButton("Click Here");
theButton.setForeground(Color.RED);
contentPane.add(theButton);

message = new JLabel("Click the button above");
contentPane.add(message);

}

Figure 2.4: A method definition including a local variable

2.5 GUI Layout with Panels

In Section 1.5.3 we explained that the simple approach we are taking to the layout of GUI compo-
nents sometimes produces undesirable results. The program discussed in that section created four
JTextFields intended to be used to enter an individual’s address. Each JTextField was paired
with an identifying JLabel. In Figure 1.16, we showed how the layout manager might under some
circumstances unnecessarily separate a JLabel from the component it was intended to label. At
that time, we promised that we would introduce a mechanism to address this issue. This is a good
time to keep that promise since the mechanism used will give us a chance to show you a few more
examples of the use of local variables.

You should be familiar with the fact that when we want to add a component to the display, we
write an invocation of the form

contentPane.add(. . .);

When we first introduced this mechanism, we explained that contentPane was a name for the
interior of the program’s window. By now, we know that when we want to associate an object
with a name, we first have to tell Java the type of the object to which the name will refer. Will
it identify a JButton, a JLabel, or something else? So it seems fair to ask for the same sort of
information about the name contentPane. What type of object does the name contentPane refer
to?

contentPane refers to an object that belongs to the class JPanel. A JPanel is essentially a box
into which one can insert GUI components that you want displayed as a group. In a program, we
can construct a JPanel and then add a collection of related components to the panel’s contents in
much the same manner that we would add them to the contentPane. More importantly, a JPanel
is also a GUI component itself. That means that after we have constructed a JPanel and placed
some other components inside of it, we can add the JPanel to the contentPane and thereby add
all of the components it contains to our program’s display as a group.

For example, suppose that we place a JLabel that displays the label “Street Addr:” and a
JTextField together in a new JPanel. We can then add these two components to our display by
adding the JPanel to the contentPane instead of adding the two components to the contentPane
separately. This will ensure that these two components will be displayed together if at all possible.

39

JPanel streetPanel;

streetPanel = new JPanel();

streetPanel.add(new JLabel("Street Addr:"));
streetPanel.add(new JTextField(29));

contentPane.add(streetPanel);

Figure 2.5: Instructions to add a JPanel holding two components to the display

Figure 2.6: JPanels can be used to group components in the display

The actual code to accomplish this is fairly simple. The JPanel does not expect any arguments
in its construction. Therefore, the code shown in Figure 2.5 can be used to create the two desired
components and add them to the display as part of a single sub-panel.

The first line of this code declares the name streetPanel that we will use to refer to our
JPanel. We will only need to perform operations on the panel within the constructor, so we declare
streetPanel as a local variable. The following line constructs an empty panel and associates it
with the name streetPanel. The next two lines are identical to lines from the original program
(as shown in Figure 1.11) except the name of the program’s main JPanel, the contentPane, has
been replaced by the name streetPanel. The last line adds the sub-panel we have formed to the
content pane.

Following this pattern, we can create three additional JPanels to hold the labels and text fields
for the remaining components of the address: the city, state and zip code. For now, let us assume
these JPanels are named cityPanel, statePanel, and zipPanel. Figure 2.6 shows how the display
of this program might look if its window was narrowed just a bit, just as we did to the earlier version
of the program to produce the display shown in Figure 1.16. When we narrowed the window of the
earlier version of the program, the label “Zip:” became separated from its text field because while
there was enough room for the label on the second line of the display, there wasn’t enough room
for the text field. If you look at Figure 2.6 carefully, you can see that there is still enough room for
the label “Zip:” on the second line of the display. The layout manager for the window, however,
doesn’t see the label and the text field as separate components. Instead, it sees a single JPanel
that contains both of them. Since the entire panel cannot fit on the second line, it puts the label

40

Figure 2.7: Coloring makes JPanels visible in the display

and the text field together on the third line as desired.
We can make the effect of the JPanels visible by using the setBackground method to change

the colors of the JPanels. In particular, if we add the instructions

zipPanel.setBackground(Color.YELLOW);
statePanel.setBackground(Color.GRAY);
cityPanel.setBackground(Color.YELLOW);
streetPanel.setBackground(Color.GRAY);

to our program and run it again in a narrow window, it produces the display shown in Figure 2.7.
Now it should be clear how the JPanels are grouping the components in the display.

There is one last interesting change we can make to this program. Consider how the name
streetPanel is used in the program. It is clearly very important during the five lines shown in
figure 2.5, but it isn’t used at all after that. The names cityPanel, statePanel, and zipPanel
have similarly short spans during which they are actually of use in the program. As a result, we
can instead use just one name to refer to all four of these JPanels. Obviously, this name can only
refer to one panel at a time. It will refer to the panel that we named streetPanel for the five
instructions that work with that panel, then we will change its meaning to make it refer to the
panel that was originally named cityPanel and so on.

The key to doing this is that Java allows us to use an assignment statement to change the
meaning of a name at any point in a program where that is useful. This should not strike you as
too surprising. We frequently use names in this way outside the world of programming. The name
“president of the class” often changes its meaning once a year. Of course, it would be bad to use
streetPanel or any of the other three names we suggested earlier for this new name. Instead, we
will use the identifier currentPanel. The complete code to construct the address entry display
using this approach is shown in Figure 2.8. Note that the name is only declared once in the first line
of this code, but then is associated with four different JPanels at different points in the program.

2.6 More on Declarations

There are three additional features of variable declarations that we want to introduce at this point.
They are not essential features, but they can help you write programs that are more concise and
clear.

41

JPanel currentPanel;

currentPanel = new JPanel();
currentPanel.add(new JLabel("Street Addr:"));
currentPanel.add(new JTextField(29));
contentPane.add(currentPanel);

currentPanel = new JPanel();
currentPanel.add(new JLabel("City:"));
currentPanel.add(new JTextField(18));
contentPane.add(currentPanel);

currentPanel = new JPanel();
currentPanel.add(new JLabel("State:"));
currentPane.add(new JTextField(2));
contentPane.add(currentPanel);

currentPanel = new JPanel();
currentPanel.add(new JLabel("Zip:"));
currentPanel.add(new JTextField(5));
contentPane.add(currentPanel);

Figure 2.8: Changing the meaning associated with a variable

42

2.6.1 Initializers

We have emphasized that in Java, the act of introducing a name is logically distinct from the
act of associating a meaning with a name. One is accomplished using a declaration. The other is
accomplished using an assignment statement. It is frequently the case, however, that a programmer
knows that a certain value should be associated with a name when it is first introduced. In this
situation, Java allows the programmer to write a declaration that looks somewhat like a hybrid
between a declaration and an assignment statement.

As an example, consider the first two statements of the code we wrote to illustrate the use of
JPanels shown in Figure 2.8:

JPanel currentPanel;

currentPanel = new JPanel();

Java allows you to combine these two lines into a single declaration of the form

JPanel currentPanel = new JPanel();

Note that while this looks like an assignment statement with a type name added to the beginning
it is considered a declaration with an initializer rather than an assignment statement.

Initializers can be used in the declarations of instance variables as well as in local variables.
Figure 2.9 shows yet another version of the “touchy button” program that incorporates the use of
such initializers. Note that the constructions to create the JButton and the JLabel have been moved
out of the constructor and into the instance variable declarations for message and theButton.

The use of initializers in declarations often provides the clearest way to specify the initial value
associated with a name. In the next few chapters, however, we will deliberately make sparing use
of this feature. We do this primarily to emphasize the distinction between declaring a name and
assigning a value to a name. Novice Java programmer frequently confuse these two steps in the use
of variable names. In a few chapters, after you become comfortable with this distinction we will
use initializers more frequently.

2.6.2 Making it final

By now, you might have noticed that the two lines we put at the beginning of the body of all our
class definitions:

private final int WINDOW_WIDTH = 170;
private final int WINDOW_HEIGHT = 100;

look a lot like declarations with initializers. If you ignore the second word on each line, you are left
with the words private, followed by the word int (which refers to the collection of values usually
called the integer numbers), an identifier, then an equal sign, and a value to associate with the
identifier as its initial value. The only thing that is odd about these lines is that they include the
word final after the word private.

The word final tells Java that the values associated with these names by their initializers will
be the only values ever associated with these names. In fact, if you include the word final in such
a declaration and later try to use an assignment statement to change the meaning of the name,
Java will identify this as an error in your program.

43

import squint.*;
import java.awt.*;
import javax.swing.*;

public class NotSoTouchy extends GUIManager {

private final int WINDOW_WIDTH = 170;
private final int WINDOW_HEIGHT = 100;

private JLabel message = new JLabel("Click the button above");

private JButton theButton = new JButton("Click Here");

public NotSoTouchy() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
theButton.setForeground(Color.RED);
contentPane.add(theButton);
contentPane.add(message);

}

public void buttonClicked() {
message.setText("I’m touched");

}
}

Figure 2.9: A program illustrating initializers in instance variable declarations

44

Variables declared to be final are called constant names. As the names we have used for these
two variables suggest, it is a convention that identifiers used as constant names are composed of
all upper case letters.

The primary purpose for using constant names is to make your program more readable. As we
mentioned earlier, the role of the arguments to createWindow would be fairly clear in the line

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

even to someone who didn’t fully understand what the createWindow method did. On the other
hand, the purpose of the numbers 170 and 100 in

this.createWindow(170, 100);

is not so obvious.

2.6.3 Declaring Collections of Similar Names

One final feature of Java name declarations is the fact that you can declare several names that
will refer to values of the same type in a single declaration. For example, we could either declare
the names streetPanel, cityPanel, statePanel, and zipPanel used in our discussion of JPanels
using four separate declarations of the form:

JPanel streetPanel;
JPanel cityPanel;
JPanel statePanel;
JPanel zipPanel;

or within a single declaration of the form

JPanel streetPanel, cityPanel, statePanel, zipPanel;

When multiple variables are declared together in this way, it is possible to include initializers for
each of the names as in:

private final int WINDOW_WIDTH = 600, WINDOW_HEIGHT = 200;

While including multiple names in a single declaration is sometimes helpful, this feature should
be used with caution. For the sake of readability, you should only declare names together if they
are used in nearly identical ways.

2.7 ints and Strings

One other interesting aspect of the declarations of WINDOW WIDTH and WINDOW HEIGHT is that they
show that it is possible to associate names with things other than GUI components. There are two
interesting collections of values that will be used often in our programs and with which we will want
to associate names. As mentioned above, the name int refers to the collection of integer values.
If we want to do any kind of calculation or counting in a program, we will clearly want to refer
to ints using variable names. The other important class of values is the collection of sequences
of letters strung together to form words and sentences. We have used such values when creating
JButtons and JLabels. The information "Click Here" used in the construction

45

new JButton("Click Here")

is an example of such a sequence of letters. In Java, the name String is used to refer to the
collection of such sequences.2

Just as we have seen that we can declare variable names to refer to GUI components, we can
declare variables that refer to ints and Strings. The variables WINDOW WIDTH and WINDOW HEIGHT
are examples of int variables. We could easily use a String variable in a similar way. If we included
the declaration

private final String BUTTON_LABEL = "Click Here";

right after the declaration of WINDOW HEIGHT in Figure 2.9, we could then rewrite the declaration
of theButton as

private JButton theButton = new JButton(BUTTON_LABEL);

As a much more interesting use of a variable that refers to something that is not a GUI com-
ponent, let’s see how to make a program count. In particular, we will change TouchyButton once
more to produce a version that displays a message of the form “I’ve been touched 4 time(s)”
each time its button is clicked, where the value 4 will be replaced by the actual number of times
the button has been clicked.

First, we need to associate a name with the number that describes how many times the button
has been clicked. Initially the value associated with this name should be 0, so we can declare the
name using the declaration

private int numberOfClicks;

Then, in the constructor for our class we will include the assignment

numberOfClicks = 0;

to associate the correct initial value with this variable.
Obviously, the meaning associated with this variable will have to change as the program runs.

We have seen that we can associate a new value with a name by executing an assignment statement.
To change the value of numberOfClicks, we will say

numberOfClicks = numberOfClicks + 1;

In all our previous examples of assignments, the right hand side has been a construction. When we
introduced the assignment statement, we did not say this was required. Instead, we simply said that
the right hand side should describe the value with which the name on the left should be associated.
When working with numbers, Java interprets the plus sign in the usual way. Accordingly, if
numberOfClicks is associated with 0, then numberOfClicks + 1 describes the value 1. Therefore,
after the assignment is executed once, numberOfClicks will be associated with 1. The right hand

2It is actually not quite precise to limit ourselves to sequences of letters. We might want to create a button by
saying

new JButton("Choice 1.")

In this example, "Choice 1." is definitely a String even though it contains the symbols “1” and “.” which are
considered digits and punctuation marks rather than letters. To be accurate we should describe Strings as sequences
of symbols.

46

side of the assignment now describes the value 2. Therefore, if the assignment is executed a second
time, the value associated with numberOfClicks will become 2. In fact, the value associated with
numberOfClicks will always be equal to the number of times the assignment has been executed.

The last detail required to complete the program we have in mind is that Java interprets the plus
sign a bit differently when it is used to combine a String value with a number or another String.
Instead of trying to perform the arithmetic addition operation, it sticks the sequence of symbols
that make up the String and the sequence of digits that describe the number together to form a
longer sequence. This operation is called concatenation. For example, when numberOfClicks is
associated with the number 4, the phrase

"I’ve been touched " + numberOfClicks + " time(s)"

describes the String

"I’ve been touched 4 time(s)"

The spaces within the quoted strings "I’ve been touched " and " time(s)" are required or no
spaces will be left around the digits placed between them.

The complete code for the simple counting program is shown in Figure 2.10. We have included
lines of text in this program that are intended to help explain the program to a human reader
rather than the computer. The details of the mechanisms Java provides for such explanatory notes,
which are known as comments are discussed in the next section.

2.8 Comments

In the program shown in Figure 2.10, we introduce one additional and very important feature of
Java, the comment. As programs become complex, it can be difficult to understand their operation
by just reading the Java code. It is often useful to annotate this code with English text that explains
more about its purpose and organization. In Java, you can include such comments in the program
text itself as long as you follow conventions designed to enable the computer to distinguish the actual
instructions it is to follow from the comments. For short comments, this is done by preceding such
comments with a pair of slashes (“//”). Any text that appears on a line after a pair of slashes is
treated as a comment by Java.

The class declaration in Figure 2.10 is preceded by three lines of comments. If we have multiple
lines of comments, we can write them a bit more simply by starting the comments with a “/*” and
ending them with “*/” as follows:

/*
A program that responds when its user clicks on a button

by displaying a count of the total number of times the

button has been clicked.

*/

Many programmers prefer to format multi-line comments as shown in the figure:

/*
* A program that responds when its user clicks on a button

* by displaying a count of the total number of times the

* button has been clicked.

*/

47

import squint.*;
import javax.swing.*;

/*
* A program that responds when its user clicks on a button

* by displaying a count of the total number of times the

* button has been clicked.

*/

public class TouchCounter extends GUIManager {

// The desired dimensions of the program window

private final int WINDOW_WIDTH = 170, WINDOW_HEIGHT = 100;

// Used to display instructions and counter messages

private JLabel message;

// Keeps track of the number of times the button has been clicked

private int numberOfClicks;

/*
* Place a button and the instructions in a window

*/
public TouchCounter() {

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

numberOfClicks = 0;

contentPane.add(new JButton("Click Here"));

message = new JLabel("Click the button above");
contentPane.add(message);

}

/*
* Display a counter of the number of clicks

*/
public void buttonClicked() {

numberOfClicks = numberOfClicks + 1;
message.setText("I’ve been touched " + numberOfClicks + " time(s)");

}
}

Figure 2.10: Using an int variable to count

48

While Java only considers the initial “/*” and final “*/”, the “*”s at the beginning of new lines
make it easier for the reader to see that they are part of a comment.

2.9 Summary

In this chapter we explored the importance of using names to refer to the objects our programs
manipulate. Instance variable names are used to share information between constructors and
methods and local variables provide the means to associate a name with an object for use within a
single constructor or method. We saw that both types of variables have to be declared before they
can be used in a program, and that the actual meaning associated with a name can be specified
either in an assignment statement that is separate from the declaration or by an initializer included
in its declaration.

We also presented several additional aspects of working with GUI components. We learned
about methods like setText, setForeground, and setEnabled that can be used to change the
properties of GUI components. We also discussed how to use JPanels to gain a little more control
over the positioning of GUI components in a program’s window.

49

50

Chapter 3

Probing Questions

In the preceding chapter, we learned how to give commands in Java. Using method invocations,
you can now write programs that create GUI components and then command them to change in
various ways. In this chapter, we show that method invocations can also be used to ask questions.
For example, at some point in a program you might need to determine what a user has typed into
a text field. We will learn that you can ask a text field to tell you what it currently contains by
invoking a method named getText. A similar method can be used to ask a menu which of its
items is currently selected. Such methods are called accessor methods. They are used to access
information about the state of an object. In contrast, all the methods we introduced in the last
chapter are used to change object states. Such methods are called mutator methods.

There is one important kind of question that cannot be asked using an accessor method. Imagine
a program that displays two buttons in its interface. One button might be labeled “Print” while
the other is labeled “Quit”. If a user clicks one of these buttons, the code in the program’s
buttonClicked method will be executed. Somehow, this method will have to ask which button
was clicked. We will see that rather than depending on method invocations to determine this
information, Java instead provides a way to directly associate a name with the GUI component
that causes an event-handling method to be invoked.

Finally, after discussing the basics of using both mutator and accessor methods, we will explore
the collection of methods that can be used to manipulate GUI components. In addition, we will
introduce one additional type of GUI component, the JTextArea which is used to display multiple
lines of text.

3.1 Accessor Methods

To introduce the use of accessor methods, we will construct a program that implements aspects of
a feature found in many web browsers, the bookmarks or favorites menu. Obviously, we are not
going to try to present the code for a complete web browser in this chapter. Instead, we will focus
on exploring the type of code that might be included in a web browser to allow a user to add the
addresses of interesting web sites to a menu.

The interface for the program we want to examine will be quite simple. There will be a
JTextField in which a user can type items that should be added to the favorites menus. We will
assume that the user types addresses of web sites into this text field, but our program will actually
work the same way no matter what form of text the user chooses to enter. There will also be a

51

Figure 3.1: Interface for program implementing a “favorites” menu

JComboBox that will display the list of items the user has identified as “favorite” web site addresses.
Finally, there will be a button labeled “Add”. When this button is pressed, the address currently
in the text field will be added to the menu as a new item. An image of what the program’s interface
might look like while the user is actually selecting an item from the favorites menu is shown in
Figure 3.1. Of course, selecting an item from the menu will have no real effect. The only reason
we show the program in this state is so that you can see that items have been added to the menu,
including the latest item, www.williams.edu, which still appears in the JTextField.

The only detail of implementing this program that will be new is the use of the accessor method
named getText to determine what the user has typed into the text field. In some respects even
this will seem fairly familiar, because using an accessor method is very much like using a mutator
method. To invoke either a mutator method or an accessor method we must write a phrase of the
form

name.action(. . . arguments . . .)

Accordingly, before we can use getText to find out what is in a JTextField we will have to
associate a name with the JTextField, much as we had to associate names with buttons and labels
in the last chapter in order to use mutator methods.

Assume that we include the following declarations in our program:

// A place where the user can type in a web site address

private JTextField address;

// Size of field used to enter addresses

private final int ADDR_LENGTH = 20;

// Menu that will hold all the addresses identified as favorite sites

private JComboBox favorites;

and that we include code in our constructor to create a text field and a menu and to associate them
with these names:

address = new JTextField(ADDR_LENGTH);
favorites = new JComboBox();

Finally, assume that we include code in the constructor to add these two components and a JButton
to the contentPane Note that in the assignment statement for favorites we use a JComboBox

52

construction that includes no arguments. This type of construction produces a menu that initially
contains no items. The only detail we have left to consider is what code to put in the buttonClicked
method to actually add the contents of the text field as a new item in the menu.

There is a mutator method named addItem that is used to add entries to a menu. If the
invocation

favorites.addItem("http://www.weather.com");

is executed, the computer will add the address http://www.weather.com as a new item in the
menu. Of course, while we will want to use this method, we cannot use it in this way. We cannot
just type in the item we want to add in quotes as an argument because we won’t know what needs
to be added until the program is running. We have to provide something in the invocation of the
addItem method that will tell the computer to ask the text field what it currently contains and use
that as the argument to addItem.

Java lets us do this by using an invocation of the getText accessor method as an argument to
the addItem method. The complete command we need to place in the buttonClicked method will
therefore look like

favorites.addItem(address.getText());

The complete program is shown in Figure 3.2.

3.2 Statements and Expressions

It is important to remember that accessor methods like getText serve a very different function
than mutator methods. A mutator method instructs an object to change in some way. An accessor
method requests some information about the object’s current state. As a result, we will use accessor
methods in very different contexts than mutator methods. With this in mind, it is a good time for
us to take a close look at some aspects of the grammatical structure of Java programs and clearly
distinguish between two types of phrases that are critical to understanding this structure.

The body of a method definition consists of a sequence of commands. These commands are
called statements or instructions. We have seen two types of phrases that are classified as statements
so far: assignment statements such as

message = new JLabel("Click the button above");

and method invocations such as

contentPane.add(new JButton("Click Here"));

Simply asking an object for information is rarely a meaningful command by itself. We would
never write a statement of the form:

address.getText();

One might mistakenly think of such a method invocation as a command because it does tell the
computer to do something — to ask the JTextField for its contents. It would be a useless command,
however, because it does not tell the computer what to do with the information requested. For
this reason, invocations that involve mutator methods are used as statements, but invocations that
involve accessor methods are not.

53

import squint.*;
import javax.swing.*;

/*

* A program to demonstrate the techniques that would be used

* to enable a user to add addresses to a favorites menu in a

* web browser.

*/

public class FavoritesMenu extends GUIManager {
// Change these to adjust the size of the program’s window

private final int WINDOW_WIDTH = 600, WINDOW_HEIGHT = 100;

// A place where the user can type in a web site address

private JTextField address;

// Size of field used to enter addresses

private final int ADDR_LENGTH = 20;

// Menu that will hold all the addresses identified as favorite sites

private JComboBox favorites;

/*
* Create the program window and place a button, text field and

* a menu inside.

*/
public FavoritesMenu() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

address = new JTextField(ADDR_LENGTH);
favorites = new JComboBox();

contentPane.add(new JButton("Add to favorites"));
contentPane.add(address);
contentPane.add(favorites);

}

/*
* Add contents of JTextField to JComboBox

*/
public void buttonClicked() {

favorites.addItem(address.getText());
}

}

Figure 3.2: Code for program to simulate a favorites menu

54

Invocations that involve accessor methods are instead used in contexts where Java expects us
to describe an object or value. There are many contexts in which such phrases are used. We have
already noted that this is the type of phrase expected to appear on the right side of an assignment
statement. The function of the assignment is then to associate the name on the left side of the
equal sign with the object or value described by this phrase. We also use such phrases when we
describe the arguments provided in method invocations and constructions. Phrases of this type are
called expressions.

At this point, we have seen five types of phrases that can be used as expressions:

1) accessor method invocations The use of accessor method invocations to describe values was
first encountered in the preceding section. A phrase like

address.getText()

is an expression that describes a value by telling some object (the text field address in this
case) to provide the desired information.

2) literals Expressions that directly and explicitly identify particular values are called literals. For
example, in the statements

contentPane.add(new JButton("Click here"));
contentPane.add(new JTextField(20));

the number 20 and the string "Click here" are examples of literals.

3) constructions Recall that a construction is a phrase of the form

new Type-of-object(... arguments ...)

that tells Java to create a new object. In addition to creating an object, a construction serves
as a description of the object that is created. As such, constructions are expressions. In
the two examples included in our discussion of literals, the constructions of a JButton and a
JTextField are used to describe the arguments to the content pane add method.

4) variable names Almost as soon as we introduced instance variable names, we showed that we
could replace a command like

contentPane.add(new JTextField(20));

with the pair of commands

message = new JTextField(20);
contentPane.add(message);

In the second of these two lines, the variable name message has taken on the role of describing
the argument to the add method. Thus, variable names can also be used as expressions.

5) formulas In the buttonClicked method of the TouchCounter program shown in Figure 2.10,
we saw the statement

numberOfClicks = numberOfClicks + 1;

55

In this instruction, we describe a value by telling Java how to compute it using the addition
operation. The phrase

numberOfClicks + 1

is an example of an expression that is formed by combining simpler expressions (the variable
numberOfClicks and the literal 1) using the addition operator. An expression like this is
called a formula. We will see that Java supports many operators, including operators for
the usual arithmetic operations addition (+), subtraction (-), division (/), and multiplication
(*).

Java allows us to use whatever form of expression we want to describe a value on the right
hand side of an assignment statement or as an argument in an invocation or a construction. It
doesn’t care whether we use a literal, variable, invocation, construction or a formula. It is very
picky, however, about the type of information the expression we use describes. For example, the
parameter provided to the content pane’s add method must be a GUI component. As a result, we
can say

contentPane.add(new JLabel("Click here"));

but we cannot say

contentPane.add("Click here");

The literal "Click here" describes a String. While a string can be used as a parameter in a
construction that creates a GUI component, the string itself is not a GUI component and therefore
the literal "Click here" will not be accepted as a valid argument for the add method.

3.3 Working with GUI Components

In the preceding sections, we have used examples involving GUI components to introduce the
ways in which method invocations can be used within Java programs. Now that we have explored
the basics of using method invocations both as statements and expressions, we want to explore
the collection of methods that can be used to manipulate GUI components more thoroughly. In
addition, we will introduce a new type of GUI component, the JTextArea which is similar to the
JTextField but allows us to display multiple lines of text.

The complete collection of methods associated with the GUI components we have been using is
quite extensive. We will not cover all of these methods. We will limit our attention to a relatively
small selection of methods that provides access to the essential functions of these GUI components.
The curious reader can consult the online documentation for the GUI components provided by the
Swing library at

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/package-summary.html

56

3.3.1 Common Features

There are some methods that can be applied to any GUI component. We have already introduced
several such methods. When we first introduced setEnabled, we mentioned that this method could
be applied to any GUI component. setEnabled can be used to enable or disable any type of GUI
component. In our examples, we only used the setForeground method to set the color of text
displayed in a JButton. In fact, this method and its close relative, setBackground, can be applied
to any GUI component. Thus, we can use these methods to change the colors used to display
buttons, labels and menus.

In addition to these mutator methods that are shared by all types of GUI components, there are
also accessor methods that can be applied to components of any type. One example is a counterpart
to setEnabled. It is an accessor method named isEnabled. We saw that setEnabled expects us to
specify either true or false as its argument depending on whether we want the component involved
to be enabled or disabled. If oneButton and anotherButton are variable names associated with
JButtons, then

oneButton.isEnabled()

is an expression that either describes the value true or false depending on whether oneButton is
currently enabled or disabled. Therefore, the statement

anotherButton.setEnabled(oneButton.isEnabled());

could be used to make sure that anotherButton’s state is the same as oneButton’s state as far as
being enabled or disabled.

3.3.2 Menu Methods

We have already introduced one method used withthe JComboBox class, the addItem method that
inserts a new entry into a menu. In addition, the JComboBox class provides an extensive collec-
tion of methods for removing items, determining which items are currently displayed in a menu,
and changing the item that is selected in a menu. We will present several of these methods in
this section. We will start with what we consider the most important method in the collection,
getSelectedItem, a method used to determine which menu item is currently selected.

Using the getSelectedItem Method

getSelectedItem is an accessor method. To illustrate its use, we will add a bit of functionality
to the FavoritesMenu program we presented in Figure 3.2. Our earlier version of this program
allowed us to add items to a menu, but it didn’t react in any significant way if we selected an item
from the menu. If the menu were part of an actual web browser, we would expect it to load the
associated web page when we selected an item from the favorites menu. We will set a simpler goal.
We will modify the program so that when a menu item is selected, the web address associated with
the menu item is placed in the JTextField included in the program’s display.

A program can tell a text field to change its contents by applying the setText method to the
text field. For example, executing the invocation

address.setText("http://www.aol.com");

57

would place the address of the web site for America Online in the JTextField.
This use of setText should seem familiar. In an earlier example, we applied setText in a

similar way to change the words displayed by a JLabel. In fact, we can use setText to change the
text displayed by either a JLabel, a JTextField, or a JButton.

Recall that whenever an item is selected from a menu, any instruction placed in the method
named menuItemSelected will be executed. This suggests that we can make our program display
the contents of an item when it is selected by adding a method definition of the form

public void menuItemSelected() {
address.setText(...);

}

to the FavoritesMenu program. All we have to do is figure out what argument to provide where
we typed “...” above. Given that we just explained that the getSelectedItem method can be used
to determine which item is selected, an invocation of the form

favorites.getSelectedItem()

might seem to be an obvious candidate to specify the parameter to setText. Unfortunately, this
will NOT work. Your IDE will reject your program as erroneous if you use this parameter. The
problem arises because setText expects a String as its argument but getSelectedItem doesn’t
always return a String.

You can probably imagine that it is sometimes useful to create a menu whose items are more
complex than strings — a menu of images for example. The JComboBox provides the flexibility to
construct such menus (though we have not exploited it yet). When working with such menus, the
result produced by invoking getSelectedItem will not be a String. Java’s rules for determining
when an expression is a valid parameter are quite conservative in accounting for this possibility.
Even though it is obvious that the result of using getSelectedItem in this particular program has
to be a String, Java will not allow us to use an invocation of getSelectedItem to specify the
parameter to setText because such an invocation will not always produce a String as its result
in every program.

There is another accessor method that we can use to get around this problem. It is named
toString and it can be applied to any object in a Java program. It tells the object to provide a
String that describes itself. The descriptions provided by invoking toString can be quite cryptic
in some cases. If the object that toString is applied to is actually a String, however, then the
result produced by the invocation is just the String itself. So, by applying the toString method
to the result produced by applying getSelectedItem we can provide the argument we want to the
setText method.

There is one last subtlety remaining. Up until this point we have stated that the form of an
invocation in Java was

name.action(. . . arguments . . .)

If this were true, then we would first have to associate a name with the result produced by the invo-
cation of getSelectedItem before we could apply the toString method to that result. Fortunately,
we haven’t told you the whole truth about this.

The actual description for the form of an invocation in Java is

expression.action(. . . arguments . . .)

58

That is, just as you can use any of the five forms of expression — names, literals, constructions,
invocations, and formulas — to specify the arguments in an invocation, you can use any form of
expression to describe the object to which the action should be applied. So, to apply the toString
method to the result of applying the getSelectedItem method we can write

favorites.getSelectedItem().toString()

This is an expression that is acceptable as a specification for the argument to setText. As a result,
we can extend the program as we desire by adding the following method declaration:

public void menuItemSelected() {
address.setText(favorites.getSelectedItem().toString());

}

Examining Menu Items

There are two methods that can be applied to a JComboBox to find out what items are currently
in the menu. While these methods are not very important in programs that display menus that
contain fixed sets of items, they can be helpful in programs where the user can add and delete menu
items.

The first of these methods is named getItemCount. It is an accessor method that returns the
number of items currently in a menu. The value returned will always be an int.

The other method is named getItemAt. It returns the item found at a specific position in the
menu. The items in a JComboBox are numbered starting at 0. Thus, the invocation

favorites.getItemAt(0)

would return the first item in the menu and

favorites.getItemAt(3)

would produce what one might normally consider the fourth item in the menu. Because one can
create menus that contain items that are not Strings, Java will not allow you to use an invocation
of getItemAt in a context where a String is required. As we explained in the preceding section, if
you need to use getItemAt in such a context, you can do so by combining its invocation with an
invocation of toString.

There is also a method named getSelectedIndex which returns the position of the currently
selected item counting from position 0.

Changing the Selected Menu Item

Java provides two methods to change the item that is selected within a menu. The first, setSelectedIndex,
expects you to specify the position of the item you would like to select numerically. Again, items
are numbered starting at 0 so

favorites.setSelectedIndex(0);

would select the first item in the favorites menu while

favorites.setSelectedIndex(favorites.getItemCount() - 1);

59

would select the last item in the menu.
The setSelectedItem method allows you to select a new item by providing its contents as

an argument. For example, If a menu named indecision contained the items “Yes”, “No”, and
“Maybe so” like the menus shown in Figure 1.12, then the statement

indecision.setSelectedItem("No");

could be used to select the middle item.

Removing Items from a Menu

The simplest way to remove items from a menu is to remove all of them. This can be done using
a method named removeAllItems as in the statement

favorites.removeAllItems();

It is also possible to remove one item at a time either by specifying the position of the item to be
removed or its contents. When removing by position, the method to use is removeItemAt. For
example, the invocation

favorites.removeItemAt(0);

would remove the first item from the menu. The method removeItem can be used to remove an
item based on its contents as in

indecision.removeItem("Maybe so");

3.3.3 Components that Display Text

We have already encountered two types of GUI components that can be used to display text,
JTextFields and JLabels. JTextFields and JLabels are obviously different in many ways. A
program’s user can type new text into a text field, while the information displayed in a JLabel
can only be changed by invoking the setText method from within the program. At the same
time, however, these two types of GUI components share many similarities. For example, we have
seen that the setText method can be applied to either a JLabel or a JTextField. Similarly, the
getText accessor method can be applied to either a JTextField or a JLabel to access its current
contents.

JTextAreas and JScrollPanes

There is a third type of GUI component used to display text that shares even more methods with
JTextField. This type of component is called a JTextArea. A JTextArea provides a convenient
way to display multiple lines of text in a program’s window. When we construct a JTextField,
we include a number in the construction that indicates how many characters wide the field should
be. When we construct a JTextArea, we specify how many lines tall the field should be in addition
to specifying how many characters wide. The construction involves two arguments with the first
specifying the number of lines. Thus, a construction of the form

new JTextArea(20, 40)

60

/*

* Class HardlyAWord - A program that presents a text area in

* which a user can enter and edit text.

*

*/

public class HardlyAWord extends GUIManager {

// Change these values to adjust the size of the program’s window

private final int WINDOW_WIDTH = 300, WINDOW_HEIGHT = 150;

/*

* Place a JTextArea in the window

*/

public HardlyAWord() {
// Create window to hold all the components

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

contentPane.add(new JTextArea(6, 20));
}

}

Figure 3.3: The world’s smallest word processing program

would create a text area tall enough for 20 lines and wide enough for 40 characters in any single
line.

A program that uses a JTextArea is shown in Figure 3.3. It is a very simple program. In fact
it is about the simplest program you could imagine writing that actually does something that is
at least somewhat useful. When the program runs it displays a window containing an empty text
area as shown in Figure 3.4.

While the empty text area in this window may not look very impressive, it actually provides a
fair amount of functionality. You can click the mouse in the text area and start typing. It won’t
automatically start a new line for you if you type in too much to fit within its width, but you can
start new lines by pressing the return key. If you make a mistake, you can reposition the cursor
by clicking with the mouse. You can even cut and paste text within the window. Figure 3.5 shows
how the program window might look after we had used these features to enter the opening words
of an exciting little story.

There is, however, a difficulty. If we keep typing but press the return key less frequently so that
the complete text entered would look like

Once upon a time, in a small text
area sitting on a computer’s screen
a funny thing happened. As the
computer’s user typed and typed
and typed, the small text area got bigger and bigger
until it no longer fit very well in a little window.

61

Figure 3.4: The initial state of the HardlyAWord program in execution

Figure 3.5: The state of HardlyAWord as text is entered

62

Figure 3.6: The result of entering too much text

the contents of the program’s window will come to look like the image shown in Figure 3.6.
The problem is that the numbers included in a JTextArea construction to specify how many

lines high and how many characters wide it should be are treated as specifications of its minimum
size. As long as the text placed within the area fits within these minimum values, the text area’s size
will remain fixed. If the text exceeds the minimum values, however, the text area will automatically
grow to be big enough to fit the text. If necessary, it will grow so big that it might no longer fit
within the program’s window, as we can see in Figure 3.6.

As a result of this problem, it is unusual to use a JTextArea by itself. Instead, it is typical to
use a JTextArea together with another type of component called a JScrollPane. A JScrollPane
can hold other components just as a JPanel can. If the components it holds become too big to fit
in the space available, the JScrollPane solves the problem by providing scroll bars that can be
used to view whatever portion of the complete contents of the scroll pane the user wants to see.

It is very easy to associate a JScrollPane with a JTextArea. We simply provide the JTextArea
as an argument in the construction of the JScrollPane. For example, to use a scroll pane in our
HardlyAWord program we would just replace the line

contentPane.add(new JTextArea(6, 20));

with the line

contentPane.add(new JScrollPane(new JTextArea(6, 20)));

When this new program is run, its window will initially look the same as it did before (see Fig-
ure 3.4). A JScrollPane does not add scroll bars until they become necessary. Once we entered
the text we showed earlier, however, the window would take on the appearance shown in Figure 3.7.
We still can’t see all the text that has been entered, but we can use the scroll bars to examine
whatever portion is of interest.

JTextArea Methods

In some programs, JTextAreas are used to provide a place in which the program’s user can enter
text as in our HardlyAWord example. In such programs, the most important method associated
with JTextAreas is the accessor method getText. Just as it does when applied to a JTextField,
this method returns a string containing all of the text displayed within the text area.

63

Figure 3.7: A JTextArea displayed within a JScrollPane

In other programs, a JTextArea may be used to display information to the user. If all the
information to be displayed is available at once, the setText method can be used in the same
manner it might be used with a JTextField or JLabel. Frequently, however, the information to
be displayed is added to the JTextArea bit-by-bit as it becomes available. In this case, another
method named append is more useful than setText. While setText replaces whatever information
had been displayed in a text area by the string provided as its argument, append simply adds the
text provided as its argument to the information that was already displayed in the text area.

Another method that is often used by programs that use JTextAreas to present information to
users is named setEditable. By default, a user can edit the text in a JTextArea using the mouse
and keyboard as we explained in our discussion of the HardlyAWord program. If a JTextArea is
being used strictly as a means of communicating information to a user, it may be best to prevent the
user from editing its contents. Otherwise, the user might accidentally delete or change information
they might like to see later. If displayArea is a variable associated with a JTextArea, then the
statement

displayArea.setEditable(false);

will tell the computer not to let the user edit the contents of the text area. If appropriate, at some
later point the invocation

displayArea.setEditable(true);

can be used to enable editing as usual. The setEditable method can also be a applied to a
JTextField.

To illustrate the use of append and setEditable, suppose that a program that included a
menu in its interface wanted to display the history of items that had been selected from this menu.
To keep things simple, we will write the example code using a familiar example of a menu, our
“Yes/No/Maybe so” menu. An image of how the program’s interface might look after its user had
selected items from the menu at random 10 times is shown in Figure 3.8.

The complete code for the program is shown in Figure 3.9. The JTextArea in which the selected
menu items are displayed is named log. The setEditable method is applied in the constructor
just before the log is added to the content pane so that it will never be editable while it is visible
on the screen.

The append method is used in menuItemSelected. There are two interesting features of the
argument passed to append. First, since we are using getSelectedItem, we must use the toString

64

Figure 3.8: Sample of a menu item selection log

method to assure Java that we will be working with a String even if getSelectedItem returns
some other type of object. Second, rather than just using append to add the menu item returned
by getSelectedItem to the log, we instead first use the “+” operator to concatenate the text of
the menu item with the strange looking String literal "\n".

To appreciate the purpose of the literal "\n", recall that when we first introduced the concate-
nation operation in the example code

"I’m touched " + numberOfClicks + " time(s)"

we stressed that if we did not explicitly include extra spaces in the literals "I’m touched " and
" time(s)", Java would not include any spaces between the words “touched” and “time(s)” and
the numerical value of numberOfClicks. Similarly, if we were to simply tell the append method to
add the text of each menu item selected to the JTextArea by placing the command

log.append(indecision.getSelectedItem().toString());

in the menuItemSelected method, Java would not insert blanks or start new lines between the
items. The text of the menu items would all appear stuck together on the same line as shown in
Figure 3.10.

To have the items displayed on separate lines, we must add something to each item we append
that will tell the JTextArea to start a new line. The literal "\n" serves this purpose. Backslashes
are used in String literals to tell Java to include symbols that can’t simply be typed in as part
of the literals for various reasons. The symbol after each slash is interpreted as a code for what
is to be included. The combination of the backslash and the following symbol is called an escape
sequence. The “n” in the escape sequence "\n" stands for “new line”. There are several other
important escape sequences. \" can be included in a String literal to indicate that the quotation
mark should be included in the String rather than terminating the literal. For example, if you
wanted to display the two lines

65

/*
* Class MenuLog - Displays a history of the items a user selects

* from a menu

*/
public class MenuLog extends GUIManager {

private final int WINDOW_WIDTH = 100, WINDOW_HEIGHT = 270;

// Dimensions of the display area

private final int DISPLAY_WIDTH = 10, DISPLAY_HEIGHT = 8;

// Used to display the history of selections to the user

private JTextArea log;

// Menu from which selections are made

private JComboBox indecision;

/*
* Place the menu and text area in the window

*/
public MenuLog() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

indecision = new JComboBox(new String[]{ "Yes", "No", "Maybe so"});
contentPane.add(indecision);

log = new JTextArea(DISPLAY_HEIGHT, DISPLAY_WIDTH);
log.setEditable(false);
contentPane.add(new JScrollPane(log));

}

/*
* Add an entry to the log each time a menu item is selected

*/
public void menuItemSelected() {

log.append(indecision.getSelectedItem().toString() + "\n");
}

}

Figure 3.9: A program using a text area to display a simple log

66

Figure 3.10: The result of appending Strings without using "\n"

What did he say?
He said "No."

in the JTextArea log, you could use the command

log.setText("What did he say?\nHe said \"No.\"");

Finally, \\ is used to include a backslash as part of a literal.

Using and Simulating Mouse Actions

Within a JTextField or JTextArea, the position of the text insertion point or “caret” can be
changed by clicking with the mouse. It is also possible to select a segment of text by dragging the
mouse from one end of the segment to the other. Java provides accessor methods that can be used
to obtain information related to such user actions and mutator methods that make it possible to
select text and to reposition the caret under program control.

The accessor method getSelectedText returns a string containing the text (if any) that the
user has selected with the mouse. The method getCaretPosition returns a number indicating
where the insertion point is currently located within the text.

A program can change the selected text using the methods selectAll and select. The first
method takes no arguments and simply selects all the text currently in the text area or text field.
The select method expects two arguments describing the starting and ending positions within the
text of the segment that should be selected.

When you type text while using a program that has several text fields and/or text areas in its
interface, the computer needs some way to determine where to add the characters you are typing.
As a user, you can typically control this by clicking the mouse in the area where you want what
you type to appear or by pressing the tab key to move from one area to another. A text field or
text area selected to receive typed input in this way is said to have the focus. It is also possible to

67

determine which component should have the focus by executing a command within the program
using a method named requestFocus.

3.3.4 Summary of Methods for GUI Components

In the preceding chapters and sections, we have introduced several types of GUI components and
many methods for manipulating them. Here, we summarize the details of the methods available to
you when you work with the GUI components we have introduced. In fact, this section provides a
bit more than a summary. In addition to describing all the methods we have presented thus far, it
includes some extra methods that are less essential but sometimes quite useful. We hope this will
serve as a reference for you as you begin programming with these tools.

In the description of each method, we provide a prototype of an invocation of the method. In
these prototypes we use variable names like someJButton and someJComboBox with the assumption
that each of these variable names has been declared to refer to a component of the type suggested by
its name and associated with an appropriate component by an assignment statement. In situations
where a method can be applied to or will accept as a parameter a component of any type, we use a
variable name like someComponent to indicate that any expression that describes a GUI component
can be used in the context where the name appears.

Another convention used in these prototypes involves the use of semicolons. We will terminate
prototypes that involve mutator methods with semicolons to suggest that they would be used as
statements. Phrases that involve accessor methods and would therefore be used as expressions will
have no terminating semicolons.

Methods Applicable to All Components

We begin by describing methods that can be applied to GUI components of any type.

someComponent.setForeground(someColor);
someComponent.setBackground(someColor);

The setForeground and setBackground
methods can be used to change the colors
used when drawing a GUI component
on the display. The foreground color
is used for text displayed. The actual
parameter provided when invoking one
of these methods should be a member of
the class of Colors. In particular, you
can use any of the names Color.BLACK,
Color.DARK GRAY, Color.LIGHT GRAY,
Color.GRAY, Color.CYAN, Color.MAGENTA,
Color.BLUE, Color.GREEN, Color.ORANGE,
Color.PINK, Color.RED, Color.WHITE, or
Color.YELLOW to specify the arguments to
invocations of these methods.

68

someComponent.setEnabled(true);
someComponent.setEnabled(false);

The setEnabled method enables or dis-
ables a component. Using true for the ar-
gument will enable the component. Using
false will disable the component.

someComponent.requestFocus(); The requestFocus method tells a compo-
nent that it should try to become the ac-
tive component within its window. When
a user enters information using the key-
board it will be directed to a JTextField or
JTextArea only if that component has the
focus. A program’s user can also change
which component has the focus by clicking
the mouse.

Methods Applicable to Components that Display Text

The setText and getText methods can be used with four types of components that display text
— JTextFields, JTextAreas, JLabels, and JButtons.

someJTextField.setText(someString);
someJTextArea.setText(someString);
someJLabel.setText(someString);
someJButton.setText(someString);

The text displayed by the component is re-
placed by the text provided as the method’s
argument.

someJTextField.getText()
someJTextArea.getText()
someJLabel.getText()
someJButton.getText()

The text currently displayed by the compo-
nent is returned as the result of an invoca-
tion of getText.

Methods Applicable to JTextFields and JTextAreas

There are many methods that can be used with either JTextFields or JTextAreas (but not with
JLabels or JButtons).

someJTextField.setEditable(true);
someJTextField.setEditable(false);
someJTextArea.setEditable(true);
someJTextArea.setEditable(false);

The setEditable method determines
whether or not the person running a
program is allowed to use the keyboard
and mouse to change the text displayed in
a JTextArea or JTextField. An argument
value of true makes editing possible. Using
false as the argument prevents editing.

69

someJTextField.setCaretPosition(someInt);
someJTextArea.setCaretPosition(someInt);

This method is used to change the posi-
tion of the text insertion point within the
text displayed by the component. Positions
within the text are numbered starting at 0.

someJTextField.getCaretPosition()
someJTextArea.getCaretPosition()

This accessor method is used to determine
the current position of the text insertion
point within the text displayed by the com-
ponent. Positions within the text are num-
bered starting at 0.

someJTextField.getSelectedText()
someJTextArea.getSelectedText()

This method returns a String containing
the text that is currently selected within the
text area or text field.

someJTextField.selectAll();
someJTextArea.selectAll();

This method causes all the text currently
within the component to become selected.

someJTextField.select(start, end);
someJTextArea.select(start, end);

This method causes the text between the
character that appears at the position
start and the character that appears at po-
sition end to become selected. If the start
or end value is inappropriate, invoking this
method has no effect. The argument values
must be integers.

The append Method

There is one important method that can only be applied to JTextAreas.

someJTextArea.append(someString); The contents of someString are added after
the text currently displayed in the text area.

Methods Associated with JComboBoxes

Many methods are available for adding, removing, and selecting menu items. In our prototypes for
these methods, we will continue to pretend that only String values can be used as menu items. In
some of the method descriptions, however, we provide a few clues about how a JComboBox behaves
if menu items that are not Strings are used.

70

someJComboBox.addItem(someString); The contents of someString are added as
a new menu item. In fact, as we hinted
earlier, the argument does not need to be a
String. If an argument of some other type
is provided, the text obtained by applying
the toString method to the argument will
appear in the menu.

someJComboBox.addItemAt(someString,
position);

The contents of someString are added as
a new menu item at the position specified
in the menu. As explained in the descrip-
tion of addItem, the first parameter does
not actually have to be a String.

someJComboBox.getSelectedItem() Returns the menu item that is currently
selected. Since menu items other than
text strings are allowed, the result of this
method might not be a String. As a con-
sequence, it is usually necessary to imme-
diately apply the toString method to the
result of invoking getSelectedItem.

someJComboBox.getSelectedIndex() Returns the position of the currently se-
lected menu item. Menu items are num-
bered starting at 0.

someJComboBox.getItemCount() Returns the number of items currently in
the menu.

someJComboBox.getItemAt(someInt) Returns the menu item found in the spec-
ified position within the menu. The posi-
tion argument must be an integer. Menu
items are numbered starting at 0. Since
items other than text strings are allowed,
it is usually necessary to immediately ap-
ply the toString method to the result of
invoking getItemAt.

someJComboBox.setSelectedIndex(position); Makes the item at the specified position
within the menu become the currently se-
lected item. Menu items are numbered
starting at 0.

71

someJComboBox.setSelectedItem(someString); Makes the item that matches the argu-
ment provided become the currently se-
lected item. If no match is found, the se-
lected item is not changed.

someJComboBox.removeAllItems(); Removes all the items from a menu.

someJComboBox.removeItem(someString); Removes the item that matches the argu-
ment provided from the menu.

someJComboBox.removeItemAt(position); Removes the item at the position specified
from the menu. Menu items are numbered
starting at 0.

JPanel Methods

The methods associated with JPanels can be applied either to a JPanel explicitly constructed by
your program or to the contentPane.

someJPanel.add(someComponent);
someJPanel.add(someComponent, position);

Add the component to those displayed in
the panel. If a second argument is included
it should be an integer specifying the posi-
tion at which the new component should be
placed. For example a position of 0 would
place the new component before all others.
If no second argument is included, the new
component is placed after all existing com-
ponents in the panel.

someJPanel.remove(someComponent); Remove the specified component from the
panel.

3.4 Identifying Event Sources

Sometimes, it is necessary for a program not only to be able to tell that some button has been
clicked, but also to determine exactly which button has been clicked. Consider the program whose
interface is shown in Figure 3.11. The program displays 10 buttons labeled with the digits 0 through
9 in a configuration similar to a telephone keypad. The program also displays a text field below
the buttons.

We would like to discuss how to construct a program that displays such a keypad and reacts
when the keypad buttons are pressed by adding to the text field the digits corresponding to the

72

Figure 3.11: A numeric keypad user interface

buttons pressed. To do this, the program somehow has to know both when a button is pressed and
be able to determine which of the ten buttons displayed was actually pressed.

We know that we can arrange to have a set of instructions executed every time a button is
pressed by placing those instructions in a method definition of the form

public void buttonClicked() {
. . .

}

When we introduced the notation for defining such methods, we explained what went in the
method’s body, but we didn’t say much about the header. In particular, we never explained
the empty pair of parentheses that appears after the name buttonClicked.

We have seen that Java uses parentheses to surround the actual parameters in method invo-
cations and constructions. Java borrows this use of parentheses from the mathematical notation
for applying functions to values. Thus, when we say “sin(π

2)”, we say π
2 is being used as an actual

parameter to the sine function.
Java also borrows the notion of formal parameter names from the notation used to describe

functions in mathematics. For example, a mathematician might define:

f(x) = 3x + 2

In this case, if asked for the value of f(7), you would hopefully answer 23. In this example, 7 is the
argument or actual parameter. The name x is referred to as the formal parameter. It is used in
the definition as a placeholder for the value of the actual parameter since that value is potentially
unknown when the definition is being written. The rules for evaluating an expression like f(7)
involve substituting the value 7 for each occurrence of x used in the definition.

The designers of the Squint and Swing libraries realized that the instructions within a buttonClicked
method might need to know what button was clicked. Therefore the libraries were designed to pro-
vide this information to the method when it is invoked. In the Java method header

73

public void buttonClicked() {

the empty parentheses specify that the method defined expects no parameters. If we define
buttonClicked in this way, the Java system assumes our particular definition of buttonClicked
has no need to know which button was clicked. Therefore, the system does not provide this infor-
mation to our method. If we want the system to tell us which button was clicked, we simply need
to add a specification indicating that the method expects a parameter to the method header.

Java is very picky about how we use names in programs. That is why we have to indicate the
type of object each name might be associated with when we declare instance variables and local
variables. Java treats formal parameter names in the same way. We can’t indicate that our method
expects a parameter by just including the formal parameter’s name in parentheses as we do in
mathematical definitions like

f(x) = 3x + 2

Instead, we have to provide both the name we want to use and the type of actual parameter value
with which it will be associated.

The information the system is willing to provide to the buttonClicked method is a JButton.
Therefore if we want to indicate that our buttonClicked method will use the name whichButton
to refer to this information, we would use a header of the form

public void buttonClicked(JButton whichButton) {

Just as when declaring a variable name, we are free to choose whatever name we want for a formal
parameter as long as it follows the rules for identifiers. So, if we preferred, we might use the header

public void buttonClicked(JButton clickedButton) {

Either way, once we include a formal parameter declaration in the header of the method we can
use the formal parameter name to refer to the button that was actually clicked.

Knowing this, it is fairly easy to write a version of buttonClicked that will add the digit
associated with the button that was clicked to a text field. We simply apply getText to the button
associated with the parameter name and then add the result to the text field. The complete code
for a program illustrating how this is done is shown in Figure 3.12. Note that we cannot use the
append method to add the additional digit. The append method is only available when working
with a JTextArea. Since this program uses a JTextField, we must simulate the behavior of append
by concatenating the current contents of the field, accessed using getText, with the digit to be
added.

Java is willing to provide information to other event-handling methods in the same way. If
the menuItemSelected method is defined to expect a JComboBox as a parameter, then the formal
parameter name specified will be associated with the JComboBox in which a new item was just
selected before the execution of the method body begins. Similarly, the buttonClicked method
can be defined to expect a JButton as a parameter and the textEntered method can be defined
to expect a JTextField as a parameter. (Note: Entering text in a JTextArea does not cause the
system to execute the instructions in textEntered).

One word of caution, if you define a version of an event-handling method which includes the
wrong type of formal parameter declaration, no error will be reported, but the method’s code will
never be executed. For example, if you included a definition like

74

// A simple implementation of a numeric keypad GUI

public class NumericKeypad extends GUIManager {
// Change these values to adjust the size of the program’s window

private final int WINDOW_WIDTH = 300, WINDOW_HEIGHT = 200;

// Width of field used to display digits

private final int DISPLAY_WIDTH = 20;

// Used to display the sequence of digits selected

private JTextField entry;

// Create and place the keypad buttons in the window

public NumericKeypad() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

contentPane.add(new JButton("1"));
contentPane.add(new JButton("2"));
contentPane.add(new JButton("3"));

contentPane.add(new JButton("4"));
contentPane.add(new JButton("5"));
contentPane.add(new JButton("6"));

contentPane.add(new JButton("7"));
contentPane.add(new JButton("8"));
contentPane.add(new JButton("9"));

contentPane.add(new JButton("0"));

entry = new JTextField(DISPLAY_WIDTH);
contentPane.add(entry);

}

/*
* Add the latest digit to the display.

* - parameter "clickedButton" is the button that was clicked

*/
public void buttonClicked(JButton clickedButton) {

entry.setText(entry.getText() + clickedButton.getText());
}

}

Figure 3.12: Implementation of a numeric keypad

75

public void buttonClicked(JComboBox whichOne) {
...

}

the system would essentially ignore the method’s definition.

3.5 Using Variables to Remember

So far, we have used variable and parameter names primarily to identify things. In the current
version of the keypad program, for example, we use the parameter name clickedButton to identify
the button that was clicked, and we use the variable name entry to identify the text field where
the digits should be placed. In this section, we will use the keypad program to explore a more
subtle use of variables. We will see that in addition to enabling us to identify things, variables can
also help us remember things.

To illustrate this, consider how to add a simple, cosmetic feature to the interface provided by
the keypad. In particular, let’s think about how to change the program so that the last button
clicked is highlighted by displaying the number on that button in orange instead of black.

It is quite easy to make the label of the button that was just clicked turn orange. This can be
done by adding the statement

clickedButton.setForeground(Color.ORANGE);

to the buttonClicked method (as long as we also remember to import java.awt.*). Unfortunately,
if this is all we do, the program won’t work quite the way we want. Each time we click a button
it will turn orange and then stay orange. Eventually all the buttons will be orange. We only want
one button to be orange at a time!

A simple, but inelegant solution would be to associate names with all ten buttons and add
ten statements to buttonClicked that would make all ten button labels become black just before
we set the color for clickedButton to be orange. This solution is inelegant because if only one
button is orange at any time, then nine of the ten instructions that make buttons turn black are
unnecessary. It would be nice if we could just execute a single statement that would turn the one
button that was orange back to being black.

To do this, we have to somehow remember which button was clicked last. We can make our pro-
gram remember this information by associating an instance variable name with this button. That
is, we will declare a new variable named lastButtonClicked and then add whatever statements
are needed to ensure that it always refers to the last button that was clicked. If we do this, then
the single statement

lastButtonClicked.setForeground(Color.BLACK);

can be inserted in the buttonClicked method just before the instruction

clickedButton.setForeground(Color.ORANGE);

Executing these two instructions will first make the old orange button turn black and then make
the appropriate new button turn orange as we would like.

The difficult part is determining what statements are needed to ensure that lastButtonClicked
always refers to the button that is currently orange. If we examine the two lines that we just

76

suggested adding to the buttonClicked method, we can already see a problem. Suppose that the
last button that was clicked was the “3” key and now the user has clicked on “7”. We would then
expect that when the two statements

lastButtonClicked.setForeground(Color.BLACK);
clickedButton.setForeground(Color.ORANGE);

began to execute, the variable lastButtonClicked would be associated with button 3 and clickedButton
would be associated with button 7. When the statements have finished executing, button 7 will be
orange. It is now the “last button clicked”. The variable lastButtonClicked, however, would still
refer to button 3. This is wrong, but easy to fix.

We need to change the meaning of the variable lastButtonClicked as soon as we finish execut-
ing the two lines shown above. In the example we just considered, we would like lastButtonClicked
to refer to button 7 after the statements within the buttonClicked method are complete. This
is the button that is associated with the formal parameter name clickedButton during the
method’s execution. In fact, it will always be the case that after the method finishes, the name
lastButtonClicked should refer to the button that had been associated with clickedButton
during the method.

We can accomplish this by adding an assignment statement of the form

lastButtonClicked = clickedButton;

as the last statement in the method. This statement tells the computer to associate the name
lastButtonClicked with the same object that is associated with clickedButton at the time the
statement is executed. Since clickedButton always refers to the button being clicked as the method
executes, this ensures that after the method’s execution is over, the name lastButtonClicked
will refer to the button that was just clicked. It will then remember this information until the
buttonClicked method is executed again.

There is one remaining detail we have to resolve. How will this code behave the first time
a button is clicked? If the only changes we make to the program are to add a declaration for
lastButtonClicked and to add the three statements

lastButtonClicked.setForeground(Color.BLACK);
clickedButton.setForeground(Color.ORANGE);
lastButtonClicked = clickedButton;

to the end of the buttonClicked method, then the first time that a button is clicked, no meaning
will have been associated with the name lastButtonClicked. Although it has been declared, no
assignment statement that would give it a meaning would have been executed. As a result, the
first time the computer tried to execute the statement

lastButtonClicked.setForeground(Color.BLACK);

the name lastButtonClicked would be meaningless. Unfortunately, Java gets very upset when you
try to apply a method using a name that is meaningless. Our program would come to a screeching
halt and the computer would display a cryptic error message about a NullPointerException.1

1Although the name NullPointerException may appear odd to you at the moment, if you take nothing else out
of this section, you should try to remember that an error message containing this word means that you told Java
to apply a method using a name to which you had not yet assigned any meaning. This is a fairly common mistake,
so knowing how to interpret this error message can be quite helpful. In fact, if you examine the contents of such a
message carefully you will find that Java tells you the name of the method within your code that was executing at
the time the error occurred and the exact line on which the error was detected.

77

Later, we will see that Java provides a way to check whether a name is meaningless before
using it. At this point, however, there is a simple, safe way to give the name a meaning and make
our program function correctly. Clearly there is no way to give the name a meaning that is really
consistent with its purpose. Before the first button has been clicked, there is no “correct” button to
associate with the name lastButtonClicked. If we look at how the name is used, however, we can
see that it is easy to give the name a meaning that will lead the program to behave as we desire.
All we do with the name lastButtonClicked is use it to turn a button black. If we associate it
with a button that is already black when the program starts, then using it the first time a button
is clicked will just tell a button that is already black to turn black again. For example, we could
associate lastButtonClicked with button 0 when the program starts. A complete version of the
keypad program that uses this technique is shown in Figure 3.13

3.6 Summary

In this chapter, we have pursued two main goals. One obvious goal was to expand your knowledge
of the set of methods with which you can manipulate GUI components. A very significant portion
of this chapter’s text was devoted to the enumeration of available methods and their behaviors.

Our second goal was to solidify your knowledge of some of the most basic mechanisms of the Java
language. First, we introduced an entirely new class of methods, accessor methods, that provide
the ability to get information about the state of an object. Next, we examined the grammatical
structure of Java’s instructions to distinguish two major types of statements, assignments and
invocations. In addition, we identified an important collection of grammatical phrases that are
used as sub-components of statements called expressions. We learned that expressions are used to
describe the objects and values on which statements operate. Finally, we learned about a new type
of name that can be used to refer to objects, formal parameters, and saw how these names provide
a way to determine which GUI component caused the execution of a particular event-handling
method.

78

// A simple implementation of a numeric keypad GUI

public class HighlightedKeypad extends GUIManager {
private final int WINDOW_WIDTH = 300, WINDOW_HEIGHT = 200;

// Width of field used to display digits

private final int DISPLAY_WIDTH = 20;

// Used to display the sequence of digits selected

private JTextField entry;

// Remember which button was clicked last

private JButton lastButtonClicked;

// Create and place the keypad buttons in the window

public HighlightedKeypad() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

contentPane.add(new JButton("1"));
contentPane.add(new JButton("2"));
contentPane.add(new JButton("3"));
contentPane.add(new JButton("4"));
contentPane.add(new JButton("5"));
contentPane.add(new JButton("6"));
contentPane.add(new JButton("7"));
contentPane.add(new JButton("8"));
contentPane.add(new JButton("9"));

lastButtonClicked = new JButton("0");
contentPane.add(lastButtonClicked);

entry = new JTextField(DISPLAY_WIDTH);
contentPane.add(entry);

}

/*
* Add the latest digit to the display and highlight its button

*/
public void buttonClicked(JButton clickedButton) {

entry.setText(entry.getText() + clickedButton.getText());
lastButtonClicked.setForeground(Color.BLACK);
clickedButton.setForeground(Color.ORANGE);
lastButtonClicked = clickedButton;

}
}

Figure 3.13: Using a variable to remember the last button clicked

79

80

Chapter 4

Let’s Talk

If you made a list of programs that you use frequently, chances are that the list would include
several programs that depend on network access such as your web browser, email program, or
IM/chat program. Given the importance of such programs, we introduce the basic techniques used
to write programs that use the network in this chapter.

The features of the Java language and libraries that we will employ to write network programs
are actually quite simple. If all we needed to do was present these details, then this would be a very
short chapter. In addition, however, we have to give you some background on the fundamentals of
communications between computers on the Internet. Basically, teaching you the Java mechanisms
required to send a message through the network will be of little use to you if you don’t know what
messages to send. Therefore, we will begin by exploring the nature of the “conversations” that take
place between computers on the Internet. Then, we will study the Java primitives used to send and
receive messages and use these primitives to construct examples of programs that use the network.

4.1 Protocols

Communications between humans depend on a vast collection of rules and conventions we share
with one another. Most obviously, there are the rules of the languages we use. Beyond the grammar
and vocabulary, however, there are shared expectations about the forms conversations will take.
Introductory phrases like “Good morning” and “Can I ask you a question?” don’t really add much
useful information to a discussion, but if a speaker doesn’t include such phrases, chances are that
the flow of conversation will suffer. The aphorism “It’s not what you say, but how you say it”
applies to very mundane aspects of our speech and writing.

We are so familiar with such conventions that we usually take them for granted. One context
where they are more explicitly recognized is when we talk on the telephone. A web search for the
phrase “Telephone Etiquette” yields an extensive collection of documents providing advice on how
to conduct a proper telephone conversation. For example, the University of California at Fullerton
has a telephone etiquette web site for their office staff that includes little “algorithms” for handling
phone calls such as:

• Answer the phone by saying: “[Department name], how may I help you?”

• If the caller asks to speak to the dean (for example), ask “May I tell him/her who is calling?”

– Ask the caller “What is this in regard to?” (if appropriate)

81

– Press Xfer and the extension.
– Wait for the dean to answer.
– Announce the name of the caller.
– Wait for a response as to whether the call will be taken.

∗ If the called party wishes to take the call, press the Xfer button again.
∗ If the calling party does not wish to take the call, press the RLSE button and then

the button where the caller is. SAY: “ is out of the office, may I take a
message or would you like his/her voicemail?”

The site also provides somewhat amusing advice including the importance of saying “He has stepped
out of the office. Would you like to leave a message on his voicemail?” rather than saying “He is
in the men’s room.”1

One interesting aspect of the advice provided by such sites it that it is clear that no single script
is appropriate for all telephone calls. While the instructions above correspond to the conversational
pattern you would expect if you called the administrative offices at a school, you would surprise
many callers if you followed these instructions when answering the phone at home or in your dorm
room. We have different patterns we follow for different forms of conversation. A complete guide
to telephone etiquette would have to cover how to handle calls while at home, in the office, and
even when answering the phone for friends while visiting their home. It would also have to discuss
placing a call to a friend, placing a call to make dinner reservations, placing a call to order a pizza,
and many other scenarios. Each situation would involve different patterns and expectations.

Communications between computers depend on similar rules and conventions. In fact, if any-
thing, such rules and conventions are even more critical to computer communications than to human
communications.

All data sent from one computer to another will ultimately be just a sequence of binary symbols.
For any information to be transferred, the designers of the software that sends the messages and the
software that receives the messages must agree on a common “language” that associates meanings
with such sequences of 0s and 1s. In addition, communications software must have conversational
patterns to follow. When two computers communicate, they do so because they are following
algorithms that specify what messages to send and when to send them. As usual, the computers do
not really understand the purpose of the algorithms they are following. In particular, the computers
don’t really understand the purposes of the messages they send and receive.

If a person says something unexpected (or at an unexpected point) in a conversation, the
listener may be surprised, but the conversation can usually continue because the individuals involved
understand what they are doing well enough to adjust. Since a computer does not really understand
the conversation in which it is participating, it cannot adjust to the unexpected. As a result, it is
critical that communications between two computers follow carefully designed conversational plans.
These conversational plans determine the form of the algorithms implemented by programs that
involve network communications.

A collection of rules that specify the manner in which two computers should communicate is
called a protocol. Like humans, computers have different conversational rules to follow depending

1At the time of writing, this web page could be found at:
http://www.fullerton.edu/it/services/Telecomm/FAQ/etiquetteguide.asp

If it is still available, it is definitely worth visiting just for its clear statement debunking the “Three Myths about
Students/Callers” — 1. Students try to make things difficult; 2. Students like to complain; and 3. Students expect
the impossible.

82

on the type of communications involved. For example, the collection of rules a computer on the
Internet follows when it wants to ask an email server to transmit a message is called the Simple
Mail Transfer Protocol or SMTP. On the other hand, when asking an email server to allow you to
read mail you have received, your computer probably follows either a set of rules known as the Post
Office Protocol (POP) or the Internet Mail Access Protocol (IMAP). The protocol a computer
must follow when fetching a web page is called the Hypertext Transfer Protocol or HTTP. There are
even protocols whose names don’t end with the word “protocol”! The rules a computer must follow
when talking to AOL’s IM service are named “Open System for CommunicAtion in Realtime” (or
OSCAR for short).

4.1.1 The Client/Server Paradigm

In many conversations, people participate as equals or peers. As two friends approach one another
on the street, either person might start a conversation by saying “Hi.” Either person may ask a
question or make a comment about the weather, what the other person is wearing, or any other
subject that comes to mind. Throughout the ensuing conversation either party may change the
subject when it seems appropriate, and, eventually, whoever feels like it first will say “Goodbye”
and continue on their way.

There are, however, many examples of situations where the participants in a conversation have
very distinct roles that play a major part in determining which party says what and when they say
it. Consider for example, the “conversation” that occurs when you make a call to place an order
using a 1-800 number (assuming, for the sake of discussion, that you decided not to just order
through the web). When you place such a call, you expect to hear a pleasant voice say something
like “Thank you for calling 1-800-Flowers. My name is Brian. How can I help you today?”

First, note that in such a conversation you consider it your role to start the conversation by
placing the call. You would probably react very differently if, instead, your phone rang and someone
said “I’m calling from 1-800-Flowers. My name is Brian. How can I help you today?”

There are many other points in such a conversation where it is clear that each party has a
distinct role and that these roles are not interchangeable. Near the end of the call, you expect
the salesperson to ask for your credit card information and you willingly provide it. Someday, try
asking the salesperson to give you his or her credit card information during one of these calls.

Many computer protocols, including all the protocols identified in the preceding section, assume
that the computers involved will be assigned roles somewhat similar to those we can identify in
a 1-800 call. One computer plays the role of the customer or client. The other plays the role
of salesperson or server. The computer playing the client role starts the conversation just as a
customer is expected to place a 1-800 call. The client computer then typically provides information
indicating what it wants the server computer to do and justifying the request (e.g. by providing
a password). In response, the server performs the task the client requested. This may include
activities like delivering an email message or providing information from a data base. In many such
computer protocols, the interchange of information takes place through a series of exchanges. This
style of interaction is so common in computer protocols, that it is given a name of its own — the
Client/Server Paradigm.

We have seen that a computer’s behavior is determined by the instructions that make up the
program it is executing. From this we can conclude that the program being executed will determine
whether a computer acts as a client or a server in a particular exchange of network messages. Thus,
when you launch an IM chat program like AIM, Adium, or iChat on your computer, the machine

83

suddenly becomes an IM client. Similarly, when you launch a web browser like FireFox, Safari, or
Internet Explorer, it becomes a web or HTTP client.

Servers work the same way. There is no fundamental difference between your computer and the
AOL chat server or Yahoo’s web server. What makes a machine become a server is the fact that
someone installs and runs an appropriate program on the machine. Such programs are not as well
known as client programs, but they definitely exist. For example, Apache and Microsoft’s Internet
Information System (IIS) are two examples of web server programs. Sendmail, Eudora WorldMail,
and Microsoft Exchange Server are examples of electronic mail server programs.

You are probably accustomed to running several programs on your computer at the same time.
For example, you might find yourself switching back and forth between a word processor, a chat
program, your web browser, and a program for editing pictures from your digital camera. If several
of these programs are network-based, your computer may be playing the role of client for several
different protocols at the same time. Similarly, it is possible to run several server applications
on a computer at the same time. Therefore, some computers are simultaneously functioning as
web servers and mail servers. In fact, a single computer can be both a server and a client at the
same time. For example, if you share music from your computer using iTunes, your computer
is acting as a server. While it is doing this, however, you can also have it act as a client for a
different protocol by using your email program or web browser. The point is that while the types
of messages a computer can send as part of a single conversation are strictly constrained by the
role it is playing under a given protocol, a computer can be configured to play different roles in
different conversations quite flexibly.

4.1.2 Mail Servers and Clients

We can make things more concrete by examining the use of servers and clients in the protocols
that are used to handle electronic mail. The Internet’s email system is based on the existence of
servers that hold messages for users between the point when a message is first sent and when the
person to whom the message is addressed reads the message. These mail servers are expected to
be continuously available to respond to client requests.

You may use a mail server provided by the same organization through which you obtain Internet
access or by an independent organization. For example, while on a college campus, you probably
depend on the college’s computer services department for network access. They most likely also
operate a mail server that you can use. Many home users obtain network access through a telephone
or cable television provider. These companies typically provide mail servers that their subscribers
can use. On the other hand, there are many companies that are in the business of providing
mail service that do not also provide Internet access to their users. Yahoo and Hotmail are two
well-known examples. Whether you access the Internet through a school’s network or through a
commercial provider you can decide to use a distinct provider like Yahoo or Hotmail for your email
server. You tell your email program what mail server it should use as part of its configuration
process.

When you send a message, your mail program delivers the message to your mail server by
sending the server a series of messages that follow the rules of the SMTP protocol. If the message
is addressed to a person who uses the same mail server as you, then the server simply holds the
message until the intended recipient requests to see his or her mail. Figure 4.1 depicts such a mail
transfer. In the figure, the computers that look like laptops represent user computers. For this
scenario, there are just two users named Alice and Bob. The monitor and keyboard between the

84

Figure 4.1: Email exchange between two users through a common mail server

laptops represents a computer that acts as a mail server for both Alice and Bob. This computer
has the name coolmail.com.

Both users are running mail client programs on their computers. Bob is using his email client
to send an email to Alice. In this case, Bob would enter something like alice301@coolmail.com
as the “To” address for the message. To deliver this message, Bob’s client will exchange a series
of messages through the Internet with his server as depicted by the curved, double-tipped arrow in
the figure. These messages will conform to the rules of SMTP. After this exchange is complete, the
text of the message will be stored on the coolmail.com server. At some later point, Alice will ask
her email client to check for new mail (or it might be configured to do this automatically every few
minutes). When requesting to see mail, the recipient’s mail program communicates with the server
using a protocol that is different from SMTP. The two most widely used protocols for retrieving
mail from a server are POP and IMAP. In the figure, Alice’s email client exchanges a series of
messages that conform to the POP protocol with the server to check for new mail. This exchange
is shown as a straight double-tipped arrow in the figure. After it is complete, Bob’s message will
appear in the list of unread messages displayed by Alice’s email program.

If a message is sent to someone who uses a different mail server, then a bit more work is
required. This scenario is depicted in Figure 4.2. The email client program still passes the message
to the sender’s mail server using SMTP. The sender’s mail server, however, does not just store the
message until the recipient asks for it. Instead, the sender’s mail server passes the message on to
the recipient’s mail server as soon as it can. The communication between the sender’s mail server
and the recipient’s mail server is also conducted by following the rules of SMTP.

In the figure, Bob is shown sending an email to a user named Carol. Carol uses her school’s email
server which has the name myuniversity.edu. Therefore, the figure shows that two conversations
based on SMTP are required to deliver the message. First, Bob’s email program delivers the
message to Bob’s server, coolmail.com. Rather than simply holding the message, coolmail.com

85

Figure 4.2: Email exchange between two users with distinct mail servers

will quickly attempt to forward the message to Carol’s server, myuniversity.edu, by exchanging
a similar sequence of SMTP messages with that server. Ultimately, Carol will retrieve the message
and any other mail she may have received by exchanging POP (or IMAP) messages with her mail
server.

4.1.3 The Transmission Control Protocol

Suppose for a moment that you did set out to write a complete guide to telephone etiquette. This
would involve writing guidelines for many different types of phone calls. The guidelines for calling
home on Mother’s Day would clearly be different from those for calling to make dinner reservations
or handling a call from a telephone solicitor. Making any call, however, requires certain common
steps. You have to pick up the receiver (or push the right button on a cell phone). You have to
wait for a dial tone. You have to know how to dial the number (including whether to include an
area code or not). You have to know what to do if the phone just keeps ringing and ringing. You
would not want to discuss these details separately in your guidelines for each type of phone call a
person might make. You would instead either just assume people knew how to make calls or write
a set of instructions describing the basics of making a phone call that a person could refer to as
necessary while following the instructions for a particular type of phone call.

Similarly, while network protocols for sending emails, fetching web pages and chatting through
AOL’s IM are all different, they all involve common elements. In the Internet, many of these details

86

are collected in a protocol called the Transmission Control Protocol or TCP.2

Each of the protocols mentioned in the preceding sections is designed to support a particular
application of the Internet. HTTP is designed to support communications between web browsers
and web servers, and SMTP, POP, and IMAP are all designed to support email. As a result,
such protocols are known as application protocols. TCP, on the other hand, is not designed to
support any particular application. Instead it addresses fundamental communication issues that
arise in many distinct applications. In recognition of this difference, TCP is described as a transport
protocol. Within the Internet, TCP is the most commonly used transport protocol.

There are two particular aspects of TCP that will become relevant as we explore how to write
Java programs that use the network. The first is that TCP, like the telephone system, is based
on the notion of conversations. To appreciate this assumption, you have to recognize the fact that
there are forms of communications that can’t really be called conversations. Contrast the way you
talk to someone on the telephone with the way you communicate by email. When you are talking
to someone on the phone you don’t try to say everything you wanted to say at once. Instead, you
provide a little information, wait to hear how the person to whom you are talking responds, and
then repeat that process until you are done. With email, however, you typically put everything
you want to say in one message. Normally, the first thing you say when you make a phone call is
“Hi,” possibly also taking the time to say who you are. On the other hand, it would be very odd
to send someone an email that simply said “Hi. This is Tom.”

The expectation that a person you are addressing will respond is integral to our notion of a
conversation. If you sent someone an email in the morning suggesting that they meet you for
lunch and they showed up for lunch without sending you a response, you would not be terribly
surprised. On the other hand, if you called someone to suggest lunch in the morning and they hung
up without agreeing or at least saying “See you then,” you would assume that you were accidentally
disconnected and try to call them again. Of course, you can only be “disconnected” if you thought
you were “connected.” This notion of a “connection” is the concrete way that both the phone
system and TCP make the concept of a conversation a part of the communication process. When
you want to send an email, you just send it. When you want to talk to someone on the phone, you
have to first “call” their number to get your phone “connected” to theirs. After you have sent an
email to someone, there is no way that your computer can tell whether or not you will send another
email to the same person in the near future. On the other hand, when a phone conversation is
finished, you let the phone company know by hanging up.

TCP depends on a similar notion of connections. When one program wants to talk to another
it begins by making a connection to the other program. Just as we have written programs that
“make” JButtons and JTextFields by executing constructions, you will learn how to write a
construction that makes a new network connection, essentially “calling” the other computer. Once
the connection is established, the computers at either end can send each other messages through
the connection. After the programs have exchanged all desired messages, they can “hang up” by
invoking a method to close the connection.

The other aspect of TCP that you will need to understand involves how a program identifies
the other computer to which it wants to be connected.

In order to call someone on the phone, you need to know the other person’s phone number.
2You may have encountered the abbreviation TCP/IP while configuring your computer’s network preferences or

elsewhere. This abbreviation is used to refer to the suite of communication protocols used on the Internet. The fact
that TCP is included in this abbreviation reflects that fact that it is a very important component of the collection of
Internet protocols.

87

More basically, however, you have to know how phone numbers work. That is, you have to know
things like when to include an area code and how to decide when to start by dialing 1. This
may seem trivial to you, but that is only because you use the system every day. Dealing with an
unfamiliar phone system quickly makes it obvious that some basic knowledge of the structure of
phone numbers is essential. For example, we searched the web yellow pages for some Australian
airlines and found the following entries:

Jetstar — For All Day, Every Day, Low Fares
ph: 13 1538

Royal Brunei Airlines — Value Fares To Asia, Middle East & Europe.
ph: (02) 8267 5300

Freedom Air — “Really, Really Small Fares”
ph: 1800 122 000

Based on these entries, how many digits long do you think an Australian phone number is? Do
they have area codes? How long are their area codes?

You are almost certainly familiar with some aspects of the mechanisms TCP uses to identify
the endpoint of a connection. Email addresses and web page addresses usually contain names like
hotmail.com or www.google.com. These names are called domain names. They can be used within
a program to identify the remote machine with which the program wants to establish a connection.
Each domain name consists of a series of short identifiers separated from one another by periods.

You may also have seen machines identified using sequences of number separated by periods. For
example, the sequence 64.233.161.147 is (at least at the moment this paragraph is being written)
another way of identifying the machine called www.google.com. Such a sequence of numbers is
called an Internet Address or IP address for short. I can access the Google web site by entering
either the web address http://www.google.com or http://64.233.161.147.

IP addresses are TCP’s equivalent of telephone numbers. To create a TCP connection to another
machine, a computer needs to know the IP address of the other machine. Fortunately, the Internet
provides a service called the Domain Name System that acts like a telephone directory for the
Internet. Given a domain name, a computer can use the domain name system to determine the IP
address associated with the domain name. The software that implements TCP performs domain
name lookups automatically. As a result, a programmer can either provide an IP address or a
domain name to create a connection.

Identifying the machine that you want to talk to, however, is not enough. As we explained
earlier, a single machine may be running a program that makes it act as a web server at the same
time that it is running another program that makes it act as a mail server. As a result, it isn’t
enough to send a message to a particular machine. You instead have to send each message to
a particular program on a particular machine. An IP address alone only identifies a machine.
Therefore, TCP requires a bit more addressing information for the messages it delivers.

The extra information TCP uses to identify the particular program a message should be deliv-
ered to is called a port number. Continuing with our analogy with the telephone system, a good
way to think of a port number is that it is much like a telephone extension number. Many large
organizations have a single telephone number. Within the organization, departments and/or indi-
viduals are assigned extension numbers. When you call the organization’s telephone number, an
operator or an automatic menu system asks you to provide the extension for the person you are
trying to contact and then connects you with the requested extension. Similarly, within a computer

88

running several programs that use the network, each program is assigned a port number. When
you want to create a connection to a particular program on a machine, you use the machine’s IP
address together with the port number assigned to the program as the complete address.

By convention, particular port numbers are associated with programs providing common net-
work services. For example, port 80 is associated with web servers and port 25 is associated with
servers designed to accept email for delivery using the SMTP protocol. The complete address used
to connect to the Yahoo web server would therefore be (www.yahoo.com, 80) or (64.233.161.147,
80) while the address for the mail server at Hotmail is (mail.hotmail.com, 25) or (65.54.245.40, 25).

4.1.4 Talking SMTP

As a last bit of background before we discuss the mechanisms used within a Java program to
send messages through the network, we will explore the rules of one important Internet application
protocol, the Simple Mail Transfer Protocol (SMTP). We will later use examples from this protocol
to illustrate the use of Java network programming mechanisms.

Internet protocols are described in documents know as RFCs (Requests for Comment). The
complete details of the SMTP protocol are provided in one of these documents. RFCs are identified
by number. SMTP is described by RFC 2822. If you wish to learn more about SMTP than we
provide below, an online copy of this document can be found at

http://www.ietf.org/rfc/rfc2821.txt

One rule of the SMTP protocol is that it is the client program’s responsibility to start the
process of communication. The client does this by establishing a connection to the SMTP server.
The protocol does not actually require that this be a TCP connection, but TCP is the mechanism
most commonly used for SMTP connections. The protocol also states that as soon as the connection
is established, the server should send a message to the client identifying itself. For example, if a
program makes a connection to port 25 on the server mail.adelphia.com, it will quickly be sent a
message like:

220 mta9.adelphia.net ESMTP server (InterMail vM.6.01.05.02 201-2131-123-102-20050715) ready
Wed, 28 Jun 2006 11:24:37 -0400

On the other hand, if it connects to port 25 on mail.hotmail.com, the program will receive a message
like:

220 bay0-mc1-f10.bay0.hotmail.com Sending unsolicited commercial or bulk email to Microsoft’s
computer network is prohibited. Other restrictions are found at http://privacy.msn.com/Anti-
spam/. Violations will result in use of equipment located in California and other states. Wed,
28 Jun 2006 22:42:26 -0700

Obviously, although the SMTP protocol governs the form of messages exchanged between a
client and server, it still leaves a great deal of flexibility. While mail.adelphia.com appears to
introduce itself using computerese, Microsoft’s Hotmail server clearly prefers legalese. It is a bit
hard to see how two messages that are so different could be conforming to the same guidelines. In
fact, these two messages reveal quite a few interesting aspects of the SMTP protocol.

First, both of these messages are composed entirely of text. That is, while the actual messages
that travel between the two computers are just sequences of 0s and 1s, when SMTP is being used

89

Reply Code Interpretation
220 Service ready
221 Service closing transmission channel
250 Requested mail action completed
354 Start mail input
450 Requested mail action not taken: mailbox unavailable
452 Requested action not taken: insufficient system storage
500 Syntax error, command unrecognized
501 Syntax error in parameters or arguments

Figure 4.3: A sampling of SMTP server reply codes

these sequences are all interpreted as text encoded using a standard encoding system called ASCII
(American Standard Code for Information Interchange). The designers of SMTP could have
instead used special binary codes to reduce the number of bits required in many cases. We can
speculate that the use of text for all SMTP messages was motivated by the effort required to correct
mistakes in early implementations of the protocol. If someone wrote a program that was intended
to act as an SMTP client or server, and the program did not work as expected, it would likely be
necessary to examine the messages exchanged as part of the process of isolating and correcting the
mistake. Messages encoded in ASCII could be examined using standard tools for text processing.
If SMTP had used a specialized encoding scheme, specialized tools would have been required.

In addition to using text, the designers of SMTP gave those implementing server programs
considerable leeway to provide information that might be useful to a human reader beyond the
information required by the protocol for use by the client program. The introductory messages
received from the two servers above each start with two required fields: the code “220” and the
official domain name of the server to which the client has connected.3 The server is free to provide
any additional information it feels might be useful in the remainder of the message.

The additional information included by the server mail.adelphia.com seems designed to help
someone struggling to diagnose a problem with mail software. It provides a description of the
mail server program being run on mail.adelphia.com, InterMail, including what appears to be
a precise version number. It also includes the time and date at which the message was sent. The
message sent by the Hotmail server, on the other hand, suggests that Microsoft might be less
concerned with helping someone debug a mailer than with establishing a legal basis for enforcing
their use policies. This must be because their software does not contain any bugs.

The code “220” at the beginning of these two server messages is actually the most important
piece of information from the point of view of the client software. Each message an SMTP server
sends starts with such a three digit code. A list of the codes used and their interpretations is
included in the specification of the protocol. A portion of this list is reproduced in Figure 4.3. As
indicated in the figure, the code 220 simply indicates that the server is ready. In many cases, the
code is the only information required in the message.

All messages the server sends to the client during an SMTP exchange are sent in reply to actions
performed by the client. The introductory “220” message is sent in response to the client creating a

3A machine on the Internet can be associated with several “nicknames” in addition to its official name. Thus, in
both the examples shown, the name that follows the “220” code is somewhat different from the name of the host to
which we said we were connecting.

90

connection. All other server messages are sent in response to messages sent by the client. Messages
sent by the client are called commands. While each server reply starts with a three digit numeric
code, each command sent by the client must begin with a four character command name. The use
of a fixed length for all command names simplifies writing client software, but it leads to some odd
spellings. For example, the first “command” the client is expected to sent is a “Hello” message
in which the client identifies itself in much the same way the server is identified within the “220”
reply message. The command name used in the message is therefore “HELO”.4 The command code
should be followed by the name of the client machine. Therefore, a typical HELO command might
look like:

HELO tcl216-44.cs.williams.edu

The server must send a reply to every client command. If the server is able to process a client
command successfully, it sends a reply starting with the code 250. In the case of the HELO command,
most servers define success rather loosely. Typical servers will respond to any HELO command
with a 250 reply, even if the machine name provided is clearly incorrect. For example, sending the
command

HELO there

to the SMTP server at mail.yale.edu elicits a reply of the form

250 po09.its.yale.edu Hello tom.cs.williams.edu [137.165.8.83], pleased to meet you

The server clearly knows that the domain name included in the command is incorrect since it
includes the correct domain name for my machine in its reply. Also note that this particular server
program takes advantage of the fact that most of the text in its reply is ignored by the client
software by including a cute little “pleased to meet you” in the message.

The actual transfer of a mail message is accomplished through a sequence of three client com-
mands named MAIL, RCPT, and DATA.

The MAIL command is used to specify the return address of the individual sending the message.
The command name is followed by the word “FROM” and the sender’s email address. Thus, if a
mail client was trying to deliver the message from Bob to Carol discussed in section 4.1.2, it might
start by sending the command

MAIL FROM:<bob@coolmail.com>

The server will usually respond to this command with a 250 reply such as

250 <bob@coolmail.com>... Sender ok

Next, the client specifies to whom the message should be delivered by sending one or more RCPT
(i.e., recipient) commands. In each such command, the command name is followed by the word
“TO” and the email address of a recipient. In the case of Bob’s email program trying to deliver a
message to Carol, this command might look like

RCPT TO:<carol@myuniversity.edu>

4To support extensions to the original protocol, the current version of SMTP allows clients to substitute an
“EHLO” command for the “HELO” command. Use of this peculiar spelling informs the server that the client would
like information about which SMTP protocol extensions the server supports.

91

and would elicit a reply such as

250 <carol@myuniversity.edu>... Recipient ok

from the server.
Finally, the client initiates the transmission of the actual contents of the mail message by sending

the command

DATA

to the server. The server will probably respond to this message with a reply of the form

354 Enter mail, end with "." on a line by itself

The server uses the 354 reply code rather than 250 to indicate that it has accepted but not completed
the requested DATA command. It needs to receive the contents of the mail message before it can
complete the command. After the 354 reply code, it kindly tells us how to send the message (even
though any mail client program that received this reply should already know!). After sending a
DATA command, a mail client sends the actual contents of the mail message to the server line by
line. When it is done, it informs the server by sending a single period on a line by itself. Once it
sees the period, the server will try to deliver the message and send a 250 reply code if it can.

There are several additional commands and many more reply codes than we have discussed.
For our purposes, however, we only need to use one additional command. When the client has
finished sending messages to the server it sends the server a command of the form

QUIT

The server will then send a 250 reply message and disconnect from the client. That is, while it is
the client’s job to create the connection to the server, it is the server that gets to “hang up” first
when they are done.

4.2 Using NetConnections

We noted that all command and reply messages sent using SMTP are encoded as text using the
ASCII code. Many other important Internet protocols share this property, including POP, IMAP
and HTTP. There are, however, examples of protocols that depend on more specialized encodings
of information in binary including the OSCAR instant messaging protocol and the DNS protocol
used to translate domain names into IP addresses.

The Squint library contains several classes designed for implementing programs that involve
network communications. Among these are two classes named TCPConnection and NetConnection.
The TCPConnection class provides general purpose features that make it flexible enough to work
with specialized encoding schemes. It provides the functionality needed to implement clients and
servers based on protocols like OSCAR and DNS. NetConnection, on the other hand, provides
primitives for network communication that are specialized to make it easy to implement programs
that use text-based protocols. To simplify our introduction to network programming in Java, we
will restrict our attention to such text-based protocols in this chapter. We will introduce the use
of the NetConnection class and, as an example, present the implementation of a very simple mail
client.

92

Figure 4.4: GUI interface for a simple SMTP client

4.2.1 An Interface for an SMTP Client

The GUI interface for the program we will implement is shown in Figure 4.4. The program is really
only half of a mail client. It can be used to send mail, but not to read incoming mail messages.
As a result, it only sends messages based on the SMTP protocol, while a complete mail program
would also have to use POP or IMAP.

The program provides two text fields and a text area where the user can enter the destination
address for the email message, the user’s own address, and the body of the message to be sent. Once
the correct information has been placed in these areas, the user can tell the program to send the
message by pressing the “Send” button. Unlike most mail client programs, this program provides
no mechanism that allows the user to specify the name of the SMTP server to contact when a
message is to be delivered. That information is included in the actual text of the program. This is
not a desirable feature, but it will make the example a bit simpler.

The text area at the bottom of the program window is used to display the reply messages
received from the SMTP server. This information would not be displayed by a typical mail client,
but it is displayed by our program to make it clear how the process depends on the underlying
protocol. The snapshot shown in Figure 4.4 shows how the window would look shortly after the
user pressed the “Send” button. At this point, we can see the complete list of replies from the
server displayed in the area at the bottom of the window.

The instance variable declarations and the constructor for such a program are shown in Fig-
ures 4.5 and 4.6. None of this code actually involves using the network. Instead, it only creates
the GUI components described above and adds them to the program’s window. The only real clues
that this program will involve network access are the declarations of the variables SMTP SERVER
and SMTP PORT. These variables are associated with the name of the server the program will con-

93

import squint.*;
import javax.swing.*;

// A simple client program that can be used to send email messages

// through an SMTP server.

public class SMTPClient extends GUIManager {
// Change these values to adjust the size of the program’s window

private final int WINDOW_WIDTH = 450, WINDOW_HEIGHT = 460;

// Amount of space to allow in text fields and text areas

private final int ADDR_WIDTH = 14;

// How many characters wide program’s text areas should be

private final int AREA_WIDTH = 35;

// How many lines tall the message area should be

private final int MESSAGE_LINES = 10;

// How many lines tall the log area should be

private final int LOG_LINES = 10;

// Address of SMTP server to use

private final String SMTP_SERVER = "smtp.cs.williams.edu";

// Standard port number for connection to an SMTP server

private final int SMTP_PORT = 25;

// Fields for to and from addresses

private JTextField to;
private JTextField from;

// Area in which user can type message body

private JTextArea message;

// Area in which responses from server will be logged

private JTextArea log;

Figure 4.5: Instance variable declarations for an SMTP client

94

// Place fields and text areas on screen to enable user to

// enter mail. Provide a "Send" button and a text area in which

// server replies can be displayed.

public SMTPClient() {
// Create window to hold all the components

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

// Create fields for to and from addresses

JPanel curPane = new JPanel();
curPane.add(new JLabel("To:"));
to = new JTextField(ADDR_WIDTH);
curPane.add(to);
contentPane.add(curPane);

curPane = new JPanel();
curPane.add(new JLabel("From:"));
from = new JTextField(ADDR_WIDTH);
curPane.add(from);
contentPane.add(curPane);

// Create the message entry area

contentPane.add (new JLabel("Enter your message below"));
message = new JTextArea(MESSAGE_LINES, AREA_WIDTH);
contentPane.add(new JScrollPane(message));

// Add the Send button

contentPane.add(new JButton("Send"));

// Create the server response log

log = new JTextArea(LOG_LINES, AREA_WIDTH);
contentPane.add(new JScrollPane(log));
log.setEditable(false);

}

Figure 4.6: Constructing the interface for an SMTP client

95

tact, smtp.cs.williams.edu, and the standard port through which an SMTP server can be con-
tacted, port 25. In this program, all the code that involves accessing the network will fall in the
buttonClicked method that is discussed in the following sections.

4.2.2 Making Connections

To communicate with another computer using TCP, a program must establish a connection with a
program on the other computer. This can be accomplished by constructing a NetConnection.

We have seen many examples of constructions in the preceding chapters. We know that by
including an expression of the form

new JTextArea(...)

in a program we can cause the computer to create a text area that we will eventually be able to
see on the screen.

We can similarly cause a computer to create a network connection by executing an expression
of the form

new NetConnection(...)

The difference is that constructing a NetConnection doesn’t produce anything we can ever see on
the screen. From the program’s point of view, however, it does not really matter whether an object
can be seen or not. Our programs never see text areas either. Once a text area is constructed,
however, statements within the program can apply methods like getText and setText to the text
area to display information for the program’s user or to access information provided by the user.
Similarly, once a NetConnection is constructed, we can apply methods to the NetConnection to
send information to the computer at the other end of the connection or to access information sent by
the program at the other end of the connection. Of course, to apply methods to a NetConnection
we must associate a name with the object constructed. Therefore, we will typically include such
constructions in assignment statements or in a declaration initializer. For example, if we decided
to use the name connection to refer to a NetConnection we might use the declaration

NetConnection connection = new NetConnection(...);

to create the connection and associate it with its name.
When we construct GUI components, we provide parameters in the constructions that specify

details of the object to be constructed like the width of a text field or the label to appear on a
button. When we construct a NetConnection we need to provide two critical pieces of information
as parameter values: the name or address of the machine with which we wish to communicate and
the port number associated with the program to which we are connecting. The first value will be
provided as a String specifying either a domain name or an IP address. The second can either
be a String or an int value. Therefore, we could construct a connection to the Yahoo web server
using the construction

new NetConnection("www.yahoo.com", 80)

Alternately, we can use a String value to describe the port to use as in

new NetConnection("www.yahoo.com", "80")

96

or, assuming that 209.73.186.238 is the IP address for the machine named www.yahoo.com, we
could type

new NetConnection("209.73.186.238", 80)

In the SMTP client program we described in the preceding section, we will want to construct
a NetConnection to an SMTP server as soon as the user clicks the “Send” button. The name
of the server and the SMTP port number (25) are associated with the names SMTP SERVER and
SMTP PORT in the program’s instance variable declarations as shown in Figure 4.5. Therefore, within
the buttonClicked method we can create the desired NetConnection by including a declaration
of the form:

NetConnection connection = new NetConnection(SMTP SERVER, SMTP PORT);

4.2.3 The Ins and Outs of NetConnections

Once a connection is established, it is easy to use the NetConnection to send and receive lines of text
through the network. There is a method named nextLine that is used to access each line received
through the connection and a method named println (pronounced “print line”) that is used to
send a line of data through the connection.5 The surprise, however, is that these methods are not
applied to the connection itself. They are instead applied to subcomponents of the connection.

In the diagrams shown in Figures 4.1 and 4.2, we depicted TCP connections as double-tipped
arrows because information flows back and forth between server and client. It would, however,
more accurately reflect the structure of Squint NetConnections to instead use pairs of single-
tipped arrows to represent each TCP connection as shown in Figure 4.7. Each of these arrows
represents a one-way flow of data through the network. Java provides a variety of classes for
handling such one-way flows of data called streams. A NetConnection is basically a pair of such
streams. Within a given NetConnection the stream that carries data from the program that
constructed the NetConnection to the remote machine is named out (since it carries data out of
the program), and the stream through which data is received is named in. The println method
mentioned above is applied on the out stream while the nextLine method is applied to the in
stream.

For example, we know that immediately after a program establishes a connection to an SMTP
server by evaluating a construction like:

NetConnection connection = new NetConnection(SMTP SERVER, SMTP PORT);

the server will send a line to indicate it is ready that will look something like:

220 smtp.cs.williams.edu ESMTP Sendmail 8.13.1/8.13.1; Fri, 30 Jun 2006 10:23:31 -0400 (EDT)

The program can access whatever line the server sends by evaluating an expression of the form

connection.in.nextLine()

5The name println is a historical artifact lingering from a time when a program that was sending data anywhere
was probably sending it to an attached printer rather than to another computer. The name sendLine might be more
appropriate, but the designers of the Java libraries opted to be faithful to the more traditional name.

97

Figure 4.7: Email exchange between two users showing two-way traffic through connections

The sample program we wish to write is supposed to display all lines received form the server,
including this introductory line, in the text area named log. Therefore, for that program we should
include the invocation of nextLine within an invocation that will add the text received to that
displayed in the log. Such an invocation would be

log.append(connection.in.nextLine() + "\n");

Similarly, we can send lines by applying the println method to the stream identified as
connection.out. Consider, for example, how we would send the “QUIT” command that must
be sent at the end of the interaction with the server. This is one of the simplest SMTP commands.
The client program is not expected to send anything after the word “QUIT”. As a result, we can
send this command by including the single line

connection.out.println("QUIT");

in our buttonClicked method. Very similar code can be used to send a DATA command.
Sending the other SMTP commands to the server is not much more complicated. For example,

the “MAIL” command sent to initiate the transmission of a message is supposed to include the
return address that the person using our program entered in the text field named from. We
can specify the argument to an invocation of println by using an expression to describe how to
construct the desired value out of simpler parts. Thus, we can use a statement of the form

connection.out.println("MAIL FROM:<" + from.getText() + ">");

98

to send a MAIL command to the server. If the user types the text

jrl@cs.williams.edu

in the from text field, this command will send the line

MAIL FROM:<jrl@cs.williams.edu>

Probably the most interesting use of println that occurs in this program is in the commands
used to send the body of the email message to the server. This task is interesting because, unless
the user has very little to say, this will require sending several lines to the server rather than just
one. The surprise is that a single invocation of println can send many lines.

If we execute the commands

connection.out.println(message.getText());
connection.out.println(".");

our program will send all the lines of text that the user has entered in the text area named message
to the server followed by the period on a line by itself. (Recall that this final period is required by
the rules of SMTP to indicate the end of the message body.) Obviously, the name println is a bit
misleading! This method is not limited to sending a single line. It can send many lines.

When we discussed text areas we saw that you could force text to appear on separate lines by
including the special symbol \n in a string. This is because \n corresponds to a special ASCII code
that represents the end of a line to a text area. println is named println instead of just print
because it inserts a similar code after the end of whatever data it sends. This ensures that the
receiver will identify the end of the data as the end of a line. There is, in fact, another method
named print that just sends the data specified without adding any codes to indicate the end of a
line. If, however, we replaced the code above with the statements

connection.out.print(message.getText());
connection.out.println(".");

our program would malfunction in certain situations. If the user did not press the return key after
the last line entered in the text area, there would be no end of line code between the end of the
user’s message and the period sent by the second statement. To the server, the period would appear
at the end of the last line the user typed rather than on a line by itself. As a result, the server
would not realize the message was complete.

Many of the Internet’s text-based protocols require that commands be sent on separate lines,
so it will be critical that you use println rather than print.

According to the SMTP protocol specification, our client program should include the name of
the machine on which it is running in the HELO command it sends to the server. To make it easy
to obtain this information, there is a getHostName method associated with the GUIManager class.
Within a class that extends GUIManager, an expression of the form

this.getHostName()

produces a string containing the name of the machine running the program. This makes it possible
to use the statement

connection.out.println("HELO " + this.getHostName());

to send the HELO command.

99

// Send a message when the button is clicked

public void buttonClicked() {
// Establish a NetConnection and say hello to the server

NetConnection connection = new NetConnection(SMTP_SERVER, SMTP_PORT);
log.append(connection.in.nextLine() + "\n");
connection.out.println("HELO " + this.getHostName());
log.append(connection.in.nextLine() + "\n");

// Send the TO and FROM addresses

connection.out.println("MAIL FROM: <" + from.getText() +">");
log.append(connection.in.nextLine() + "\n");
connection.out.println("RCPT TO: <" + to.getText() +">");
log.append(connection.in.nextLine() + "\n");

// Send the message body

connection.out.println("DATA");
log.append(connection.in.nextLine() + "\n");
connection.out.println(message.getText());
connection.out.println(".");
log.append(connection.in.nextLine() + "\n");

// Terminate the SMTP session

connection.out.println("QUIT");
log.append(connection.in.nextLine() + "\n");

connection.close();
}

Figure 4.8: The buttonClicked method of a simple SMTP client

4.2.4 A Closing Note

Just as saying “Goodbye” is not the same as hanging up the phone, sending a QUIT command to an
SMTP server is not the same as ending a TCP connection. As a result, after the QUIT command is
sent and the server’s reply is received, our program’s buttonClicked method still has to invoke a
method to end the TCP connection. This is done by applying the close method to the connection
itself (rather than to its in or out streams) using a statement like

connection.close();

With this detail, we can now present the complete code for our SMTP client’s buttonClicked
method. This code can be found in Figure 4.8.

4.2.5 What’s Next

Just as the out stream associated with a NetConnection provides both a method named println
and a method named print, there is a method named next that can be applied to the in stream

100

Figure 4.9: SMTP client displaying next items rather than next lines

in addition to the nextLine method. While the nextLine method produces the next line of text
received through the connection, the next method is defined to return the next token received. A
token is just a sequence of symbols separated from other symbols by blanks, tabs, or by the end of
a line. Informally, a token is just a word. For example, if we had used the expression

connection.in.next()

in place of all seven occurrences of the expression

connection.in.nextLine()

in the buttonClicked method shown in Figure 4.8, then the output displayed in the log of messages
received from the server would appear as shown in Figure 4.9. If you look back at the output
produced by the original version of the program, as shown in Figure 4.4, you will see that the first
line sent from the server:

220 smtp.cs.williams.edu ESMTP Sendmail 8.13.1/8.13.1; Fri, 30 ...

has been broken up into individual “words”. Each time the next method is invoked it returns the
next word sent from the server.

In fact, there are many other methods provided by the in stream that make it possible to
interpret the tokens received in specific ways. For example, if immediately after creating the
NetConnection we evaluate the expression

connection.nextInt()

101

// Send a message when the button is clicked

public void buttonClicked() {
// Establish a NetConnection and introduce yourself

NetConnection connection = new NetConnection(SMTP_SERVER, SMTP_PORT);
connection.out.println("HELO " + this.getHostName());

// Send the to and from addresses

connection.out.println("MAIL FROM: <" + from.getText() +">");
connection.out.println("RCPT TO: <" + to.getText() +">");

// Send the message body

connection.out.println("DATA");
connection.out.println(message.getText());
connection.out.println(".");

// Terminate the SMTP session

connection.out.println("QUIT");

// Display the responses from the server

log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");

connection.close();
}

Figure 4.10: The buttonClicked method of a simple SMTP client

the value returned will still be 220, but it will be returned as an int rather than a String. This
would make it possible for the program to perform arithmetic operations on the value.

One interesting thing to note about the way in which the next method behaves, is that all of
the words displayed in Figure 4.9 come from the first line sent by the server. Even though each
invocation of next comes immediately after a line that sends a request to the server, the system
does not assume that it should return a token from the server’s response to that request. Instead
it simply treats all the data sent by the server as a long sequence of words and each invocation of
next returns the next word from this sequence.

We emphasize this because the nextLine method behaves in a similar way. It treats the data
received from the server as a sequence of lines. Each invocation of nextLine produces the first line
from the sequence that has not previously been accessed through an invocation of nextLine.

For example, suppose that we revise the code of the buttonClicked method as shown in Fig-
ure 4.10. Here, rather than using nextLine to access each response sent by the server immediately

102

after our program sends a request, we group all the invocations of nextLine at the end of the
method. Somewhat surprisingly, this version of the program will produce the same results as the
version shown in Figure 4.8. Even though the first invocation of nextLine appears immediately
after the statement that sends the QUIT command to the server, the system will return the first
line sent by the server rather than the server’s response to the QUIT command as the result of
this invocation. Each of the other six consecutive invocations of nextLine shown in this code will
return the next member of the sequence of lines sent by the server.

While we can move all of the invocations of nextLine to the end of this method without
changing the result the method produces, it is worth noting that moving invocations of nextLine
earlier in the method will cause problems. Suppose, for example, that we interchange the third and
fourth lines of the original buttonClicked method so that the first four lines of the method are:

NetConnection connection = new NetConnection(SMTP_SERVER, SMTP_PORT);
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
connection.out.println("HELO " + this.getHostName());

The server will send one line to the client as soon as the connection is established, but it
won’t send a second line until after it receives the HELO command. The computer, however doesn’t
understand this. Therefore, with the revised code, when the third line is executed, and the client
program attempts to access the line sent, the computer will realize that no line has arrived yet and
decide that it should wait for one to arrive. If allowed to do so, it would wait forever! No second
line will arrive until it sends the HELO command, but it believes it must wait until the second line
arrives before it sends any HELO command. The program will freeze up and the user will have to
resort to whatever mechanism the operating system or IDE provides to “force quit” the program.

4.2.6 Network Event Notification

Under SMTP and many other protocols, the server only sends packets as immediate responses to
requests received from the client. When writing a client that uses such a protocol, it is safe to
simply perform nextLine invocations after sending requests. There are other protocols, however,
where the server may send a message to the client at any time, independent of whether the client
has recently sent a request. The IM protocol is a good example of this. The server will send the
client a message whenever any of the user’s buddies send a message to the user. While many such
messages arrive in response to a message the user sent, it is also common to receive unsolicited
messages saying “Hi” (or something more important).

Consider, then, how one could write an IM client. Recall that when a program invokes nextLine,
it waits patiently (i.e., it does not execute any other instructions) until a message from the server is
available. Therefore, we can’t handle unexpected messages from a server by just constantly doing
a nextLine. If that is what our IM client did, it would not do anything else.

The solution is to treat the arrival of messages from the server like button clicks and other
events involving GUI components. We have seen that for many GUI components, we can write
special methods like buttonClicked, textEntered, and menuItemSelected that contain the code
that should be executed when an appropriate event occurs. A similar mechanism is available for
use with network connections. We can place code in a method named dataAvailable if we want
that code executed when messages are received through a network connection. The header for such
a method looks like

103

public void dataAvailable(NetConnection whichConnection) {

The connection through which data becomes available will be associated with the formal parameter
name supplied. The code placed in a dataAvailable method should include an invocation of
nextLine, next, or one of several other similar methods.

Unlike the event-handling methods for GUI components, the system does not automatically
execute the code in a dataAvailable method if we define one. In addition to defining the method,
we have to explicitly tell the NetConnection to notify our program when interesting events occur.
We do this by executing an invocation of the form

someNetConnection.addMessageListener(this);

(Recall that the word this is Java’s way of letting us talk about our own program).
If a program uses addMessageListener to request notification when interesting events happen

to a NetConnection there is another special event-handling method that can be defined. The
header for this method looks like:

public void connectionClosed(NetConnection whichConnection) {

The code in this method will be executed when the server terminates the connection.
As a simple example of the use of such event-handling methods in a network application, we

present another replacement for the buttonClicked method of our SMTP client in Figure 4.11.
This time, we have not simply replaced one version of buttonClicked with another version. Instead,
we have added definitions for two additional methods, dataAvailable and connectionClosed.

We have changed the code in three ways:

1. We have added the line

connection.addMessageListener(this);

after the line that constructs the new connection. This informs the NetConnection that
we want the dataAvailable and connectionClosed methods to be invoked when new data
arrives or when the server terminates the connection.

2. We have removed all seven lines of the form

log.append(connection.in.nextLine() + "\n");

from the buttonClicked method. Instead, we have placed a single line of the form

log.append(incomingConnection.in.nextLine() + "\n");

in the body of the dataAvailable method. This line will be executed exactly seven times
because the dataAvailable method will be invoked each time a new line becomes available.

3. We have removed the line

connection.close();

104

// Send a message when the button is clicked

public void buttonClicked() {
// Establish a NetConnection and introduce yourself

NetConnection connection = new NetConnection(SMTP_SERVER, SMTP_PORT);
connection.addMessageListener(this);
connection.out.println("HELO " + this.getHostName());

// Send the to and from addresses

connection.out.println("MAIL FROM: <" + from.getText() +">");
connection.out.println("RCPT TO: <" + to.getText() +">");

// Send the message body

connection.out.println("DATA");
connection.out.println(message.getText());
connection.out.println(".");

// Terminate the SMTP session

connection.out.println("QUIT");
}

// Display any messages from server in the log area

public void dataAvailable(NetConnection incomingConnection) {
log.append(incomingConnection.in.nextLine() + "\n");

}

// Close the connection right after the server disconnects

public void connectionClosed(NetConnection closingConnection) {
closingConnection.close();

}

Figure 4.11: Using NetConnection event handling in an SMTP client

105

from the buttonClicked method and placed a similar line in a new connectionClosed
method. If we had left the invocation of close in buttonClicked, the program would not
always display all of the lines sent by the server. The connection would be closed as soon as
the client sent the QUIT command. This would definitely mean that it was closed before the
server’s response to this command. Once the NetConnection has been closed, the program
will ignore any messages from the server. The dataAvailable method will not be invoked
when such messages arrive. By placing the close in the connectionClosed method, we
don’t close the connection until we know that we have received everything the server will
send because we know that the server has closed its end of the connection.

Note that we use the parameter names incommingConnection and closedConnection to refer
to the NetConnection within the two network event handling methods. Alternately, we could have
changed the program so that connection was declared as an instance variable rather than as a
local variable within buttonClicked and then used this variable in all three methods.

4.2.7 Summary of NetConnection constructions and methods

A new NetConnection can be created by evaluating a construction of the form

new NetConnection(host-name, port-number)

where host-name is an expression that describes a string that is either the domain name or the IP
address of the machine on which the server you would like to contact is running, and port-number
is an expression that evaluates to the number of the port used to contact the server program. The
port number can be described using either an int or a String. For example, the construction

new NetConnection("www.google.com", 80)

would create a connection to the web server port on the machine www.google.com.
There are four basic methods used to send and receive data through a NetConnection. These

methods are associated with data streams named in and out that are associated with the connec-
tion.

someConnection.in.nextLine() Each invocation of nextLine returns a String
containing one line of text received from the
server. As long as the server has not closed
the connection, your program will wait until a
line of text is received from the server. If the
remote server has terminated the connection,
your program will terminate with an error.

someConnection.in.next() Each invocation of next returns a String con-
taining one token/word of text received from
the server.

someConnection.out.println(someString); An invocation of println causes the program
to send the contents of its argument to the
server followed by an end of line indicator.

106

someConnection.print(someString); An invocation of print causes the program to
send the contents of its argument to the server.

In addition, the NetConnection class provide two methods to control the connection itself.

someConnection.close(); The close method should be invoked to termi-
nate the connection to the server once no more
messages will be sent and all expected messages
have been received.

someConnection.addMessageListener(someGUIManager);

The addMessageListener method should be
used to inform the NetConnection that
the program has defined methods named
dataAvailable and connectionClosed and
that these methods should be invoked when
new messages are received through the connec-
tion or when the connection is closed.

4.3 Summary

In this chapter we have introduced two closely related topics: the techniques used to write Java
programs that send and receive network messages and the nature of the conventions computers
must follow to communicate effectively.

We presented the general notion of a communications protocol, a specification describing rules
computers must follow while communicating. We explained that the Internet relies on many pro-
tocols that are each specialized to accomplish a particular application. We also explained that
many of these application protocols depend on a protocol named TCP that specifies aspects of
communications that are common to many application protocols. We described the addresses used
to identify computers and programs when using TCP and introduced the notion of a connection.

We also explored a new library class named NetConnection that can be used to write programs
based on TCP. We explained that although a NetConnection is designed for 2-way communications,
it is actually composed of two objects called streams that support 1-way communications. We
showed how to send messages to a remote computer using one of these streams and how to receive
messages sent to our program using the other.

Finally, to clarify the connection between our abstract introduction to protocols and our concrete
introduction to NetConnections, we showed how NetConnections could be used to implement a
program that followed one of the Internet’s oldest, but still most important protocols, the mail
delivery protocol SMTP.

107

108

Chapter 5

Pro-Choice

In order to behave in interesting ways, programs need to be able to make choices. To construct such
programs, we need a way to write commands that are conditioned on user input and events that
have already occurred. For example, instead of only being able to say “send the message”, we need
to learn how to say “if the user entered a valid password, send the message.” In this chapter we
will present a new form of instruction called the if statement. This type of statement is designed
precisely to enable us to express choices in Java.

Learning about if statements will enable you to write much more complex programs. As a
result, it is important not just to learn the grammatical structure of this new language mechanism,
but also to develop an understanding of how to use it to construct programs that are clear and
easy to understand. With this in mind, we both present the basic syntax associated with the Java
if statement and explore some common patterns that can be employed when using if statements
in programs.

5.1 Either/or Questions

To illustrate the Java if statement, we will explore the implementation of a calculator program
based on the numeric keypad interface we introduced in Section 3.4. Rather than plunging into an
attempt to implement a full-featured calculator, we will start by writing a very simple calculator
program. Figure 5.1 shows the interface for the program we have in mind and illustrates how it
will respond as a user clicks on some of the buttons in its interface.

The program displays ten buttons labeled with digits and one button labeled “Add to total”.
It also contains two text fields. Each time a digit button is pressed, its label will be added to the
end of the sequence of digits in the first text field. When the “Add to total” button is pressed, the
numerical value of the digits in the first text field will be added to the value displayed in the second
text field, the result will appear in the second text field, and the first text field will be cleared.
Obviously, it might be more accurate to describe this program as an “adding machine” than as a
calculator.

In Figure 5.1 we show how the program would behave if a user pressed the sequence of buttons
“4”, “2”, “Add to total”, “8”, and then “Add to total” again. The image in the upper left corner
of the figure shows how the program should look when it first begins to execute. After button “4”
was pressed, the digit “4” would be added to the first text field as shown in the image at the upper
right in the figure. The arrow labeled “2” leads to a picture of how the window would look after the

109

Figure 5.1: Interface for an “adding machine” program

110

// A program that acts like a calculator that only does additions

public class AddingMachine extends GUIManager {
// Change these values to adjust the size of the program’s window

private final int WINDOW_WIDTH = 300, WINDOW_HEIGHT = 260;

// Dimensions for fields to display entry and total

private final int ENTRY_WIDTH = 20;
private final int DISPLAY_WIDTH = 15;

// Used to display sequence of digits selected

private JTextField entry;

// Used to display current total

private JTextField totalDisplay;

// Used to request that the total be updated

private JButton addButton;

// Keeps track of the current sum

private int total = 0;

Figure 5.2: Instance variables for an adding machine

next button, “2”, had been pressed. The number “42” would be displayed in the first text field. At
that point, we assume the user pressed “Add to total”. Since nothing had previously been added
to the total, its value would be 0. Adding 42 to 0 produces 42, which therefore would appear in
the “Total =” text field at the bottom of the program window. At the same time, the upper text
field would be cleared. Therefore, when the next button, “8” was pressed, the digit 8 would appear
alone in the upper text field. Finally, pressing “Add to total” again would cause the program to
add 8 to 42 and display the result, 50, in the total field.

The code required to create this program’s interface is shown in Figures 5.2 and 5.3. The first
figure shows the instance variables declared for this program, and Figure 5.3 shows the declaration
of the constructor for the class. This code is quite similar to the code we showed earlier in Fig-
ure 3.12 while discussing how to implement a simple numeric keypad, but there are two significant
differences.

For this program, we need to add a button labeled “Add to total”. Unlike the buttons that
display the digits, we will need to have a variable name associated with this special button. Ac-
cordingly, we include a declaration for the needed variable, addButton, before the constructor and
initialize this variable’s to refer to a new button within the constructor.

We also need to keep track of the total and display it on the screen. This requires two variables.
First, we define an int variable named total to hold the current value of the sum of all numbers
that have been entered. Second, we declare and initialize a variable, totalDisplay that refers to
a JTextField used to display the total. The construction used to create totalDisplay includes
the parameter value "0" so that this field will display the initial value associated with total when
the program begins execution.

111

// Create and place the keypad buttons in the window

public AddingMachine() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

contentPane.add(new JButton("1"));
contentPane.add(new JButton("2"));
contentPane.add(new JButton("3"));
contentPane.add(new JButton("4"));
contentPane.add(new JButton("5"));
contentPane.add(new JButton("6"));
contentPane.add(new JButton("7"));
contentPane.add(new JButton("8"));
contentPane.add(new JButton("9"));
contentPane.add(new JButton("0"));

entry = new JTextField(ENTRY_WIDTH);
entry.setEditable(false); // Prevent the user from typing in the field

contentPane.add(entry);
addButton = new JButton("Add to total");
contentPane.add(addButton);

JPanel totalPane = new JPanel();
totalPane.add(new JLabel("Total = "));
totalDisplay = new JTextField(total, DISPLAY_WIDTH);
totalPane.add(totalDisplay);
contentPane.add(totalPane);

}

Figure 5.3: Constructor for an adding machine

112

5.1.1 Numbers and Strings

Unlike other programs we have considered, the action performed when a button is clicked in this
program will depend on which button is pressed. If any of the digit keys is pressed, the correspond-
ing digit should simply be added to the entry field. If the “Add to total” button is pressed, on the
other hand, the contents of the entry field should be added to the contents of the total field. In the
next section, we will see how to use an if statement to specify when each of these actions should
be performed. Before considering how we can use an if statement, we should make sure we know
exactly how to write code that will perform the desired actions individually.

Both of the actions that might be performed when a button is clicked involve working with
numbers. When writing Java programs that manipulate numbers, it is important to understand
that there are several distinct ways to represent numbers. The programmer must select the approach
to representing numbers that is most appropriate for the task at hand.

We have, in fact, already introduced two of the ways that numbers can be represented in a Java
program. First, we have used the type int to represent numeric data. In the preceding section,
we suggested that we would use an int variable to represent the total of all the numbers added
together using our simple calculator. The other way we have seen that numbers can be represented
is as Strings. Anything that is typed in quotes or associated with a String variable name in Java
is treated as a String by the language, even if it also looks like a number. Thus, while it is clear
that the value represented by

"Click me"

is a String, Java also sees the value

"42"

as a String rather than as a number because the digits are surrounded by quotes.
The distinction within the Java language between a number represented as an int and a number

represented as a String provides a means by which you can tell Java exactly how you want certain
operations to be performed on a number. Consider again the example used in the preceding section.
In that example, we assumed a user pressed the buttons “4”, “2”, “Add to total”, “8”, and finally
“Add to total” in sequence. Figure 5.1 showed the expected response to each of these actions. We
indicated that the last user action, pressing the “Add to total” button, should cause the program
to “add” 8 to 42 yielding 50.

Suppose, that the user had not pressed the “Add to total” button between pressing the “2” key
and the “8” key. In that case, pressing the “8” key would be interpreted as specifying a third digit
for the number being entered. Therefore, we would expect the program to “add” the digit 8 to the
digits already entered, 4 and 2, and display the number 428 in the text field above the “Add to
total” button.

From this example, we can see that there are two different interpretations we might associate
with the word “add”. When we see the digits as parts of a larger number, then we think of numerical
addition when we say “add”. When we think of the digits as individual symbols, then when we say
“add” we mean that a digit should be appended or concatenated to an existing collection of digits.

In Java, the plus sign operator is used to describe both of these possible interpretations of “add”.
When a program applies the plus sign to operands represented as int values, Java interprets the
plus sign as numeric addition. On the other hand, if either of the operands of a plus sign is a
String, Java interprets the operator as concatenation, even if all of the symbols in the String

113

are digits. Accordingly, to ensure that Java applies the correct interpretation to the + operator in
our calculator program, we must ensure that the operands to the operator are int values when we
want addition and String values when we want concatenation.

To do this, we have to understand how Java decides whether a particular value in our program
should be treated as a String or as an int. Recall that values in our programs are described
by expressions and that we have identified five types of expressions: literals, variables, accessor
method invocations, constructions and formulas. Java has simple rules for determining the type of
data described by each of these forms of expressions.

When we use a literal to describe a value in a program, Java treats the value as a String if we
surround it by quotes even if all of the symbols between the quotes are digits. On the other hand,
if a literal is a sequence of digits not surrounded by quotes, then Java treats the value as an int.

When we use a variable as an expression, Java depends on the type name the programmer used
in the variable’s declaration to determine how to interpret the value associated with the variable
name. If we declare

String entry;
int total;

then Java assumes that the expression “entry” describes a String and that the expression “total”
describes an int.

The type of an invocation depends on the method used in the invocation. When you write
programs in which you define your own accessor methods, you will have to provide the name
of the type of value an invocation will produce in the definition of the method. For methods
provided as part of existing libraries, the type of value produced when the method is invoked is
provided in the documentation of the library. For example, the getText method associated with
JTextFields, JButtons, and JLabels is known to produce a String value as its result, while the
getCaretPosition method associated with JTextFields and JTextAreas produces an int result.

A construction of the form

new SomeName(. . .)

produces a value of the type whose name follows the word new.
Determining the type of value described by a formula can be a bit trickier because the type

produced often depends on the types of the operands used. As explained above, if we write an
expression of the form

a + b

Java may either interpret the plus sign as representing numeric addition or concatenation, depend-
ing on the types it associates with a and b. If Java’s rules for associating types with expressions
lead to the conclusion that both a and b produce int values, then Java will assume that a + b
also produces an int value. On the other hand, if either a or b describes a String value, then Java
will interpret the plus sign as concatenation and also conclude that a + b describes a String.

Within our adding machine program, we want Java to apply the concatenation operation when
the user presses any of the buttons for the digits 0 through 9. This is easy to do. In the code for
our simple keypad program shown in Figure 3.12 we used the instruction

entry.setText(entry.getText() + clickedButton.getText());

114

to add digits to the display as numeric keys were pressed. Because both of the operands to the plus
sign in this statement are produced by getText, they will both be Strings. Java will therefore
associate the plus sign with concatenation. As a result, the same code can be used when any of
the digit keys are pressed in our adding machine program.

The instructions we should use when the “Add to total” button is pressed require a bit more
thought. We want code that will add the contents of the entry text field to our total using numeric
addition. The obvious code to write would be

total = entry.getText() + total;

Unfortunately, Java will consider this statement illegal. The statement says to associate the name
total with the result produced by the expression to the right of the equal sign. Because the
getText method returns a string, Java will interpret the plus sign in this statement as a request
to perform concatenation rather than addition. Concatenation produces a String value. Since we
plan to declare total as an int variable, Java will conclude that this name cannot be associated
with the String produced by concatenation and reject the statement.

In a situation like this, we have to help Java by adding phrases to our code that explicitly
instruct it to attempt to convert the digits in the string produced by entry.getText() into an int
value. For such situations, Java includes a method named Integer.parseInt. Integer.parseInt
takes a String as a parameter and returns its value when interpreted as an int.1 Thus, assuming
that the entry field of our program contains the string "8", then

Integer.parseInt(entry.getText())

would produce the integer value 8, and

42 + Integer.parseInt(entry.getText())

would produce 50. Therefore,

total = total + Integer.parseInt(entry.getText());

is a statement we can use to tell Java to add the value of the digits in the text field to our running
total.

There is one last representation issue we need to deal with while completing the body of this
program’s buttonClicked method. After we have updated the total, we need to update the contents
of the totalDisplay text field to display the new result. We cannot simply say

totalDisplay.setText(total);

because just as getText produces a String value, the setText method expects to be provided a
String to display rather than an int. Again, we have to do something more explicit to tell Java
to convert between one representation and another. We do not, however, need a special method
like Integer.parseInt to convert an int to a String. Instead, we can take advantage of the way
Java interprets the plus sign. Consider the expression

1When Integer.parseInt is used, the argument provided must be a string that contains only digits. If its
argument contains letters or anything else other than digits, an error will result as your program runs. To make sure
that this will not happen to our program, we have used setEditable to ensure that the user cannot type arbitrary
data into the field.

115

// Add digits to the display or add the display to the total

public void buttonClicked(JButton clickedButton) {

if (clickedButton == addButton) {
total = total + Integer.parseInt(entry.getText());
totalDisplay.setText("" + total);
entry.setText("");

} else {
entry.setText(entry.getText() + clickedButton.getText());

}
}

Figure 5.4: buttonClicked method for an adding machine

"" + total

The first operand in this formula a very special String, the String containing no symbols at all. It
is usually called the empty string. Even though it is empty, this String will cause Java to interpret
the plus sign in the expression as a request to perform concatenation. Of course, concatenating the
digits that represent the value of total onto a String that contains nothing will produce a String
containing just the digits that represent the value of total. Accordingly, we can use the statement

totalDisplay.setText("" + total);

to update the display correctly.

5.1.2 A Simple if Statement

Now that we know the correct instructions for the actions that our adding machine might perform
when a button is clicked, we can learn how to use an if statement to specify how the computer
should determine which set of instructions to follow.

This code will all be placed in the definition of our program’s buttonClicked method. To
choose the right code to execute, we will have to know which button was clicked. Therefore, the
header for the buttonClicked method must tell the system that we want to associate a name with
the button that was clicked. We will use the method header

public void buttonClicked(JButton clickedButton) {

so that we can use the name clickedButton to refer to the button that was clicked.
When the computer starts to execute the code in buttonClicked there are two cases of in-

terest. Either the “Add to total” button was clicked, in which case the formal parameter name
clickedButton will refer to the same button as the instance variable addButton, or one of the digit
buttons was pressed, in which case clickedButton and addButton will refer to different buttons.
Based on this observation, we can tell the computer to decide which instructions should be executed
by writing the if statement shown in the definition of buttonClicked found in Figure 5.4

116

The if statement is a construct that lets us combine simpler commands to form a larger, con-
ditional command. The following template shows the general structure of the type of if statement
we are using in Figure 5.4:

if (condition) {
sequence of statements

} else {
sequence of statements

}

The statement starts with the word if followed by what is called a condition. We will give a precise
definition of a condition later, but basically a condition is a question with a yes or no answer. In
our buttonClicked method, we use the condition

clickedButton == addButton

The double equal sign in Java indicates a test for equality. Thus, this condition asks if the two
names refer to the same thing.

After the condition, we place two sequences of statements each surrounded by curly braces
and separated by the word else. If the answer to the condition is “yes”, then the computer
will follow the instructions included in the first sequence of statements. Thus, the if statement
in our buttonClicked method instructs the computer to update the total if clickedButton and
addButton refer to the same button. If the answer to the condition in an if statement is “no”, then
the computer follows the instructions in the second sequence of statements. In our example, this
is a sequence of just one instruction, the instruction that adds a single digit to the entry display.

5.2 if Statements are Statements

Consider the sentence

if it is raining, we will take the car.

According to the rules of English, this is indeed a sentence. At the same time, two of its parts

it is raining

and

we will take the car

would also be considered sentences if they appeared alone. As a result, the original sentence is
classified as a compound sentence.

The Java if statement exhibits similar grammatical properties. An if statement is considered
to be a form of statement itself, but it always contains subparts that would be considered state-
ments if they appeared alone. Because it is composed of smaller components that are themselves
statements, the if statement is an example of a compound statement.

Anywhere that we have said that Java expects you to provide a statement, you can use any
kind of statement the language recognizes. In particular, the statements that form the subparts of
an if statement do not have to be simple statement. They can instead be compound statements.

117

Figure 5.5: Interface for an adding machine with a “Clear total” button

This means that it is possible to include if statements among the sequences of statements that
form the parts of a larger if statement. Such constructs are called nested if statements. Even
though the basic form of an if statement offers only two possibilities, by nesting them it is possible
to express choices involving more options.

To explore this ability, let’s add just one option to our adding machine program. As described
in the preceding sections, our program is capable of adding up one sequence of numbers. Suppose
that we had more than one sequence that we needed to total. At this point, the only way we could
do this with our program would be to quit the program after computing the first total and then
start it up again to add up the second sequence of numbers. Let’s fix this by adding a button to
reset the total to zero.

A picture of what this improved program might look like is shown in Figure 5.5. To construct
this interface, we need to add just one JButton to our window. We will assume that as part of this
addition, we include the instance variable declaration

private JButton clearButton;

and an assignment of the form

clearButton = new JButton("Clear Total");

so that the name clearButton can be used to refer to the new button in our code.
As we did in the previous example, we should first determine the instructions that should be

executed in each of the cases the program must handle. We already discussed the code needed for
the cases in which the “Add to total” button or one of the numeric buttons is pressed. All that
remains is the case where the “Clear total” button is clicked. In this situation, we want to set the
total to 0 and clear the field used to display the total. This can be done using the instructions

total = 0;
totalDisplay.setText("0");

118

if (clickedButton == addButton) {
total = total + Integer.parseInt(entry.getText());
totalDisplay.setText("" + total);
entry.setText("");

} else {
. . . // Need to find code to handle all the other buttons

}

Figure 5.6: Skeleton of if statement to support “Add to total” and “Clear total” buttons

Now, let us consider how to distinguish the three options that are possible with the addition
of a “Clear total” button. A good place to start is by noticing that the if statement we used in
Figure 5.4 would do one part of the job correctly. It selects the right code for the case when the
button clicked is the “Add to total” button. Unfortunately, it does not always select the right code
when a different button is used. Based on this observation, consider the skeletal code that is left
if we keep the parts of that if statement that seem to correctly describe what we want in this
situation, and temporarily replace the code that isn’t quite appropriate for this new task with “...”
as shown in Figure 5.6

Obviously, we still need to decide what statement(s) to use in the else branch where we have
currently written “...” If the computer decides it should execute the statements in the else branch,
that means it has already checked and determined that the button clicked was not the “Add to
total” button. That is, if the computer gets to the else part of this if statement, there are no
longer three possibilities to worry about! There are only two possibilities remaining. Either the
user clicked on the “Clear total” button or the user clicked on a numeric button. We already know
how to deal with 2-way choices like this. We can use an if statement of the form

if (clickedButton == clearButton) {
total = 0;
totalDisplay.setText("0");

} else {
entry.setText(entry.getText() + clickedButton.getText());

}

The critical observations are a) that the if statement shown above is itself a statement, and
b) that this if statement correctly handles the two cases remaining when we know that the “Add
to total” button was not clicked. Therefore, we can insert it where we had placed the comment
saying we needed “to find code to handle all the other buttons” to produce the construct shown in
Figure 5.7.

The construct in Figure 5.7 is an example of a nested if statement. When the computer needs to
execute this code, it firsts checks to see if clickedButton and addButton refer to the same button.
If they do, the group of statement that use Integer.parseInt to add the digits in the entry field
to the total are executed. If clickedButton and addButton refer to different buttons, then the
computer will begin to execute the statements after the word else. In this case, this means it
will begin to execute another if statement. The computer begins the execution of this nested if
statement by checking to see if clickedButton and clearButton refer to the same button. If they
do, then the statements that set total equal to 0 will be executed. Otherwise, the execution of the

119

if statement will complete with the statement that adds the digit on the button clicked to entry.

——————————————————————————————————————

if (clickedButton == addButton) {
total = total + Integer.parseInt(entry.getText());
totalDisplay.setText("" + total);
entry.setText("");

} else {
if (clickedButton == clearButton) {

total = 0;
totalDisplay.setText("");

} else {
entry.setText(entry.getText() + clickedButton.getText());

}
}

Figure 5.7: Using a nested if statement to distinguish three cases

——————————————————————————————————————

The ability to nest statements is not limited to a single level of nesting. The if statement
shown in Figure 5.7 could itself be nested within a larger if statement. Just as the nesting of if
statements in this example was used to handle a 3-way choice, deeper nesting can be used to handle
even larger multi-way choices.

5.3 The Truth about Curly Braces

In this section, we provide a more precise explanation of how curly braces should be used when
writing if statements. While the explanation and examples we have provided thus far accurately
describe how curly braces are commonly used in Java if statements, they don’t describe the exact
rules of Java’s grammar that determine correct usage.

We have indicated that the general form of an if statement in Java is

if (condition) {
sequence of statements

} else {
sequence of statements

}

This is not quite accurate. The actual rules of Java’s grammar specify that the form of an if
statement is

if (condition)
statement

else
statement

120

That is, there are no curly braces and there are exactly two statements that are considered part
of the if statement, the ones that appear before and after the word else. Following this rule the
statement

if (clickedButton == clearButton)
total = 0;

else
entry.setText(entry.getText() + clickedButton.getText());

is a valid if statement, but all of the other examples of if statements we have provided in this
chapter appear to be invalid! All our examples have had curly braces and many have had multiple
statements between the condition and the else. How can these examples be legal if the actual
rules for the if statement don’t include these features?

The resolution of this apparent inconsistency rests on understanding exactly what the word
“statement” means. In some situations, Java is willing to consider a construct composed of several
statements as a single, albeit more complicated statement in its own right. As an example, the
construct just shown above

if (clickedButton == clearButton)
total = 0;

else
entry.setText(entry.getText() + clickedButton.getText());

is a single Java statement even though it contains two lines that are themselves Java statements.
In an if statement, the fact that several independent statements are combined to form one

logical statement is a secondary effect. Java, however, also provides a construct whose primary
purpose is to group a sequence of statements into a unit that is logically a single statement. This
construct is called the compound statement or block.

If we place curly braces around any sequence of statements and local variable declarations, Java
considers the bracketed sequence of statements as a single statement. For example, while

total = 0;
totalDisplay.setText("0");

is a sequence of two statement, the construct

{
total = 0;
totalDisplay.setText("0");

}

is actually a single statement. It clearly consists of two smaller statements, but from Java’s point of
view it is also a single compound statement. As a trivial case, we can also turn a single statement
into a compound statement as in

{
entry.setText(entry.getText() + clickedButton.getText());

}

Thus, the if statement

121

if (clickedButton == clearButton)
{

total = 0;
totalDisplay.setText("0");

}
else
{

entry.setText(entry.getText() + clickedButton.getText());
}

and all the other if statements we have shown in this chapter actually follow Java’s rule that we
should place a single statement before and after the word else. In these statements, however, the
“single” statements used as the components of the if statements are all compound statements.

In some of the if statements we have shown, there have been examples where the curly braces
included are not essential. The statement shown above, for example, could be rewritten as

if (clickedButton == clearButton)
{

total = 0;
totalDisplay.setText("0");

}
else

entry.setText(entry.getText() + clickedButton.getText());

without changing its meaning in any way. Technically, wherever we have placed curly braces around
a single statement, removing those braces will not change the behavior of the program. However,
in all but one situation, we strongly encourage you to include curly braces around the statements
you place in if statements. Doing so decreases the likelihood that you will accidentally make a
fairly common programming mistake.

Often, in a context where you originally thought you only needed to put a single statement in
the else part of an if statement, you later discover that you need to add more statements. If
you are careful, you will always remember to add the needed curly braces while adding the extra
statements. It is very easy, unfortunately, to forget to add the curly braces. Java typically can’t
identify this as an error. It simply fails to understand that you intended to include the additional
statements as part of the else. Instead, it views them as independent statements that should
always be executed after completing the execution of the if statement. Such errors can be hard
to find, particularly if you use indentation appropriately to suggest your intended meaning while
entering the additional statements. Java ignores the indentation, but you and anyone trying to
help you understand why your program isn’t working are likely be confused.

5.3.1 Multi-way Choices

There is one context where we do suggest that you leave out unnecessary curly braces. We suggest
you do this when

• the curly braces surround an if statement that appears as the else branch of a larger if
statement, and

122

if (clickedButton == addButton) {
total = total + Integer.parseInt(entry.getText());
totalDisplay.setText("" + total);
entry.setText("");

} else if (clickedButton == clearButton) {
total = 0;
totalDisplay.setText("0");

} else {
entry.setText(entry.getText() + clickedButton.getText());

}

Figure 5.8: Formatting a multi-way choice

• the intent of the nested collection of if statements is to select one of three or more logically
related alternatives.

In this case, eliminating the extra curly braces helps lead to a style of formatting that can make it
easier for a reader to discern that the code is making a multi-way choice.

As an example, consider the 3-way choice made by the statement shown in Figure 5.7. If we
remove the curly braces around the inner if statement, and then adjust the indentation so that the
statements executed in all three cases are indented by the same amount, we obtain the code shown
in Figure 5.8. Java considers these two versions of the code absolutely equivalent to one another.
If you develop the habit of structuring multi-way choices as shown in Figure 5.8, however, you will
find that it is easier to identify the choices being made and the code that goes with each choice
than it is when the statements are formatted in a way that reflects the nesting of their grammatical
structure.

Note that we have not removed all of the optional curly braces in Figure 5.8. We have only
removed the curly braces surrounding nested if statements. The final curly braces could also
be removed if our goal was to minimize the number of curly braces used, but all we want to do
is remove enough braces to clarify the structure of the multi-way choice make by the nested if
statements.

5.4 Something for Nothing

All of the if statements we have seen have been used to choose between several alternative sequences
of statements. In certain programs, we use if statements to make a different kind of choice. In
these programs we need to choose between doing something or doing nothing. For such programs,
Java provides a second form of if statement in which the word else and the statement that follows
is omitted. The grammatical rule for such if statements is

if (condition)
statement

123

Given our advice on the use of curly braces, however, we hope that when you write such if
statements they will have the form

if (condition) {
sequence of statements

}

As an example of the use of this form of if statement, let’s think about a simple problem with
the current version of our adding program. Suppose that as soon as we start running the program
we decide to test every button on our program’s keypad. With this in mind, we key in the number
9876543210 and press the “Add to total” button. We expect that this large number will show up
in the “Total” field. In reality, however, what happens is that the development environment we are
using pops up a new window displaying a rather mystifying collection of messages that starts with
something that looks like the text below.

java.lang.NumberFormatException: For input string: "9876543210"
at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)
at java.lang.Integer.parseInt(Integer.java:480)
at java.lang.Integer.parseInt(Integer.java:518)
at AddingMachine.buttonClicked(AddingMachine.java:65)

.

.

.

This ugly text is an example of a run-time error message. The computer is trying to tell us
that something has gone wrong with our program. Even if we cannot understand every detail in
this message, a few key words that appear in the message will give us some good clues.

The first line of the message describes the problem as a “NumberFormatException” (read as
“number format exception”) for the string 9876543210. The third and fourth lines mention the
Interger.parseInt method we use in our program to convert Strings into int values. Apparently,
something went wrong when we tried to convert the string 9876543210 to an int.

The most common situation in which one encounters a number format exception is when your
program tries to use parseInt to convert a string that isn’t a number into one. For example, it is
clear that the invocation

Integer.parseInt("think of a number")

should be treated as an error. Unlike "think of a number", however, the text "9876543210"
certainly looks like a valid number. In fact, it looks like a very big number. That is the source of
the problem. The number 9876543210 is actually too big for parseInt.

To allow us to manipulate numbers in a program, a computer’s hardware must encode the
numbers in some electronic device. For each digit of a number there must be a tiny memory device
to hold it. Some fixed, finite number of these devices has to be set aside to represent each number.
If a number is too big for its digits to fit in the memory devices set aside for it, the computer
cannot handle the number. In Java, the number of devices set aside for an int is too small to
handle the number 9876543210. Therefore, the computer has to treat the attempt to convert a
string describing this large number as an error.

In a computer’s memory, numbers are stored in binary, or base 2. Thirty-one binary digits
are used to store the numeric value of each int. Just as the number of digits included in a car’s

124

odometer limits the range of mileage values that can be displayed before the odometer flips back
to “000000”, the number of binary digits used to represent a number limit the range of numbers
that can be stored. As a result, the values that can be processed by Java as ints range from
-2,147,483,648 (= −231) to 2,147,483,647 (= 231 − 1). If you try to use a number outside this
range as an int value, Java is likely to complain that your program is in error or, worse yet, throw
away some of the digits yielding an incorrect result.

Real calculators cannot display ugly messages like the one shown above if a user tries to enter
too many digits. Instead, they typically just limit the size of the numbers that can be entered
based on the number of digits included in the calculator’s display. If there are only 9 digits in the
display, the typical calculator just ignores you if you try to enter more than 9 digits. We can solve
our problem by making our adding machine behave in the same way.

In order to make the program ignore button clicks if the entry is already 9 digits long, we first
need to change our program so that it keeps track of how many digits are currently in entry. In
Figure 2.10 we showed a program that used an integer variable named numberOfClicks to keep
track of how often a button had been clicked. We can keep track of how many digits are in the
entry field by using a similar technique to count the clicks of the buttons of our adding machine
program. For this purpose, we will introduce a variable named digitsEntered. We will add one to
the value of this variable each time a digit key is pressed and assign the value 0 to digitsEntered
when the entry field is cleared because the “Add to total” button was pressed.

To make it impossible for a person using our program to enter more than 9 digits, we can now
simply place the code that adds digits to the entry field in an if statement that tests whether the
value of digitsEntered is still less than 9. This if statement will choose between adding a digit
to the entry field and doing nothing at all. Therefore, it will have no else part. The resulting
statement will look like:

if (digitsEntered < MAX_DIGITS) {
entry.setText(entry.getText() + clickedButton.getText());

}

This code assumes that our program contains the instance variable declaration

private final int MAX_DIGITS = 9;

to associate the name DISPLAY SIZE with the maximum number of digits allowed. It also uses a
new form of condition. Java allows us to form conditions by comparing values. We have already
seen that we can ask if two values are equal using the symbol ==. When working with numbers, we
can also use the symbols <, >, <=, and >= to test for “less than”, “greater than”, “less than or equal
to”, and “greater than or equal to”, respectively. These symbols are called relational operators.

Java will also produce an error message if we apply Integer.parseInt to the empty string.
This will happen if the user clicks “Add to total” twice in a row. To avoid this error, we should
ignore any click on the “Add to total” button that occurs when the number of digits entered is
zero.

The body of the complete buttonClicked method modified to make sure that the number
of digits entered falls between 1 and 9 is shown in Figure 5.9. Notice that we assign zero to
digitsEntered in the code that is executed when addButton is pressed and increase this variable’s
value by one whenever a digit button is pressed.

125

public void buttonClicked(JButton clickedButton) {
if (clickedButton == addButton) {

if (digitsEntered > 0) {
total = total + Integer.parseInt(entry.getText());
totalDisplay.setText("" + total);
entry.setText("");
digitsEntered = 0;

}

} else if (clickedButton == clearButton) {
total = 0;
totalDisplay.setText("0");

} else {
digitsEntered = digitsEntered + 1;
if (digitsEntered < MAX_DIGITS) {

entry.setText(entry.getText() + clickedButton.getText());
}

}
}

Figure 5.9: A buttonClicked method that ignores button clicks if entry is full or empty

5.5 Synonyms, Homographs, and Scopes

English contains many words that share common meanings. Groups of such words are known as
synonyms. For example, while you might think of yourself as a student, others might call you a
pupil, or a trainee.

In English, there are not only words that mean the same thing even though they are spelled
differently, there are also words that mean different things even though they are spelled the same!
Such words are called homographs. Consider the word “left”. In certain contexts, this word refers
to a side of the body as in “Take a left turn.” In other context, it describes the action of departing.
For example, you might say “Has everyone left?” Interestingly, in addition to describing the action
of departing, “left” can be used to describe the action of remaining as in “Is there any food left?”
Thus, in some sense, instead of talking about the single word “left” it is fair to talk about the three
words “left”, ”left”, and ”left”!

It is also possible to have two names that are spelled exactly the same but have different
meanings in a Java program. Determining the correct meaning to associate with a name that has
multiple meanings in a Java program is a bit simpler than determining the correct meaning to
associate with an English homograph like “left”. It depends strictly on the context in which the
use of the name occurs. A good analogy might be the use of a name like “the president” in English.
If one of your classmates says “Now I am the president,” she might have been chosen as president
of the class or president of the chess club. On the other hand, if someone named Bush or Clinton
said the same thing, the secret service would probably be close behind. The context required to
correctly interpret the name “the president” is the social group involved (i.e., the chess club, the

126

senior class, or the entire country).
The Java equivalent of the social groups that provide context in “the president” analogy are

called scopes. The entire text of a Java class definition forms a scope. The constructor and each of
the methods within a class are considered separate scopes. Note that the scopes corresponding to
the constructor and the methods are also part of the larger scope corresponding to the entire class,
just as a social group like the senior class may be part of another, larger group like all students on
a campus or all residents of a certain country.

Within Java, curly braces indicate scope boundaries. The scopes we have already described,
class and method bodies, are always enclosed in curly braces. In addition, within a method’s body,
each collection of statements and local variable declarations surrounded by their own pair of curly
braces forms a smaller scope.

To clarify these ideas, Figure 5.10 shows the skeleton of our adding machine program with
each of its distinct scopes highlighted by an enclosing rectangle. The largest rectangle corresponds
to the scope associated with the entire class. The constructor and the buttonClicked methods
are surrounded with rectangles to indicate that their bodies are both parts of the scope of the
entire class and also represent smaller, more local scopes. Within the buttonClicked method
the body of each of the if statements used is enclosed in curly braces. Therefore, we have also
included rectangles to indicate that each of these collections of statements forms a scope. The
only subtle point to notice about this figure is that the scopes corresponding to classes, methods
and constructors include not just the text between the curly braces, but also the header lines that
precede the opening curly braces.

When a name is used within a Java program, the computer determines how to interpret the
name by looking at the structure of the scopes within the program. We have already emphasized
that every name that is to be used in a Java program must be declared somewhere in the program.
In fact, a Java program must conform to a slightly stricter rule. Each use of a name within a Java
program must be contained within the smallest scope that contains the declaration of the name.

Applying this rule to the program skeleton shown in Figure 5.10 is actually not very interesting
because almost all of the names used in the program are declared as instance variables. The smallest
scope that contains an instance variable’s declaration is the scope of the entire class. Therefore, all
references to instance variables within the program satisfy the “stricter” requirement trivially.

The one name in the program that is not declared in the scope of the full class is the formal
parameter name clickedButton. The smallest scope containing the declaration of clickedButton
is the scope of the buttonClicked method. All of the uses of this name fall within the same scope
and are therefore valid. Suppose, however, that the programmer tried to include the statement

clickedButton.setEnabled(false);

within the body of the constructor for this class. This statement would violate Java’s rule for the
declaration of names because this use of the name would not be enclosed within the smallest scope
that contains the declaration of the name clickedButton (i.e., the scope of the buttonClicked
method). If you tried to compile such a program, you would receive an error message warning you
that the reference to clickedButton within the constructor was invalid. This makes sense. Trying
to use the value associated with the name clickedButton within the constructor would be silly
since the computer cannot associate a meaning with this name until a button is actually clicked
and the buttons will not even appear on the screen until the execution of the statements in the
constructor are complete.

127

public class AddingMachine extends GUIManager {
// Remember the number of digits entered so far

private int digitsEntered = 0;

// Used to display sequence of digits selected

private JTextField entry;

// Used to display current total

private JTextField totalDisplay;

// Used to request that the total be updated

private JButton addButton;

// Keeps track of the current sum

private int total = 0;
...

public AddingMachine() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

...
}

// Respond when user clicks on a digit or control buttons

public void buttonClicked(JButton clickedButton) {
if (clickedButton == addButton) {

if (digitsEntered > 0) {
total = total + Integer.parseInt(entry.getText());
totalDisplay.setText("" + total);
entry.setText("");
digitsEntered = 0;

}

} else if (clickedButton == clearButton) {
total = 0;
totalDisplay.setText("0");

} else {
digitsEntered = digitsEntered + 1;
if (digitsEntered < Max_DIGITS) {

entry.setText(entry.getText() + clickedButton.getText());

}

}
}

}

Figure 5.10: Structure of declaration scopes within adding machine program

128

The existence of scopes becomes more interesting in programs that contain multiple declarations
of a single name. In such programs, names can behave as homographs. That is, a single name can
have distinct meanings in different scopes.

To illustrate this, suppose that we decided that we could make the code in the buttonClicked
method a bit clearer by associating a local variable name with the contents of the entry text field.
That is, suppose that we replaced the code in the first branch of the three-way if statement within
buttonClicked with the following code:

if (digitsEntered > 0) {
String entryDigits;
entryDigits = entry.getText();
total = total + Integer.parseInt(entryDigits);
totalDisplay.setText("" + total);
entry.setText("");
digitsEntered = 0;

}

The first line in the body of this new if statement declares entryDigits as a local variable,
the second line associates the contents of the entry text field with this name, and the third line
references this new local variable. Admittedly, the introduction of the name entryDigits does not
significantly improve the readability of this code. That is not the point. The goal of introducing
this name is to present an example of reasonable code that leads to unreasonable problems if just
a few more changes are made.

To see how problems can arise, suppose that while choosing a name for the local variable we
didn’t think about what other names were already being used in the program and decided to use
the name digitsEntered instead of entryDigits to refer to the contents of the text field. A
skeleton of the key parts of the program showing this change and the scopes involved can be found
in Figure 5.11. Note that in this version of the program the name digitsEntered is declared
twice — once as an instance variable and once as a local variable within the if statement we just
modified.

In addition to containing the declaration

String digitsEntered;

the scope associated with the body of the if statement that handles the “Add to total” button
now contains three references to the variable named digitsEntered. These occur in the two lines
immediately following the declaration and in the last line of the body of the if statement:

digitsEntered = 0;

This last reference to digitsEntered was part of the original version of the program. It is
supposed to set the value of the instance variable named digitsEntered back to 0 after an addition
is performed. Unfortunately, in the revised program, Java will not interpret this line as a reference to
the instance variable. This is because each reference to a name in a Java program is associated with
the declaration of that name found in the smallest scope that contains the reference in question. The
statement to set digitsEntered to 0 occurs within the same scope as the declaration of the local
variable named digitsEntered. Therefore, this reference to digitsEntered will be associated with
the local variable declaration. On the other hand, the references to digitsEntered that appear

129

public class AddingMachine extends GUIManager {
// Remember the number of digits entered so far

private int digitsEntered = 0;
...

// Respond when user clicks on a digit or control buttons

public void buttonClicked(JButton clickedButton) {
if (clickedButton == addButton) {

if (digitsEntered > 0) {
String digitsEntered;
digitsEntered = entry.getText();
total = total + Integer.parseInt(digitsEntered);
totalDisplay.setText("" + total);
entry.setText("");
digitsEntered = 0;

}

} else if (clickedButton == clearButton) {
total = 0;
totalDisplay.setText("0");

} else {
digitsEntered = digitsEntered + 1;
if (digitsEntered < Max_DIGITS) {

entry.setText(entry.getText() + clickedButton.getText());

}

}
}

}

Figure 5.11: Incorrect code using a name as both a local and instance variable

130

elsewhere in the program are associated with the declaration of digitsEntered as an instance
variable. For example, the statement

digitsEntered = digitsEntered + 1;

that appears in the third branch of the main if statement of the buttonClicked method will
increase the value associated with the instance variable.

In this program, therefore, the name digitsEntered behaves like an English homograph. It
has different meanings in different contexts. In some sense, the local variable digitsEntered is a
completely different name from the instance variable digitsEntered. Even though they are spelled
the same, one name refers to a String while the other refers to an int.

As a consequence of the misinterpretation of the reference to digitsEntered within the state-
ment

digitsEntered = 0;

the program whose skeleton is shown in Figure 5.11 will not compile correctly. Since the local
variable digitsEntered is declared to refer to a String value, the Java compiler will be unhappy
with this assignment that tries to associate it with the numeric value 0 instead of with a String.
If you try to run this program, the Java compiler will report an error on this line and refuse to run
the program.

Things could be worse.

Suppose that instead of using the local variable digitsEntered to refer to the String in the field
named entry, we decided to make it refer to the value produced by applying Integer.parseInt
to that String. In this case, we would use the following code for the if statement:

if (digitsEntered > 0) {
int digitsEntered;
digitsEntered = Integer.parseInt(entry.getText());
total = total + digitsEntered;
totalDisplay.setText("" + total);
entry.setText("");
digitsEntered = 0;

}

These changes won’t have any impact on the way Java’s scope rules associate uses of the name
digitsEntered with the two declarations of the name. The reference to digitsEntered in the
statement

digitsEntered = 0;

will still refer to the local variable rather than the instance variable. Now, however, since the local
variable is declared as an int, the Java compiler will see nothing wrong with the code. The program
will compile correctly. Unfortunately, it won’t work as intended. Since the final assignment sets the
local variable to 0 rather than setting the instance variable to 0, the value of the instance variable
will never be reset to 0. Once more than 9 digits have been entered, the adding machine program
will refuse to let its user enter any more digits. Such an error can be difficult to diagnose.

131

The best way to avoid this problem is to use different names for the local variable and the
instance variable. To refine your understanding of scope rules, however, we want to point out
that there is another way we could change the code so that it would work correctly even though
both variables still had the same name. The key is to simply move the assignment that resets
digitsEntered to 0 out of the body of the if statement in which the local variable is declared. A
skeleton of the code for the program that would result is shown in Figure 5.12. Now, the smallest
scope that contains both the assignment and a declaration of the name digitsEntered is the scope
of the entire class. Therefore, Java will associate this reference to digitsEntered with the instance
variable declaration of the name as desired.

5.6 Summary

When we introduced Java in Chapter 1, we suggested that the process of learning Java or any new
language typically involved learning bits of grammar and bits of vocabulary concurrently. This
chapter has been something of an exception to that rule. In this chapter, we focused primarily on
grammatical forms.

We learned two ways in which Java statements can be combined to form larger, compound
statements. Our primary focus was on the if statement, a grammatical construct used to express
commands that require a program to choose between two alternative execution paths. We learned
that there are two forms of if statements. One form is used to describe situations where the
program needs to choose whether or not to execute a sequence of one or more statements. The
other form is used when a program needs to choose between two distinct sets of statements.

Although Java’s grammatical rules only explicitly provide forms of the if statement targeted
at simple 2-way choices, we learned that these forms were flexible enough to let us express more
complex, multi-way choices. The key to this is the fact that we can use one if statement as a part
of a larger if statement forming what is called a nested if statement.

With the introduction of if statements, the number of curly braces in our programs increased
dramatically. In our examples, curly braces were placed around the sequences of statements whose
execution was controlled by an if statement. We learned that under Java’s grammatical rules,
such curly braces were actually part of a very simple form of compound statement. By simply
surrounding a sequence of statements with curly braces we tell Java that we want those statements
to be treated as a single, compound statement.

Finally, the introduction of if statements involved the introduction of conditions used to tell
Java how to make choices when executing an if statement. The conditions we used in this chapter
all involved telling Java to compare values either to see if two names referred to the same object or
to see if one number was larger than another. We will see in a few chapters that many other forms
of conditions can be used in if statements and in other contexts.

132

public class AddingMachine extends GUIManager {
// Remember the number of digits entered so far

private int digitsEntered = 0;
...

// Respond when user clicks on a digit or control buttons

public void buttonClicked(JButton clickedButton) {
if (clickedButton == addButton) {

if (digitsEntered > 0) {
String digitsEntered;
digitsEntered = entry.getText();
total = total + Integer.parseInt(digitsEntered);
totalDisplay.setText("" + total);
entry.setText("");

}
digitsEntered = 0;

} else if (clickedButton == clearButton) {
total = 0;
totalDisplay.setText("0");

} else {
digitsEntered = digitsEntered + 1;
if (digitsEntered < Max_DIGITS) {

entry.setText(entry.getText() + clickedButton.getText());

}

}
}

}

Figure 5.12: Correct (but unpleasant) code using a name as both a local and instance variable

133

134

Chapter 6

Class Action

In Chapter 1, we explained that Java uses the word class to refer to

“A set, collection, group, or configuration containing members regarded as having cer-
tain attributes or traits in common.”

We have seen that this description applies quite accurately to the classes provided by Java’s Swing
library. We have constructed groups of JTextFields and groups of JLabels as parts of the interface
provided by a single program. In each case, the objects created using a given class were distinct
from one another but shared many common attributes. Some of the similarities are discernible by
just looking at a program’s window as it runs. For example, all JTextFields look quite similar.
Other shared attributes are only visible to the programmer. Different sets of methods are associated
with each class. For example, while all JComboBoxes support the getSelectedItem method, this
method is not provided for members of the JTextField class.

When we first discussed the word class, however, we were not talking about library classes.
We were explaining why the word class appears in the header lines of our sample Java programs.
At this point, it should be clear that there is some connection between the library classes you
have been using and the classes you define when you write programs. Primarily, both types of
classes involve methods. You define methods within the classes you write and you invoke meth-
ods associated with library classes. At the same time, the classes you write seem very different
from library classes. You invoke methods associated with library classes, but you don’t invoke
the buttonClicked or textEntered methods included in your class definitions. The instructions
included in these methods get executed automatically in response to user actions.

In this chapter, we will see that there is actually no fundamental difference between classes
you define and the classes provided by the Java libraries. While the programs we have considered
thus far have all involved writing only one new class, this is not typical of Java programs. Most
Java programs involve the definition of many classes designed just for that program. All Java
programs involve one “main” class where execution begins. This class typically constructs new
objects described by additional class definitions written by the program’s author or included in
libraries and invokes methods associated with these objects. We will explore the construction of
such programs in this chapter.

135

Figure 6.1: Stickies among other windows on a Mac OS system

6.1 Second Class

All the classes we have defined in earlier examples have described the behavior of a single window
on the computer’s screen. Accordingly, the simplest way we can introduce programs that involve
two or more class definitions is to consider how to write programs that display several distinct
windows. It isn’t hard to think of examples of such programs. While the main window displayed
by a word processor is used to display the document being edited, the program will often display
separate “dialog box” windows used to handle interactions like selecting a new file to be opened or
specifying a special font to use. In addition, when multiple documents are opened, each is displayed
in a separate window.

A word processor is a bit too complicated to present here, so we will instead examine a version of
what is probably the simplest, useful, multi-window program one could imagine. The program we
have in mind is distributed under the name Stickies under Apple’s Mac OS X system. In addition,
several shareware versions of the program are available for Windows. The goal of the program
is to provide a replacement for the handy sticky notes marketed as Post-itsR©. Basically, all that
the program does is enable you to easily create little windows on your computer’s screen in which
you can type notes to remind yourself of various things. An example of what some of these little
windows might look like is shown in Figure 6.1.

We already know enough to write a program that would create a single window in which a user
could type a short reminder. All we would need to do is place a JTextArea in a program’s window.
We show an example of how the window created by such a program might look in Figure 6.2 and
the code for the program in Figure 6.3.

The people who wrote the Stickies program were obviously afraid that they would be sued by
the 3M company if they named their program “Post-itsR©,” and we are afraid that the people who
wrote Stickies might sue us if we named our version of this program “Stickies.” Accordingly, we

136

Figure 6.2: A single reminder window created by running the program shown in Figure 6.3

have given our class the clever name Reminder. Its code is rather trivial. Its constructor simply
creates a window on the screen and then places an empty JTextArea in the window.

When running the actual Stickies program, you can create multiple reminder windows by se-
lecting “New Note” from the File menu. We haven’t discussed how to create programs with File
menus. We can, however, provide an interface that will enable a user to create multiple reminder
windows. In particular, what we can do is write another program named ReminderMaker that dis-
plays a window like the one shown in Figure 6.4. Then, we will place code in the buttonClicked
method of the ReminderMaker program so that each time the button is clicked a new reminder
window of the form shown in Figure 6.2 will appear on the screen.

It is surprisingly simple to write the code that will make new reminder windows appear. We
have seen many examples where we have told the computer to create a new instance of a library
class by using a construction such as

new JButton("Click Here");

In all the constructions we have seen, the name following the word new has been the name of
a library class. It is also possible, however, to construct an instance of a class we have defined
ourselves. Therefore, we can construct a new reminder window by executing a construction of the
form

new Reminder()

Based on these observations, the code for the ReminderMaker program is shown in Figure 6.5. This
is a very simple class, but it is also our first example of a class whose definition depends on another
class that is not part of a standard library. The ReminderMaker class depends on our Reminder
class. Thus, in some sense, we should not consider either of these classes to be a program by itself.
In this case, it is the definition of the two classes together that form the program we wanted to
write.

In most integrated development environments, when a program is composed of several classes,
the text of each class is saved in a separate file and all of these files are grouped together as a single
project. In our overview of IDEs in Section 1.4, we showed that after creating a project, we could
add a class definition to the project by either clicking on a “New Class” button or selecting a “New

137

// Class Reminder - Creates a window in which you can type a reminder

public class Reminder extends GUIManager {

// The initial size of the windows

private final int WINDOW_WIDTH = 250, WINDOW_HEIGHT = 200;

// The size of the JTextArea

private final int TEXT_WIDTH = 20, TEXT_HEIGHT = 10;

// Create a window in which user can type text

public Reminder() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(new JTextArea(TEXT_HEIGHT, TEXT_WIDTH));

}
}

Figure 6.3: A simple Reminder class definition

Figure 6.4: A window providing the means to create reminders

// Class ReminderMaker - Allows user to create windows to hold brief reminders

public class ReminderMaker extends GUIManager {

// The size of the program’s window

private final int WINDOW_WIDTH = 200, WINDOW_HEIGHT = 60;

// Add the button to the program window

public ReminderMaker() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(new JButton("Make a new reminder"));

}

// Create a new reminder window

public void buttonClicked() {
new Reminder();

}
}

Figure 6.5: Definition of the ReminderMaker class

138

Figure 6.6: A Reminder window with a summary in the title bar

Class” menu item. For a program that involved multiple user-defined classes, we can simply create
several classes in this way. The IDE will then provide separate windows in which we can edit the
definitions of these classes.

6.2 Constructor Parameters

In most of the constructions we have used, we have included actual parameters that specify prop-
erties of the objects we want to create. For example, in our ReminderMaker class we use the
construction

new JButton("Make a new reminder")

rather than

new JButton()

In the construction that creates new Reminder objects, on the other hand, we have not included any
actual parameters. In this section, we will add some additional features to our Reminder program
to illustrate how to define classes with constructors that expect and use parameter values.

The first feature we will add is the ability to place a short summary of each reminder in the title
bar of the window that displays the complete description. With this change, the windows created
to hold reminders will look like the window shown in Figure 6.6 rather than like that shown in
Figure 6.2.

There are a few things we have to consider before we can actually change our Reminder class
to include this feature. In the first place, we have to learn how to place text in the title bar of a
window. Then, we have to revise the ReminderMaker class to provide a way for the user to enter
the summary that should be displayed in the title bar of each reminder. We will address both of
these concerns together by redesigning the ReminderMaker class so that it both provides a way to
enter a summary and displays a title in its own window.

We will associate new names with the two classes we present in this section to avoid confusing
them with the very similar classes discussed in the preceding section. We will call the revised classes
TitledReminder and TitledReminderMaker.

139

Figure 6.7: Revised interface for creating reminders with titles

Within a TitledReminderMaker window, we will place a JTextField that will be used to
enter a topic for each reminder window to be created. We will also get rid of the “Make a new
reminder” button. Instead of creating a new reminder each time a button is pressed, we will create
a new reminder whenever the user presses return after entering a summary. As a result, in the
TitledReminderMaker class, new reminders will be created in the textEntered method rather
than the buttonClicked method. An example of this new interface is shown in Figure 6.7.

If you look carefully at Figure 6.7, you will notice that we have added the title “Reminders” to
the title bar of the ReminderMaker window. This is actually quite easy to do. The createWindow
method accepts a title to place in the new window’s title bar as a third parameter. Therefore, we
can simply add the desired title as a third parameter to the invocation of createWindow as shown
below:

this.createWindow(WINDOW WIDTH, WINDOW HEIGHT, "Reminders");

The only remaining change to the original ReminderMaker class is that we want this new code
to pass the text of the desired title as a parameter when it constructs a new reminder. We know
that the text to be used will be entered in the JTextField provided in the program’s interface.
Assuming that we associate the name topic with this text field, we can pass the text to the
reminder constructor by saying

new TitledReminder(topic.getText());

This will require that we design the TitledReminder class so that it expects and uses the actual
parameter information. We will discuss those changes in a moment. Meanwhile, the complete code
for the revised TitledReminderMaker class is shown in Figure 6.8.

We showed in Section 3.4 that by including a formal parameter name in the declaration of a
method, we can inform Java that we expect extra information to be provided when the method exe-
cutes and that we want the formal parameter name specified to be associated with that information.
For example, in the definition of buttonClicked shown below,

public void buttonClicked(JButton clickedButton) {
entry.setText(entry.getText() + clickedButton.getText());

}

(which we originally presented in Figure 3.12) we inform Java that we expect the system to tell us
which button was clicked and that we want the formal parameter name clickedButton associated
with that button.

Formal parameter names can be used in a similar way in the definitions of constructors. If we
use the following header when we describe the constructor for the TitledReminder class

140

/*

* Class TitledReminderMaker - Make windows to hold reminders

*/

public class TitledReminderMaker extends GUIManager {

// The size of the program’s window

private final int WINDOW WIDTH = 270, WINDOW HEIGHT = 60;

// Size of field used to describe a reminder

private final int TOPIC_WIDTH = 15;

// Used to enter description of a new reminder

private JTextField topic;

// Add the GUI controls to the program window

public TitledReminderMaker() {

this.createWindow(WINDOW WIDTH, WINDOW HEIGHT, "Reminders");

contentPane.add(new JLabel("Topic: "));
topic = new JTextField(TOPIC_WIDTH);
contentPane.add(topic);

}

// Create a new reminder window when a topic is entered

public void textEntered() {
new TitledReminder(topic.getText());

}
}

Figure 6.8: Code for the TitledReminderMaker class

141

public TitledReminder(String titleLabel)

we inform Java that we expect any construction of the form

new TitledReminder(. . .)

to include an actual parameter expression that describes a string, and that the string passed should
be associated with the name titleLabel while the instructions in the body of the constructor are
executed. In particular, we want to use the String passed to the constructor to specify a window
title when we invoke createWindow. With this in mind, the definition for the constructor of the
TitledReminder class would look like:

// Create a window in which user can type text

public TitledReminder(String titleLabel) {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT, titleLabel);
contentPane.add(new JTextArea(TEXT_HEIGHT, TEXT_WIDTH));

}

The only other difference between Reminder and TitledReminder would be the class name.

6.2.1 Parameter Correspondence

We have used actual parameters in many previous examples. We have passed actual parameters in
constructions like

new JTextField(15)

and in method invocations like

clickedButton.setForeground(Color.ORANGE);

In all the previous examples in which we have used actual parameters, the parameters have
been passed to methods or constructors defined as part of Squint or the standard Java libraries.
We have learned that there are restrictions on the kinds of actual parameters we can pass to each
such method. For example, we can pass a color to the setForeground method and a number to
the JTextField constructor but not the other way around. If we pass the wrong type of actual
parameter to a library method or constructor, our IDE will produce an error message when we try
to compile the program.

Now we can begin to understand why our parameter passing options have been limited. Java
requires that the actual parameter values passed in an invocation or construction match the formal
parameter declarations included in definitions of the corresponding methods or constructors. If we
are using a method or constructor defined as part of Squint, Swing or any other library, we are
constrained to provide the types of actual parameters specified by the authors of the code in the
library.

Passing the title to be placed in a window’s title bar as an actual parameter to the TitledReminder
constructor is the first time that we have both passed an actual parameter and declared the formal
parameter with which it would be associated. As a result, this is the first example where we can
see that the limitations on the types of actual parameters we can pass are a result of the details of
formal parameter declarations.

142

Formal parameter declarations not only determine the types of actual parameters we can pass,
they also determine the number of parameters expected. We have seen that some constructors
expect multiple parameters. In particular, when we construct a JTextArea we have provided
two actual parameters specifying the desired height and width of the text area. We can explore
the definition of constructors that expect multiple parameters by adding another feature to our
reminders program.

The Stickies program installed on my computer provides a menu that can be used to select
colors for the windows it creates. This may not be obvious when you look at Figure 6.1 if you are
reading a copy of this text printed in grayscale, but on my computer’s screen I get to have green
stickies, pink stickies, and purple stickies. When I first create a new window it appears in a default
color. If I want, I can change the default, or I can change an individual window’s color after it has
been created. We can easily add similar features to our Reminders program.

Once again, since we will be working with revised versions of the two classes that comprise
our program, we will given them new names. We will call the new classes ColorfulReminder and
ColorfulReminderMaker. When we create a ColorfulReminder we will want to specify both a
string to be placed in the window’s title bar and the color we would like to be used when drawing
the window. That is, it should be possible to create a ColorfulReminder using a construction of
the form

new ColorfulReminder("Proposal Due!", Color.RED)

This construction involves two actual parameters. The first is a String. The second a Color.
Accordingly, in the header for the constructor for the ColorfulReminder class we will need to
include two formal parameter declarations. We declare these parameters just as we would declare
single formal parameters, except we separate the declarations from one another with a comma.
Therefore, if we decided to use the names titleLabel and shade for the parameters, the constructor
would look like:

public ColorfulReminder(String titleLabel, Color shade) {
// Create window to hold a reminder

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT, titleLabel);

JTextArea body;
body = new JTextArea(TEXT_HEIGHT, TEXT_WIDTH);
contentPane.add(body);

// Set the colors of both the text area and the window that contains it

body.setBackground(shade);
contentPane.setBackground(shade);

}

When multiple formal parameter declarations are included, they must be listed in the same order
that the corresponding actual parameters will be listed. That is, since we placed the declaration of
titleLabel before the declaration of shade, we must place the argument "Proposal Due!" before
Color.RED . If we had used the header

public ColorfulReminder(Color shade, String titleLabel)

143

then the construction

new ColorfulReminder("Proposal Due!", Color.RED)

would be considered an error since the first actual parameter provided is a string while the first
formal parameter declared indicates a Color is expected.

Of course, if we can define a constructor that expects two parameters, it is also possible to define
a constructor that expects even more parameters. For example, if we wanted to make it possible
to change the initial size of reminder windows, we might define a class with the constructor

public FlexibleReminder(int width, int height,
String titleLabel, Color shade) {

// Create window to hold a reminder

this.createWindow(width, height, titleLabel);

JTextArea body;
body = new JTextArea(TEXT_HEIGHT, TEXT_WIDTH);
contentPane.add(body);

// Set the colors of both the text area and the window that contains it

body.setBackground(shade);
contentPane.setBackground(shade);

}

In this case, we could use a construction of the form

new FlexibleReminder(400, 300, "Proposal Due", Color.RED)

to construct a reminder window.

6.2.2 Choosing Colors

Including a Color as one of the formal parameters expected by the ColorfulReminder class makes
it possible to set the color of a reminder window when it is first created. As mentioned above,
however, it should also be possible to change a window’s color after it has been created. We will
explore how to add this feature in the next section. To prepare for this discussion, we will conclude
this section by introducing an additional feature of Java’s Swing library, a Swing mechanism that
makes it easy to let a program’s user select a color.

Swing includes a method that can be used to easily display a color selection dialog box. A
sample of this type of dialog box is shown in Figure 6.9. Understanding this figure will require a
bit of imagination if you are reading a grayscale copy of this text. The small squares displayed in
the grid in the middle of the window are all squares of different colors. The mouse cursor in the
figure is pointing at a square that is actually bright yellow. A user can select a color by clicking on
one of the squares and then clicking on the “OK” button.

The method that produces this dialog box is named JColorChooser.showDialog. It expects
three parameters: the name of the program’s GUIManager, typically this, a string to be displayed
as instructions to the user, and the default color to select if the user just clicks “OK”. An invocation
of this method might therefore look like:

144

Figure 6.9: Dialog box displayed by the JColorChooser.showDialog(...) method

JColorChooser.showDialog(this, "Select a Color", Color.WHITE)

JColorChooser.showDialog is an accessor method. It returns the color the user selected as its
result.

As an example of the use of JColorChooser.showDialog, the definition of a class designed
to work with the ColorfulReminder class discussed above is presented in Figure 6.10. The user
interface this program provides is shown in Figure 6.11. Like the TitledReminderMaker class, this
user interface allows a user to create a new reminder window by typing the topic for the reminder in
a JTextField and then pressing return. It also provides a button the user can press to select a new
color for the reminder windows. It uses a variable named backgroundColor to remember the color
that should be used for the next reminder window created. This variable is initially associated with
the color white. When the user presses the “Pick a Color” button, the variable is associated with
whatever color the user selects using the dialog box. Each time a new reminder window is created,
the current value of backgroundColor is passed as an actual parameter to the ColorfulReminder
constructor. Therefore, once the user has selected a color, it will be used for all windows created
until a new color is chosen.

6.3 Method Madness

While the revisions we have made to our reminder program make it much more colorful, the program
still doesn’t provide as much flexibility as the Stickies program that inspired it. Our program
provides no way to change a window’s color once it has been created. The Stickies program, on the
other hand, lets you change the color of a window even after it has been created. We will explore
how to add such flexibility to our program as a means of introducing a very important aspect of

145

/*

* Class ColorfulReminderMaker - Make windows to hold reminders

*/

public class ColorfulReminderMaker extends GUIManager {
// The size of the program’s window

private final int WINDOW_WIDTH = 270, WINDOW_HEIGHT = 100;

// Size of field used to describe a reminder

private final int TOPIC_WIDTH = 15;

// Used to enter description of a new reminder

private JTextField topic;

// The color to use for the background of the next reminder

private Color backgroundColor = Color.WHITE;

// Add the GUI controls to the program window

public ColorfulReminderMaker() {

this.createWindow(WINDOW WIDTH, WINDOW HEIGHT, "Reminders");

contentPane.add(new JLabel("Topic: "));
topic = new JTextField(TOPIC_WIDTH);
contentPane.add(topic);
contentPane.add(new JButton("Pick a Color"));

}

// Select a new background color

public void buttonClicked() {
backgroundColor = JColorChooser.showDialog(this, "Select a Color",

backgroundColor);
}

// Create a new reminder window

public void textEntered() {
new ColorfulReminder(topic.getText(), backgroundColor);

}
}

Figure 6.10: Complete code for the ColorfulReminderMaker class

146

Figure 6.11: User interface of the ColorfulReminderMaker program

writing programs composed of multiple classes, the ability to pass information between objects
through method invocations.

When using library classes, we have seen that in addition to specifying the details of an object
through constructor parameters, we can later modify such details using a method invocation. For
example, in the TouchCounter program presented in Figure 2.10, we specified the initial text
displayed by the label named message in its constructor:

message = new JLabel("Click the button above");

Our program later changes its contents to display the number of times the user has clicked using
the setText mutator method:

message.setText("I’ve been touched " + numberOfClicks + " time(s)");

The ability to change the contents of a JLabel is provided through the setText method.
Similarly, we can provide the ability to change the color of a ColorfulReminder by including the
definition of an appropriate method within our ColorfulReminder class. Until now, we have only
defined event-handling methods such as buttonClicked, and we have only invoked methods that
were defined within the Squint or Swing libraries. It is, however, possible for us to define methods
other than event-handling methods and then to invoke these methods. Best of all, the process of
defining such methods is very similar to the process of defining an event-handling method.

Like the definition of an event-handling method, the definition of our method to set the color
of a reminder will begin with the words public void followed by the name of the method and
any formal parameter declarations. For this method, we will want just one formal parameter, the
Color to display in the reminder window. We will use the parameter name newShade. Unlike
event-handling methods, we get to pick any name for the method that is appropriate. We could
choose the name setBackground to be consistent with the name of the method provided to set
the color of Swing GUI components, or we could instead chose a different name like setColor or
changeWindowColor. In fact, we could use a name like cuteLittleMethod, but it would be hard
to claim that name was appropriate. To illustrate that we do have the freedom to choose the name,
we will use the appropriate, but not quite standard name setColor for our method. Accordingly,
our method header will be

public void setColor(Color newShade)

A complete class definition incorporating the setColor method is shown in Figure 6.12. Once
again, we have renamed the class to distinguish it from earlier versions. ColorableReminder is

147

/*

* Class ColorableReminder - A window you can type a message in

*/

public class ColorableReminder extends GUIManager {
// The size of the reminder window

private final int WINDOW_WIDTH = 250, WINDOW_HEIGHT = 200;

// The size of the JTextArea

private final int TEXT_WIDTH = 20, TEXT_HEIGHT = 10;

// Area used to hold text of reminder

private JTextArea body;

// Add GUI components and set initial color

public ColorableReminder(String label, Color shade) {
// Create window to hold all the components

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT, label);

body = new JTextArea(TEXT_HEIGHT, TEXT_WIDTH);
contentPane.add(body);

// Set the colors of both the text area and the window that contains it

body.setBackground(shade);
contentPane.setBackground(shade);

}

// Change the color of the window’s background

public void setColor(Color newShade) {
body.setBackground(newShade);
contentPane.setBackground(newShade);

}
}

Figure 6.12: The code of the ColorableReminder class

148

now its name. When the setColor method in this class is invoked, it must set the background
color of both the JTextArea and the contentPane so that the whole window will display a single
color. Accordingly, the name body, which was previously declared as a local variable within the
constructor must now be declared as an instance variable. Unsurprisingly, the body of the setColor
method contains two instructions that are nearly identical to the instructions used to set the color
in the constructor. The only difference is that in this context the name newShade is used as an
actual parameter in the invocations of setBackground.

To illustrate the use of our new setColor method, we will now modify the reminder maker
class. In the new version, which we will name ColorableReminderMaker, when the user picks a
new color, the program will immediately change the color of the last reminder created. The code
for this version of the class is shown in Figure 6.13.

To invoke a method, we have to provide both the name of the method and the name of the
object to which it should be applied. Therefore, to use setColor as we have explained, we have
to associate a name with the last reminder created. We do this by declaring an instance variable
named activeReminder. An assignment within the textEntered method associates this name
with each new reminder window that is created. Then, in the buttonClicked method, we execute
the invocation

activeReminder.setColor(backgroundColor);

to actually change the color of the most recently created window.1 This invocation tells Java to
execute the instructions in the body of our definition of setColor, thereby changing the color of
the window’s background as desired.

In this example, the method we defined expects only a single parameter. It is also possible to
define methods that expect multiple parameters. In all cases, as with constructors, Java will insist
that the number of actual parameters provided when we invoke a method matches the number
of formals declared in the method’s definition and that the types of the actual parameters are
compatible with the types included in the formal parameter declarations. Java will associate the
actual parameter values with the formal parameter names in the order in which they are listed and
then execute the instructions in the method’s body.

6.4 Analyze This

this (pronoun, pl. these)

1. used to identify a specific person or thing close at hand or being indicated or
experienced, as in :

He soon knew that this was not the place for him.

(From the New Oxford American Dictionary (via Apple’s Dictionary program))

Our example program now consists of two classes with very different structures and roles.
Both of the methods defined in ColorableReminderMaker are event-handling methods while the
setColor method in ColorableReminder is not designed to respond to user events. The ColorableReminderMaker

1To ensure that we don’t try to change the color of the most recently created reminder before any reminders have
been created at all, we don’t enable the “Pick a Color” button until after a reminder has been created.

149

// Class ColorableReminderMaker - Make windows to hold reminders

public class ColorableReminderMaker extends GUIManager {
// The size of the program’s window

private final int WINDOW_WIDTH = 270, WINDOW_HEIGHT = 100;

// Size of field used to describe a reminder

private final int TOPIC_WIDTH = 15;

// Used to enter description of a new reminder

private JTextField topic;

// Used to change the color of new reminder backgrounds

private JButton pickColor;

// The color to use for the background of the next reminder

private Color backgroundColor = Color.WHITE;

// The most recent reminder created

private ColorableReminder activeReminder;

// Add the GUI controls to the program window

public ColorableReminderMaker() {
this.createWindow(WINDOW WIDTH, WINDOW HEIGHT, "Reminders");

contentPane.add(new JLabel("Topic: "));
topic = new JTextField(TOPIC_WIDTH);
contentPane.add(topic);
pickColor = new JButton("Pick Background Color");
pickColor.setEnabled(false);
contentPane.add(pickColor);

}

// Select a new background color for current and future reminders

public void buttonClicked(JButton which) {
backgroundColor = JColorChooser.showDialog(this, "Select a Color",

backgroundColor);
activeReminder.setColor(backgroundColor);

}

// Create a new reminder window

public void textEntered() {
activeReminder = new ColorableReminder(topic.getText(), backgroundColor);
pickColor.setEnabled(true);

}
}

Figure 6.13: Complete code for the ColorablelReminderMaker class

150

creates ColorableReminders and tells them what to do through method invocations (i.e., when to
change color). The ColorableReminderMaker acts as the boss and the ColorableReminders just
listen passively.

In the following section, we will see that it is possible for the communications that occur between
objects of different classes to be much more interesting. By the end of the next section, both of the
classes in our program will include methods designed to handle events and methods like setColor
that do not handle events but are instead invoked explicitly by code in the other class. We will
begin the construction of this version of the program by making a rather small change to the
ColorableReminder class. We will make it talk to itself!

The code in the ColorableReminder constructor is designed to perform three steps:

1. Create an empty window,

2. Place a text area in the window, and

3. Set the background color used.

The setColor method that we added to the class in the last section is designed to perform the third
of these steps. Therefore, it should be possible to replace the last two invocations in the constructor
with a single invocation of the setColor method. Recall, however, that when we invoke a method
we need to provide both the name of the method and the name of the object to which it should be
applied. What name should we use within the constructor to tell Java that we want to apply the
setColor method to the object being constructed?

The answer to this question is actually apparent if we look at the first line of the constructor’s
body. In that line we invoke the createWindow object using the name this. By writing such an
invocation, we are telling Java that we want the object being created to create a window for itself.
That is, we are applying the createWindow method to the object being constructed. The name
this can be used in a constructor to refer to the object being constructed or within a method to
refer to the object to which the method is being applied. Thus, we can replace the last two lines
of the ColorableReminder constructor with the invocation

this.setColor(shade);

6.5 Talking Back

The name this can also be used as a parameter in a construction or method invocation. When
this is done, the object executing the code containing the construction or invocation is passed as
an actual parameter. This provides a way for one object to identify itself to another, making it
possible for the other object to communicate with it later.

To illustrate how the name this can be used to facilitate such two-way communications, we
will modify our Reminder program to make it even more like the Stickies program. Our program
currently only provides a way to change the color of the most recent reminder created. On the
other hand, it is possible to change the color of any window created by the Stickies program at
any time. The interface provided by Stickies is quite simple. When the user clicks on any window,
it becomes the active window. When the user selects a color from the color menu, the program
changes the color of the active window rather than of the most recently created window.

151

Obviously, implementing this behavior will require some modifications to our example classes.
Accordingly, we will once again give the new versions new names. This time we will call them
ReactiveReminder and ReactiveReminderMaker.

Like the Stickies program, our program already has some notion of an “active window”. If you
create several reminder windows and then start typing text, the text you type will appear in one
of your reminder windows. If you want to change which window your text appears in, you merely
have to click on a different window. After you click, text you type will be inserted in the window
you just clicked on. That window is now the active window. In the terminology of Java’s Swing
library, we say that the window you clicked on has gained the focus.

There is an event handling method that you can define if you want to take some special action
when your window gains the focus. The method is named focusGained. If you include a method
definition of the form

public void focusGained() {
. . .

}

within a class that extends GUIManager then the instructions in the body of the method will be
executed whenever one of the GUI components in the GUIManager’s content pane gains the focus.
When you click on a reminder window, the JTextArea in the window gains the focus. Therefore,
if we include a definition of focusGained in our reminder class, it will be executed when the user
clicks on a reminder window.

This is a start. It means that it is possible for a reminder window to become aware that it has
become the active window. Unfortunately, this is not enough. To change the color of a reminder
window, the user will click on the “Pick a Color” button in the reminder maker window. To actually
change a reminder’s color, the reminder maker needs to invoke setColor on the active window.
Therefore, it isn’t enough for a reminder to know that it is active. Somehow, a reminder needs a
way to tell the reminder maker that it has become the active window.

One object can provide information to another object by invoking one of the methods associated
with the other object and passing the information as an actual parameter. We have already seen
the reminder maker pass information to a reminder by invoking setColor. Now, we have to define
a method in the reminder maker that a reminder can invoke to tell the reminder maker that it
has become the active window. We will call this method reminderActivated. We will invoke this
method from the body of the focusGained method in the reminder class. It will expect to be passed
the window that has become active as a parameter when it is invoked. It will simply associate the
name activeReminder with this parameter so that the reminder maker can “remember” which
window is now active. Therefore, we will define reminderActivated as follows:

// Notice when the active reminder window is changed

public void reminderActivated(ReactiveReminder whichReminder) {
activeReminder = whichReminder;

}

We know that the invocation of reminderActivated that we place in the reminder class must
look something like:

x.reminderActivated(y);

152

The interesting part is deciding what to actually use where we have written “x” and “y”.
Here “y” represents the actual parameter that should be passed when reminderActivated is

invoked. We said that we needed to pass the reminder that was becoming active to the reminder
maker. This is the same as the window that will be executing the focusGained method. Therefore,
we can use the name this to refer to the window. Now we know that our invocation must look like

x.reminderActivated(this);

We will also use this to determine the correct replacement for “x”. The problem is that
whatever we use for “x” should refer to the reminder maker, not a reminder window. If we use the
name this within the ReactiveReminder class, it will refer to a reminder window, but if we use it
within the ReactiveReminderMaker class it will refer to the reminder maker. The solution, then,
is to pass this from the reminder maker in each reminder construction it executes. If we view the
parameters to the constructor as a message sent to the new object, including this in the list is like
putting a return address on the envelope. It tells the new object who created it.

To accomplish this, we first have to both add this as an actual parameter in the construction:

activeReminder = new ReactiveReminder(topic.getText(), backgroundColor,
this);

and add a formal parameter declaration that associates a name with the extra parameter in the
header of the constructor for the ReactiveReminder class;

public ReactiveReminder(String label, Color shade,
ReactiveReminderMaker creator) {

At this point, we are close, but not quite done. The name creator can now be used to refer to
the reminder maker within the reminder constructor. Formal parameter names, however, can only
be used locally within the constructor or method with which they are associated. Therefore, we
cannot use the name creator to refer to the reminder maker within the body of focusGained.

To share information between a constructor and a method (or between two distinct invocations
of methods) we must take the information and associate it with an instance variable. We will
do this by declaring an instance variable named theCreator and associating it with the reminder
maker by executing the assignment

theCreator = creator;

within the body of the constructor. Then, we can place the invocation

theCreator.reminderActivated(this);

in the focusGained method. A complete copy of the revised classes can be found in Figures 6.14
and 6.15.

Both of the classes in this version of the program include methods that are designed to handle
GUI events and other methods that are invoked explicitly within the program itself. ReactiveReminder
defines the event-handling method focusGained in addition to the simple mutator method setColor.
The ReactiveReminderMaker class included two methods that handle GUI events, textEntered
and buttonClicked, in addition to the reminderActivated method which is invoked by code in
the ReactiveReminder class.

153

/*

* Class ReactiveReminder - A window you can type a message in

*/

public class ReactiveReminder extends GUIManager {
// The size of the reminder window

private final int WINDOW_WIDTH = 250, WINDOW_HEIGHT = 200;

// The size of the JTextArea

private final int TEXT_WIDTH = 20, TEXT_HEIGHT = 10;

// Area used to hold text of reminder

private JTextArea body = new JTextArea(TEXT_HEIGHT, TEXT_WIDTH);

// The ReactiveReminderMaker that created this reminder

private ReactiveReminderMaker theCreator;

// Add GUI components and set initial color

public ReactiveReminder(String label, Color shade,
ReactiveReminderMaker creator) {

// Create window to hold all the components

this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT, label);

theCreator = creator;
contentPane.add(body);
this.setColor(shade);

}

// Change the color of the window’s background

public void setColor(Color newShade) {
body.setBackground(newShade);
contentPane.setBackground(newShade);

}

// Notify the manager if the user clicks on this window to make it active

public void focusGained() {
theCreator.reminderActivated(this);

}
}

Figure 6.14: Code for the ReactiveReminder class

154

// Class ReactiveReminderMaker - Make windows to hold reminders

public class ReactiveReminderMaker extends GUIManager {
// The size of the program’s window

private final int WINDOW_WIDTH = 270, WINDOW_HEIGHT = 100;

// Used to enter description of a new reminder

private JTextField topic = new JTextField(15);

// Used to change the color used for new reminder backgrounds

private JButton pickColor = new JButton("Pick a Color");

// The color to use for the background of the next reminder

private Color backgroundColor = Color.WHITE;

// The most recent reminder created

private ReactiveReminder activeReminder;

// Add the GUI controls to the program window

public ReactiveReminderMaker() {

this.createWindow(WINDOW WIDTH, WINDOW HEIGHT, "Reminders");

contentPane.add(new JLabel("Topic: "));
contentPane.add(topic);
pickColor.setEnabled(false);
contentPane.add(pickColor);

}

// Select a new background color for current and future reminders

public void buttonClicked() {
backgroundColor = JColorChooser.showDialog(this, "Select a Color",

backgroundColor);
activeReminder.setColor(backgroundColor);

}

// Create a new reminder window

public void textEntered() {
activeReminder = new ReactiveReminder(topic.getText(), backgroundColor,

this);
pickColor.setEnabled(true);

}

// Notice when the active reminder window is changed

public void reminderActivated(ReactiveReminder whichReminder) {
activeReminder = whichReminder;

}
}

Figure 6.15: Code for the ReactiveReminderMaker class

155

It is worth observing that if you look at just the code for the ReactiveReminderMaker class,
the reminderActivated method might easily be mistaken for an event handling method. Like the
other two methods in this class, the instructions in its body are designed to make the program
react to a user action appropriately. The only reason we distinguish the other two methods from
reminderActivated is that buttonClicked and textEntered are executed by some mysterious
mechanism in the Java system while reminderActivated is executed when the code we wrote in
ReactiveReminder explicitly invokes it. We point this out to make the “mysterious mechanism”
less mysterious. Just as we explicitly invoke reminderActivated, it should now be clear that
somewhere in the code of the Squint or Swing library there are statements that explicitly invoke
textEntered and buttonClicked. There is really no fundamental difference between an event-
handling method and any other method we define.

6.6 Defining Accessor Methods

In Chapter 3 we introduced the distinction between mutator methods and accessor methods. Any
method whose purpose is to change some aspect of an object’s state is classified as a mutator
method. For example, because the setText method changes the contents of a GUI component, it
is classified as a mutator. Similarly, the setColor method we defined in our reminder class would
be classified as a mutator method. Accessor methods serve a different role. An accessor method
provides a way to obtain information about an object’s state. The getText and getSelectedItem
methods are good examples of accessor methods.

The two examples of methods presented so far in this chapter, setColor and reminderActivated,
are both examples of mutator methods. One changes a clearly visible property of an object, its
color. The other changes the reminder associated with the variable activeReminder within the
reminder maker. While this change is not immediately visible, it does determine how the program
will react the next time the user presses the “Pick a Color” button.

Our goal in this section is to introduce the features used to define accessor methods. We will
use a very simple example. If we have a setColor method in our reminder class, it might be handy
to have a getColor method. In fact, introducing such a method will enable us to fix a rather subtle
flaw in the current version of our program.

If you look back at the invocation that causes the color selection dialog box to appear:

backgroundColor = JColorChooser.showDialog(this, "Select a Color",
backgroundColor);

you will notice that most of the actual parameters included in this invocation are rather mysterious.
The second parameter is the only obvious one. It determines what prompt the user will see in the
dialog box. The first parameter is included because each dialog box created by Swing must be
associated with some existing window on the screen. In this context, this refers to the reminder
maker window. The last parameter is the one we are really interested in. The color dialog is
typically used to change something’s color. The third parameter is supposed to specify the color
you are starting with. This enables the system to include a patch of the original color in the dialog
box so that the user can compare it to the alternative being chosen.

As currently written, our program isn’t really using this third parameter correctly. The name
backgroundColor in our program will be associated with the background color of the last window
whose color was changed. This may not be the same as the background color of the currently active
window.

156

If there was a getColor method defined in the ReactiveReminder class we could fix this problem
quite easily. Since the variable activeReminder is always associated with the active window, we
could rewrite the invocation that creates the color chooser dialog as:

backgroundColor = JColorChooser.showDialog(this, "Select a Color",
activeReminder.getColor());

Now, all we have to do is actually define the getColor method!
The process of defining an accessor method is very similar to that of defining a mutator method.

We must write a header including the name of the method and declarations of any formal parameters
it expects. We also write a body containing a list of instructions to be executed when the method
is invoked. The difference is that the purpose of the instructions we write will be to determine what
information to return as the “answer” to the question being asked when the method is invoked.
Java therefore requires that the definition of an accessor method contains two special components.
The first describes the type of the information that will be returned as an answer. The second
specifies the actual answer to be returned.

The specification of the type of the answer produced by an accessor method appears in its
header. In all of the method definitions we have seen, the second word has been void. This
actually describes the information the method will return. A mutator method returns void, that
is, nothing. In the definition of an accessor method, we will replace void with the name of the type
of information the method is designed to produce. This type is called the method’s return type For
example, since getColor should obviously produce a Color, its header will look like

public Color getColor() {

In addition, somewhere in the instructions we have to explicitly tell Java what answer our
method should return to the code that invoked it. This is done by including an instruction of the
form

return expression;

in the method body. The value or object described by the expression in the return statement will
be used as the result of the invocation. For example, to return the color of a reminder, we could
use the return statement

return contentPane.getBackground();

or

return body.getBackground();

Therefore, the complete definition of the setColor method might be

public Color getColor() {
return contentPane.getBackground();

}

When a return statement is executed, the computer immediately stops executing instructions
in the method’s body and returns to executing instructions at the point from which the method
was invoked. As a result, a return statement is usually included as the last statement in the body

157

of an accessor method. return statements may be included at other points in a method’s body, but
the last statement executed by an accessor method must be a return. In our example, this is not
an issue since the return statement is actually the only statement in the body. This is because it is
very easy to determine the color of a reminder. If a more complicated process that involved many
statements was required, all these statements could appear in the body of our method followed by
a return.

6.7 Invisible Objects

Most of the objects we have considered thus far appear as something concrete and visible on your
computer screen. When you say

contentPane.add(new JButton("Click Me"));

you know that you made the computer construct a new button because you can see it on the screen.
It is important to realize, however, that it is possible to create an object that never becomes visible.
For example, if you create a button by saying

JButton invisibleButton;
invisibleButton = new JButton("Click Me");

and don’t say

add(invisibleButton);

Java still has to create the button even though you can’t see it. Somewhere inside the computer’s
memory, Java keeps information about the button because it has to remember what the button is
supposed to look like in case you eventually do add it to your content pane. For example, if you
execute the statement

invisibleButton.setText("Click me if you can");

Java has to have some way to record the change even though it doesn’t have any visible effect.
Invisible buttons are clearly not very useful. The idea that creating an object forces Java to

keep track of information about the object even if it isn’t visible, on the other hand, is very useful
and important. In this section, we will explore an example in which we define a class of objects that
will never be visible on the screen. They will be used to record information that will be displayed,
but the objects themselves will remain invisible.

It probably will come as no shock that the example we have in mind is yet another variant of the
Reminders program. The good news is that this variant will be very different from the programs
we have presented in the preceding sections.

The idea is that a program to keep track of a set of reminders doesn’t need to have a separate
window to display each reminder. An alternate interface would be to have a single window that
could display the contents of one reminder together with a menu from which one could select any
of the reminders when one wanted its contents to be displayed. To make this concrete, Figure 6.16
shows how information might be presented by such a program.

The snapshot presented in Figure 6.16(a) shows how the program would look while a user was
simply examining one reminder. Figure 6.16(b) shows how the user would request to see the

158

(a) (b)

(c) (d)

Figure 6.16: An alternate interface for viewing reminders

159

contents of a different reminder. When the mouse is depressed on the menu in the window, a list of
the topics of all the reminders would be displayed. The user could select any item in the list. If the
user selected the second item as shown in Figure 6.16(b), then, when the mouse was released, the
program would display the contents of the selected reminder as shown in Figure 6.16(c). Whenever
a given reminder was displayed, the user could edit the contents of the text field and text area
displayed in the window to update, correct, or extend the information previously entered. In
particular, as shown in Figure 6.16(d), if the user clicked on the “New Reminder” button, the
program would display a reminder with a default topic such as “Reminder 4”. The user could
then edit the topic and contents to include the new reminder in the collection maintained by the
program.

In the previous versions of the reminder program, a Reminder2 was actually a window displayed
on the screen that contained a text area in which the desired text was displayed. If the program
was keeping track of four reminders, there would be four windows displayed.

In this new version of the program, a reminder will not itself correspond to anything visible
on the screen. The program displays one text field and one text area. At various times these two
components are used to display the text of various reminders, but when we create a new reminder,
the program does not create and display a new text area or text field. It just uses setText to
change what an existing component displays. A reminder is no longer a window or even a GUI
component. A reminder is just a pair of strings. Basically, a reminder is a piece of information,
not the means used to display it.

It is still very useful, however, to define a Reminder class so that we can create objects to
represent the contents of various reminders. The definition of such a class is shown in Figure 6.17.

The new class is named InvisibleReminder. It differs from all the other classes we have defined
so far in a very significant way. Every other class we have seen has included the phrase extends
GUIManager in its header. This class does not. The phrase extends GUIManager indicates that a
class definition describes how to respond to GUI components within a window. As we have seen,
each time we construct an object of a class that extends GUIManager, we end up with a new window.
Since this class does not extend GUIManager, creating a new InvisibleReminder will not create a
new window. In fact, it you try to reference the contentPane or invoke this.createWindow(...)
within such a class, your IDE will identify that code as an error.

The fact that we cannot see an InvisibleReminder does not mean that it is impossible to write
a program that displays its contents. Within the definition of the class, we have included accessor
methods that make it possible to determine what the contents of a given reminder are. To construct
a program to provide an interface like that shown in Figure 6.16, we would define a second class
that would build a GUI interface including a text field and a text area. Within the code of that
class, we would associate names with the text field, text area, and the InvisibleReminder the
user had most recently selected from the menu. This class could then use the accessor methods
associated with an InvisibleReminder together with the setText method to display a reminder.
In particular, assuming that the text field is named topic, the text area is named reminder, and
the InvisibleReminder is named currentReminder, we could display the desired information by
executing the instructions

topic.setText(currentReminder.getLabel());

2Even though we used a variety of names to distinguish various versions of our reminder class from one another, we
now use the name of the original version of the class, Reminder, to refer to all of the versions since we are discussing
properties shared by all the variations of the class we presented.

160

/*

* InvisibleReminder --- Holds the contents and summary of a reminder

*/

public class InvisibleReminder {

// The strings that make up the contents of the reminder

private String label;
private String body;

// Turn a pair of strings into a reminder

public InvisibleReminder(String myLabel, String myBody) {
label = myLabel;
body = myBody;

}

// Get the short summary of a reminder’s contents

public String getLabel() {
return label;

}

// Get the full details of a reminder

public String getBody() {
return body;

}

// Change the strings that are the contents of a reminder

public void setContents(String myLabel, String myBody) {
label = myLabel;
body = myBody;

}
}

Figure 6.17: The definition of the InvisibleReminder class

161

reminder.setText(currentReminder.getBody());

The only subtle aspect of constructing such a program is arranging to have the currentReminder
variable associated with the latest menu item selected by the user. While perhaps subtle, this is
actually quite easy if we take full advantage of the flexibility provided by the JComboBox class
defined within Swing.

In all of our previous examples that used JComboBoxes, all the items we added to the menu
were strings. When we discussed JComboBoxes, however, we explained that Swing would let us add
objects other than strings to a menu. That is why Java insists that we say

someJComboBox.getSelectedItem().toString()

rather than simply saying

someJComboBox.getSelectedItem()

when we want to get the string a user has selected from a menu. If a menu contains items other
than strings,

someJComboBox.getSelectedItem()

may return something other than a string. In particular, if we use the addItem method to place
InvisibleReminders in a JComboBox, then when we execute

someJComboBox.getSelectedItem()

the value returned will be an InvisibleReminder.
Unfortunately, just as Java will not let us assume that getSelectedItem will return a string,

it will not let us assume it returns an InvisibleReminder. We must tell it explicitly to treat the
item selected in the menu as an InvisibleReminder. There is no toInvisibleReminder method
to accomplish this. Instead, there is a form of expression called a type cast that provides a general
way to tell Java that we want it to assume that the values produced by an expression will have a
particular type.

A type cast takes the form

(type-name) expression

That is, we simply place the name of the type of value we believe the expression will produce in
parentheses before the expression itself. In the case of extracting an InvisibleReminder from a
menu, we might say

currentReminder = (InvisibleReminder) reminderMenu.getSelectedItem();

While we no longer use the toString method when we invoke getSelectedItem, the toString
method still plays an important role when we want to build a menu out of items that are not
Strings. If we build a menu by adding InvisibleReminders as items to the menu, Java still needs
some way to display strings that describe the items in the menu. To make this possible, it assumes
that if it applies the toString method to any object we add to a JComboBox, the result returned
will be the string it should display in the menu. Right now, our definition of InvisibleReminder
does not include a definition of toString, so this will not work as we desire. We can fix this by
simply adding the defintion

162

public String toString() {
return this.getLabel();

}

to our InvisibleReminder class.
To illustrate these ideas, a complete definition of a ReminderViewer class that would provide

an interface like that shown in Figure 6.16 is presented in Figures 6.18 and 6.19.
In all of our previous examples of code, we have avoided the use of initializers in instance

variable and local variable declarations. As we explained in Section 2.6, we did this to ensure
that you learned to clearly distinguish the roles of declarations and assignments in Java. In this
example and the remainder of the examples we present in this text, however, we will assume that
you are comfortable enough with the use of declarations and assignments that we can begin to use
initializers without confusion. In particular, you will note that in this example we use initializers
to create the GUI components named reminderMenu, topic, and reminder.

Begin by looking at the code for the menuItemSelected method in Figure 6.19. When the
user selects a new item from the menu, this ensures that the contents of the selected reminder
are displayed. As explained above, we want to allow the program’s user to update the text of a
reminder while it is displayed. Therefore, the first step in this method is designed to make sure
any such changes are recorded. It uses the setContents mutator method to replace the previous
contents of the reminder with the text found in the text field and text area. Next, the method uses
a type cast with the getSelectedItem method to associate the newly selected reminder with the
currentReminder variable. Finally, it displays the contents of the reminder using the getLabel
and getBody methods.

Once this method’s function is understood, it should be quite easy to understand the code in the
buttonClicked method. Like menuItemSelected, it begins by saving any updates to the currently
displayed reminder. Then it creates a new reminder with a default label of the form “Reminder
N”. It displays the (not very interesting) initial contents of the reminder in the text field and text
area. Then it adds the new reminder to the menu.

The interesting thing about this program is how important the role played by the InvisibleReminder
class is even though we never actually see an InvisibleReminder on our screen. In our introduc-
tion to Java, we have deliberately focused our attention on classes that describe objects that have
a visible presence on the screen. We believe that starting with such objects makes it easier to
grasp programming concepts because “seeing is believing.” As you learn more about programming,
however, you will discover that the most interesting classes defined in a program are often the ones
you cannot see. They represent abstract information that is critical to the correct functioning of
the program, even though they may not have any simple, visual representation.

6.8 Private Parts

We have already noted that it is possible for the code we place in the body of a method or constructor
within a class to invoke another method defined in the same class. We saw in Section 6.4 that we
could use the invocation

this.setColor(shade);

within the constructor of the ColorableReminder class. In some cases, in fact, it is worth writing
methods that are only invoked from code in the class in which they are defined. When we are

163

// Class ReminderViewer - Provide menu-based access to a collection

// of reminder notes through a single window

public class ReminderViewer extends GUIManager {
// The size of the program’s window

private final int WINDOW_WIDTH = 300, WINDOW_HEIGHT = 200;

// The size of the JTextArea

private final int TEXT_WIDTH = 20, TEXT_HEIGHT = 6;

// Menu used to select reminder to view/edit

private JComboBox reminderMenu = new JComboBox();

// Field used to enter, display, and edit reminder topics

private JTextField topic = new JTextField(TEXT_WIDTH);

// Text Area used to enter, display and edit reminder messages

private JTextArea reminder = new JTextArea(TEXT_HEIGHT, TEXT_WIDTH);

// Count of the number of reminders created so far

private int reminderCount = 0;

// The current reminder

private InvisibleReminder currentReminder;

// Place button, menu, a summary field, and a text area in a window

public ReminderViewer() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "Reminders");

// Create a new Reminder

reminderCount = reminderCount + 1;
currentReminder = new InvisibleReminder("Reminder "+reminderCount, "");
reminderMenu.addItem(currentReminder);

// Display contents of new reminder

topic.setText(currentReminder.getLabel());

// Add all the GUI components to the display

contentPane.add(reminderMenu);
contentPane.add(topic);
contentPane.add(reminder);

contentPane.add(new JButton("New Reminder"));
}

Figure 6.18: Variable and constructor for the ReminderViewer class

164

// Save the current reminder contents and create a new reminder

public void buttonClicked() {
// Save changes made to current reminder

currentReminder.setContents(topic.getText(), reminder.getText());

// Create a new reminder

reminderCount = reminderCount + 1;
currentReminder = new InvisibleReminder("Reminder "+reminderCount, "");

// Display contents of new reminder

topic.setText(currentReminder.getLabel());
reminder.setText(currentReminder.getBody());

// Change menu to select new reminder

reminderMenu.addItem(currentReminder);
reminderMenu.setSelectedItem(currentReminder);

}

// Save the current reminder and display the reminder selected from menu

public void menuItemSelected() {
// Save changes made to current reminder

currentReminder.setContents(topic.getText(), reminder.getText());

// Access reminder selected through menu

currentReminder = (InvisibleReminder) reminderMenu.getSelectedItem();

// Display conents of new reminder

topic.setText(currentReminder.getLabel());
reminder.setText(currentReminder.getBody());

}
}

Figure 6.19: Method definitions for the ReminderViewer class

165

trying to understand a large program composed of many classes, it is useful to be able to easily
distinguish those parts of a class definition that are relevant to other classes from those that are
only of local interest. We do this by using the word private. By placing the word private before
variable declarations in our classes, we are saying that they can only be used within the class in
which they are defined. Similarly, if we find that we want to define a method that is only intended
for use within its own class, then that method should be declared as private rather than public.

The ReminderViewer class presented in the last section provides a good example to illustrate
the usefulness of such private methods. If you compare the steps performed by the buttonClicked
and menuItemSelected methods, you will notice that they have a lot in common. They both start
with the instruction

currentReminder.setContents(topic.getText(), reminder.getText());

and they both end with the statements

topic.setText(currentReminder.getLabel());
reminder.setText(currentReminder.getBody());

It would be nice if we could avoid repeating these statements in two methods. Doing so would
obviously save us a little typing time. It might also make our program easier to modify. If we
decided later that we wanted to display the contents of a reminder in some different way (perhaps
concatenated together in a single text area rather than in two components), we would currently
have to change both copies of the instructions at the ends of these methods. Having only one copy
to change would make things easier and decrease the likelihood of making errors while incorporating
such changes.

The best way to approach the task of eliminating such repeated code is not just to look for
repetition, but to try to find a logical, abstract way to describe what the original code is doing.
This will often enable one to identify good ways to regroup statements into separate methods.

In this situation, one way to describe what these two methods have in common is that they
both seek to replace the currently displayed reminder. The function of the buttonClicked method
can be summarized as:

1. Create a new reminder

2. Replace the currently displayed reminder with the new reminder

The function of the menuItemSelected method can be described as

1. Identify the item currently selected in the menu

2. Replace the currently displayed reminder with the selected reminder

Apparently, the task of replacing the displayed reminder is a common element of both of these
processes. Therefore, it might help to define a private replaceReminder method to perform this
task. It would be defined to take the new reminder as a parameter so that it would be possible to
either pass it a newly created reminder or a reminder selected through the menu.

In Figure 6.20 we provide a definition for replaceReminder together with revised versions of
buttonClicked and menuItemSelected that use this private method. The code in this figure
would serve as a replacement for the code shown in Figure 6.19. You may notice that it isn’t clear
that eliminating the repeated code has really reduced the amount of typing that would be required
to enter this program. Eliminating such repetition, however, is usually worthwhile simply because
it can simplify the process of debugging new code and the process of modifying existing code.

166

// Replace the currently displayed reminder with a different reminder

private void replaceReminder(InvisibleReminder replacement) {
// Save changes made to current reminder

currentReminder.setContents(topic.getText(), reminder.getText());

currentReminder = replacement;

// Display contents of new reminder

topic.setText(currentReminder.getLabel());
reminder.setText(currentReminder.getBody());

// Change menu to select new reminder

reminderMenu.setSelectedItem(currentReminder);
}

// Save the current reminder contents and create a new reminder

public void buttonClicked() {
// Create and display a new reminder

reminderCount = reminderCount + 1;
InvisibleReminder newReminder =

new InvisibleReminder("Reminder " + reminderCount, "");
reminderMenu.addItem(newReminder);
this.replaceReminder(newReminder);

}

// Save the current reminder and display the reminder selected from menu

public void menuItemSelected() {
// Access reminder selected through menu and display its contents

this.replaceReminder((InvisibleReminder) reminderMenu.getSelectedItem());
}

Figure 6.20: Using the private method replaceReminder

167

6.9 Summary

In the preceding chapters, much of the functionality of the programs we constructed depended on
classes like JTextArea and NetConnection provided as part of Java libraries. These classes define
types of objects that play important roles as components of the programs we have written. In this
chapter, we showed that we can define classes of our own to implement components of our programs
that do not correspond to types already available in the libraries.

When we use these mechanisms to decompose our program into separate components, it is
usually necessary for the components to exchange information as the program executes. This can
be accomplished in several ways. The methods and constructors we define can be designed to accept
information they need as parameters. We also showed that by associating information received as a
parameter value with an instance variable name a method or constructor can make that information
directly accessible to other methods within its class.

Accessor methods provide another means for information to flow from one class to another.
When an accessor method is defined, it is necessary to specify both the type of information the
accessor method will produce in its header and the particular value to be returned using a return
statement.

While it is often essential to exchange information between classes, another important role of
classes is to limit the flow of information. One goal of decomposing our program into separate
classes is to make each class as independent of the detailed information maintained by other classes
as possible. This can make programs much easier to construct, understand, and maintain. With
this in mind, we stressed the importance of private components of classes. In general, all variables
declared in a class should be private, and any method that is designed only to be used by other
methods within its own class should also be private.

168

Chapter 7

Primitive Technology

Early applications of computers, from tabulating census data to calculating projectile trajectories,
focused primarily on numeric calculations. By contrast, the most complicated calculation we have
considered thus far was to count how often a button had been clicked. This reflects the fact
that current applications of computers are much less numerically oriented than their predecessors.
Nevertheless, some basic familiarity with the techniques used to work with numbers in a program
is still essential.

In this chapter, we will explore Java’s mechanisms for numeric computation. We will learn more
about the type int and that there are several types other than int that can be used to represent
numeric values in Java. We will see that all of these types, which Java classifies as primitive types,
are different in certain ways from types defined as classes.

Finally, we will explore Java’s only non-numeric primitive type, boolean. This type contains
the values used to represent the results of evaluating conditions found in if statements.

7.1 Planning a Calculator

In Chapter 5, we showed how to write a simple adding machine program. The adding machine we
developed in that chapter isn’t very impressive. In fact, it is a bit embarrassing. Any calculator you
can buy will be able to at least perform addition, multiplication, subtraction, and division. If you
pay more than $10 for a calculator, it will probably include trigonometric functions. Meanwhile,
all our efforts have produced is a program that will enable your computer, which probably costs at
least 100 times as much as a basic calculator, to do addition.

In this chapter, we will extend our adding machine program to provide the functionality of a
simple, inexpensive calculator. Our goal will be a program that can add, multiply, subtract, and
divide.

Constructing a program that simulates a calculator requires a bit of thought because most
calculators are a bit more subtle than our adding machine. As we did for our adding machine
program, we provide a series of screen images showing how we would expect our calculator to
perform in Figure 7.1. The behavior illustrated in this figure is identical to what one would expect
from any basic calculator.

The image in the upper left corner of the figure shows how the calculator’s interface would
appear just after the program begins to run. The constructor definition that creates this interface
is shown in Figure 7.2 and the beginning of the class definition for such a program including all

169

Figure 7.1: Interface for a 4-function calculator program
170

// Create and place the calculator buttons and display in the window

public IntCalculator() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

contentPane.add(new JButton("1"));
contentPane.add(new JButton("2"));
contentPane.add(new JButton("3"));
contentPane.add(divide);

contentPane.add(new JButton("4"));
contentPane.add(new JButton("5"));
contentPane.add(new JButton("6"));
contentPane.add(times);

contentPane.add(new JButton("7"));
contentPane.add(new JButton("8"));
contentPane.add(new JButton("9"));
contentPane.add(minus);

contentPane.add(new JButton("0"));
contentPane.add(clear);
contentPane.add(equals);
contentPane.add(plus);

entry.setHorizontalAlignment(JTextField.RIGHT);
contentPane.add(entry);

}

Figure 7.2: The constructor for a simple calculator program

of the instance variables used in the constructor is shown in Figure 7.3. The only new feature
exhibited in this code is the invocation of a method named setHorizontalAlignment in the next
to last line of the constructor. This invocation causes the value displayed in the calculator’s text
field to be right justified within the field.

The first five images in in Figure 7.1 show the program being used to perform the calculation “6
+ 5 = 11”. This is accomplished by entering “6 + 5 =” on the calculator’s keypad with the mouse.
The important thing to notice is that the “+” key on this calculator is not simply a replacement for
the “Add to total” button in our adding machine program. When the “+” key is pressed, nothing
actually changes in the program’s window The calculator cannot perform the addition because
the second operand, 5 in this example, has not even been entered. Instead, the program waits
until the second operand has been entered and the “=” key is pressed. At that point, it adds the
two operands together. The “=” key, however, is also more than a replacement for the “Add to
total” button. Pressing it does not always cause the program to add its operands. The operation
performed depends on which keys had been pressed earlier. If the user had entered “6 - 5 =”,
then the program should perform a subtraction when the “=” key is pressed. The program must

171

// A $5 Calculator

public class IntCalculator extends GUIManager {
// Change these values to adjust the size of the program’s window

private final int WINDOW_WIDTH = 380, WINDOW_HEIGHT = 220;

// Maximum number of digits allowed in entry

private final int MAX_DIGITS = 9;

// Used to display sequence of digits selected and totals

private JTextField entry = new JTextField("0", 25);

// Operator buttons

private JButton plus = new JButton("+");
private JButton minus = new JButton("-");
private JButton times = new JButton("x");
private JButton divide = new JButton("÷");
private JButton equals = new JButton("=");

// The clear button

private JButton clear = new JButton("C");

// Remember the number of digits entered so far

private int digitsEntered = 0;

// Value of current computation

private int total = 0;

Figure 7.3: Instance variable declarations for a simple calculator program

172

somehow remember the last operator key pressed until the “=” key is pressed.
The remaining screen images in Figure 7.1 show how the program should behave if after com-

puting “6 + 5 = 11”, the person using the calculator immediate enters “4 x 3 ÷ 2 =”. The
interesting thing to notice is that when the user presses the ÷ key, the calculator displays the result
of multiplying 4 and 3. This is exactly what the calculator would have done if the user had pressed
the “=” key instead of the ÷ key at this point. From this we can see that the “=” key and all of the
arithmetic operator keys behave in surprisingly similar ways. When you press any of these keys,
the calculator performs the operation associated with the last operator key pressed to combine the
current total with the number just entered. The only tricky cases are what to do if there is no “last
operator key pressed” or no “number just entered”.

The no “last operator key pressed” situation can occur either because the program just started
running or because the last non-numeric key pressed was the “=” key. In these situations, the
calculator should simply make the current total equal to the number just entered.

The no “number just entered” situation occurs when the user presses two non-numeric keys
in a row. Real calculators handle these situations in many distinct ways. For example, on many
calculators, pressing the “=” key several times causes the calculator to perform the last operation
entered repeatedly. We will take a very simple approach to this situation. If the user presses several
non-numeric keys in a row, our calculator will ignore all but the first non-numeric key pressed.

From this description of the behavior our calculator should exhibit, we can begin to outline the
structure of the if statements that will be used in the buttonClicked method. Looking back at
the code in the buttonClicked method of the last version of our adding machine program provides
a good starting point. That code is shown in Figure 5.9. The if statement used in that method
implemented a three-way choice so that the program could distinguish situations in which the user
had pressed the “Clear Total” button, the “Add to Total” button, or a numeric key. From the
discussion above, we can see that our calculator program must make a similar three-way choice.
The cases it must distinguish are whether the user has pressed the clear button, a numeric key, or
any of the other non-numeric keys (i.e., an operator key or the “=” key). In the case that the user
has pressed an operator key, it needs to make a second decision. If no digits have been entered
since the last operator key was pressed, it should ignore the operator. Based on these observations,
we can sketch an outline for this program’s buttonClicked method as shown in Figure 7.4.

Obviously, we cannot type a program containing code like the outline shown in this figure into
our IDE and expect to run it. We can, however, type such an outline in and then use it as a
template in which we “fill in the blanks” as we complete the program. With this in mind, we
have indicated the places in our outline where detailed code is missing using ellipses preceded by
comments explaining what the missing code should do.

Writing such an outline can be a very useful step in the process of completing a program.
Much as outlining a paper allows you to work out the overall organization of your thoughts without
worrying about the precise wording you will use for every sentence, outlining a program enables you
to focus on the high-level structure of your program. With a good understanding of this structure,
it is generally much easier to fill in the many details needed to complete a program.

7.2 Smooth Operators

One detail we obviously need to explore to complete our calculator is how to perform arithmetic
operations other than addition. Performing arithmetic operators in Java is actually quite simple.

173

// Accept digits entered and perform arithmetic operations requested

public void buttonClicked(JButton clickedButton) {
if (/* clickedButton is an operator or the = key */ ...) {

if (/* the last key pressed was not an operator or = key */ ...) {
// Apply last operator to the number entered and current total

. . .
}

} else if (clickedButton == clearButton) {
// Zero the total and clear the entry field

. . .

} else { // If clickedButton is a numeric key, add digit to entry

. . .
}

}

Figure 7.4: Outline for the buttonClicked method of a calculator program

174

In addition to the plus sign, + Java recognizes operators for the other three standard arithmetic
operations. The minus sign, -, is used for subtraction, - the slash, /, is used for division, and the
asterisk, *, is used for multiplication. Thus, just as we used the statement

total = total + Integer.parseInt(entry.getText());

in our adding machine program, we can use a statement like

total = total - Integer.parseInt(entry.getText());

to perform subtraction1, or statements like

total = total * Integer.parseInt(entry.getText());

and

total = total / Integer.parseInt(entry.getText());

to perform multiplication and division. * /
As we noted in the previous section, the operation performed by our calculator when an operator

key or the “=” key is pressed is actually determined by which of these keys was the last such key
pressed. Therefore, we will have to include an instance variable in our class that will be used to
keep track of the previous operator key that was depressed. We can do this by adding a declaration
of the form

// Remember the last operator button pressed

private JButton lastOperator = equals;

to those already shown in Figure 7.3. We will use this variable in the buttonClicked method to
decide what operation to perform. We will have to include code in the buttonClicked method
to change the value of lastOperator each time an operator key is pressed. We have initialized
lastOperator to refer to the equals key because when it first starts to run we want our calculator
to behave as it does right after the “=” key is pressed.

The code required to use lastOperator in this way is included in Figure 7.5. The code we
have added in this figure begins by using Integer.parseInt to convert the digits entered by the
user into a number. Then, we use a series of if statements to make a 5-way choice based on the
previously pressed operator key by comparing the value of lastOperator to the names that refer
to each of the operator keys. Each of the five lines that may be selected for execution by these if
statements updates the value of the total variable in the appropriate way. Next, we display the
updated value of total in the entry text field. Finally, but very importantly, we use an assignment
statement to tell the computer to associate the name lastOperator with the button that was just
pressed. This ensures that the next time an operator key is pressed, the program will be able to
perform the correct operation.

1In Java, the minus sign can also be used with a single operand. That is, if the value of total is 10, then executing
the statement

total = - total;

will change the value to -10.

175

// Accept digits entered and perform arithmetic operations requested

public void buttonClicked(JButton clickedButton) {
if (/* clickedButton is an operator or the = key */ ...) {

if (/* the last key pressed was not an operator or = key */ ...) {
// Apply last operator to the number entered and current total

int numberEntered = Integer.parseInt(entry.getText());

if (lastOperator == plus) {
total = total + numberEntered;

} else if (lastOperator == minus) {
total = total - numberEntered;

} else if (lastOperator == times) {
total = total * numberEntered;

} else if (lastOperator == divide) {
total = total / numberEntered;

} else {
total = numberEntered;

}

entry.setText("" + total);

lastOperator = clickedButton;
. . .

}

} else if (clickedButton == clearButton) {
// Zero the total and clear the entry field

. . .

} else { // If clickedButton is a numeric key, add digit to entry

. . .
}

}

Figure 7.5: Refined outline for calculator buttonClicked method

176

7.2.1 Relational Operators and boolean Values

In the instance variable declarations for our calculator program (shown in Figure 7.3), we included
a variable named digitsEntered. In the final version of our adding machine program we used a
similar variable to keep track of the number of digits in the value the user was currently entering so
that a user could not enter a value too big to be represented as an int. In our calculator program,
this variable will serve two additional roles.

First, we indicated earlier that our program should ignore all but the first operator key pressed
when several operator keys are pressed consecutively. We will use digitsEntered to detect such
situations. When an operator key is pressed, our program “consumes” the most recently entered
number. We can therefore determine whether two operator keys have been pressed in a row by
checking whether the value of digitsEntered is 0 when an operator key is pressed.

Second, when the user presses an operator key, our program will display the current value of
total in the entry field. This value should remain visible until the user presses a numeric key (or
the clear button). As a result, our program must perform a special step when handling the first
numeric key pressed after an operator key. It must clear the entry field. Again, we can use the
value of digitsEntered to identify such situations.

A revised version of our outline of the buttonClicked method, extended to include the code
that updates and uses digitsEntered, is shown in Figure 7.6. Actually, it is a bit of a stretch to
still call this an “outline”. The only detail left to be resolved is the condition to place in the if
statement at the very beginning of the method.

In the branch of the method’s main if statement that handles operator keys, we have added
an assignment to associate 0 with the name digitsEntered. We have also filled in the branches
of this if statement that handle the clear button and the numeric keys.

The code for the clear button sets the total and the number of digits entered to zero. It also
clears the entry field. Finally, it lies just a little bit by associating the “=” key with lastOperator.
After the clear key is pressed we want the program to behave as if the last operator key pressed
was “=”.

The code for numeric keys begins by clearing the entry text field if the value of digitsEntered
is 0. That is, it clears the text field when a numeric key is pressed immediately after one of the
non-numeric keys has been pressed. The rest of the code for handling numeric keys is identical to
the code we used in our adding machine program.

Finally, we have replaced the comment in the if statement:

if (/* the last key pressed was not an operator or = key */ ...) {

with the condition

digitsEntered > 0

The symbols ==, !=, <, <=, >=, and > are examples of what we call relational operators. The
operator > can be used to make Java check whether one value is greater than another. The operator
>= tells Java to check whether one value is greater than or equal to another. That is, >= is the
equivalent of the mathematical symbol ≥. For example, as an alternative to the if statement

if (digitsEntered > 0) {

we could have written

177

// Accept digits entered and perform arithmetic operations requested

public void buttonClicked(JButton clickedButton) {
if (/* clickedButton is an operator or the = key */ ...) {

if (digitsEntered > 0) {
// Apply last operator to the number entered and current total

int numberEntered = Integer.parseInt(entry.getText());

if (lastOperator == plus) {
total = total + numberEntered;

} else if (lastOperator == minus) {
total = total - numberEntered;

} else if (lastOperator == times) {
total = total * numberEntered;

} else if (lastOperator == divide) {
total = total / numberEntered;

} else {
total = numberEntered;

}

entry.setText("" + total);
digitsEntered = 0;

lastOperator = clickedButton;
}

} else if (clickedButton == clearButton) {
// Zero the total and clear the entry field

total = 0;
digitsEntered = 0;
entry.setText("0");
lastOperator = equals;

} else { // If clickedButton is a numeric key, add digit to entry

if (digitsEntered == 0) {
entry.setText("");

}

digitsEntered = digitsEntered + 1;
if (digitsEntered < MAX_DIGITS) {

entry.setText(entry.getText() + clickedButton.getText());
}

}
}

Figure 7.6: Calculator outline extended with details of using digitsEntered

178

if (digitsEntered >= 1) {

Similarly, the operator <= is used to check whether one value is less than or equal to another.
Finally, the operator != is used to ask if two values are different. That is, in Java, != is equivalent
to the mathematical symbol 6=.

The relational operators == and != can be used to compare values described by any two ex-
pressions in a program.2 The remaining relationals, <, >, <=, and >= can only be used to compare
numeric values.

The fact that <, >, ==, <=, >=, and != are referred to as relational operators reflects an
important fact about the way these symbols are understood within the Java language. The other
operators we have discussed are the arithmetic operators +, -, *, and /. Within a Java program,
phrases that involve arithmetic operators are identified as expressions. That is, they are used in
contexts where the programmer needs to describe values. For example, 3 * 4 is an expression
that describes the value 12. We have also seen that even without knowing the exact value that an
expression will produce in a Java program, we can always identify the type from which the value
will come. For example, if x is an int variable, we know that the expression x + 1 will describe
an int value rather than a String or JTextField, even though we cannot say which int value the
expression describes until we determine the current value of x. If the relational operators are to be
interpreted in a similar way, then we have to consider phrases like 3 != 4 and x > 0 as expressions
and we have to be able to identify the type of value each such expression describes.

The value described by an expression like x > 0 will not be another int or any of the other
types we have encountered thus far. Instead, Java includes an additional type called boolean that
consists of the values described by expressions involving relational operators. This type contains
just two values described by the literals true and false. If the value associated with the variable
x is 14, then we would informally say that it is true that x is greater than 0. In Java, therefore, if
the value of x is 14, then the value described by the expression x > 0 is true. On the other hand,
if x is 0 or any negative number then the value described by x > 0 is false.

We will see in the next few sections, that the values of the type boolean can be manipulated in
many of the same ways we can manipulate values like ints. We can declare variables that will refer
to boolean values. There are operators that take boolean values as operands. We can describe
boolean values in our program using the literals true and false just as we describe int values by
including literals like 1 and 350 in our code. In addition, the type boolean plays a special role in
Java. Expressions that produce boolean values are used as conditions in if statements and other
structures used to control the sequence in which a program’s instructions are executed.

7.2.2 Primitive Ways

It is important to note that there are several ways in which Java treats ints differently from many
other types of information we manipulate in our programs. When we want to perform an operation
on a JTextField or a JButton, we use method invocations rather than operators. The designers of
the Java language could have also provided methods for the operations associated with arithmetic
and relational operators. That is, we might have been expected to type things like

x.plus(y)

2Note: Although == can be used to compare any two values, we will soon see that it is often more appropriate to
use a method named equals to compare certain types of values.

179

rather than

x + y

or

x.greaterthan(0)

rather than

x > 0

Obviously, Java’s support for operator symbols is a great convenience to the programmer.
Operator notation is both more familiar and more compact than the alternative of using method
invocations to perform simple operations on numbers. At the same time, the decision to provide
operator symbols within Java represents a more fundamental difference between numbers and
objects like JTextFields.

First, it is worth noting that within Java we can manipulate numbers using many of the same
mechanisms that are used with GUI components and other objects. We can declare variables of
type int just as we can declare variables to refer to JButtons and JTextFields. We have seen
some examples where GUI components are passed as parameters (e.g., to contentPane.add) and
others where numbers are passed (e.g., to this.createWindow). At the same time, numbers and
objects like JPanels and JTextAreas are treated differently in several important ways. As we just
observed, operators are used to manipulate numbers while methods are used to manipulate GUI
components and other objects. In addition, while we use constructions when we want to describe
a new GUI component, Java doesn’t make (or even let) us say

int x = new int(3);

These differences reflect that fact that Java views numbers as permanent and unchanging while
GUI components and many other types of objects can be changed in various ways. In some oddly
philosophical sense, Java doesn’t let us say

int x = new int(3);

because it makes no sense to talk about making a new 3. The number 3 already exists before you
use it. How would the new 3 differ from the old 3? On the other hand, Java will let you say

JLabel homeScore = new JLabel("0");
JLabel visitorsScore = new JLabel("0");

because each of the constructions of the form new JLabel("0") creates a distinct JLabel. They
might look identical initially, but if we later execute an invocation such a

homeScore.setText("2");

it will become very clear that they are different.
This notion also underlies the distinction between operators and methods. Operations per-

formed using method invocations often change an existing object. As we just showed, the use of
setText in the invocation

homeScore.setText("2");

180

changes the state of the JLabel to which it is applied. On the other hand, if we declare

int x = 3;

and then evaluate the expression

x * 2

neither x nor 2 turn into 6. The expression tells the computer to perform an operation that will
yield a new value, but it does not change the values used as operands in any way. This remains
true even if we include the expression in an assignment of the form

x = x * 2;

The assignment statement now tells Java to change the meaning associated with the name x so
that x refers to the value produced by the expression, but evaluating the expression itself does not
change either of the two numbers used as operands to the multiplication operator.

This distinction becomes most obvious when two different names are associated with a single
value. For example, suppose that instead of creating two distinct JLabels for the scores of the
home team and the visitors as shown above, we write the declarations

JLabel homeScore = new JLabel("0");
JLabel visitorsScore = homeScore;

This code creates a single JLabel and associates it with two names. If we then execute the
invocation

homeScore.setText("2");

the computer will change this JLabel rather than creating a new JLabel with different contents.
Since both names refer to this modified JLabel the invocations

homeScore.getText();

and

visitorsScore.getText();

will both produce the same result, "2".
On the other hand, if we declare

int x = 3;
int y = x;

and then execute the assignment

x = x * 2;

the value of x will be changed to 6, but the value y refers to will still be 3. There are two reasons
for this. First, the multiplication x * 2 identifies a new value, 6 in this case, rather than somehow
modifying either of its operand values to become 6. Second, you must realize that variable’s refer
to values, not to other variables. Therefore, when we say

181

int x = 3;
int y = x;

we are telling Java that we want y to refer to the same value that x refers to at the point that the
computer evaluates the declaration of y. This will be the value 3. Later, executing the assignment

x = x * 2;

makes the name x refer to a new value, 6, but does not change the value to which y refers.
The integers are not the only Java type that has these special properties. The boolean values

introduced in the preceding section have similar properties. You cannot create a “new” true or
false. There are no methods associated with the type boolean, but, as we will see in the next
section, there are several operators that can be used to manipulate boolean values. In addition,
there are several other arithmetic types that behave in similar ways.

Java refers to pieces of information that we construct using new and can manipulate with
methods as objects and the types composed of such items are called object types or classes. On the
other hand, pieces of information that are described using literals and manipulated with operators
rather than methods are called primitive values and types composed of primitive values are called
primitive types. To make it easy for programmers to remember which types are primitive types
and which are classes, the designers of Java followed the helpful convention of using names that
start with lower-case letters for primitive types and names that start with upper-case letters for
the names of classes.

7.2.3 Logical Arguments

There is a common mistake made by novice programmers when using relational operators. This
mistake reveals an interesting difference between Java’s relational operators and mathematical
symbols like ≤ and ≥. In mathematics, it is common to describe the fact that a variable falls in a
specific range by writing something like

1 ≤ x ≤ 10

As a result, new programmers sometimes write if statements that look like

if (1 <= x <= 10) {

Unfortunately, the Java compiler will reject the condition in such an if statement and display an
error message that says:

operator <= cannot be applied to boolean,int

To understand why Java rejects conditions of this form, you have to remember that Java
interprets symbols like <= as operators and applies them exactly as it applies +, *, and other
arithmetic operators. If you knew that the name x was associated with the number 6 and were
asked to describe the process you use to determine the value of the expression

1 + x + 10

you would probably say something like “1 plus 6 is 7 and 7 + 10 is 17 so the total is 17.” When
evaluating this expression, you first determine the result of applying + to the first two operands
and then you use the result of that addition as the first operand of the second addition.

Java tries to take the same approach when evaluating

182

1 <= x <= 10

It first wants to determine the value described by

1 <= x

Assuming as we did above that x is associated with 6, this subexpressions describes the value true.
Then, Java would try to use the result of this evaluation as the first operand to the second operator.
It would therefore end up trying to determine the value of the expression

true <= 10

Unfortunately, you can’t compare true to 10. It just doesn’t make any sense. That is what Java
is trying to tell you with its error message.

Although Java will reject an if statement with the condition in

if (1 <= x <= 10) {

it does provide a way to express the intent of such a statement. The mathematical notation

1 ≤ x ≤ 10

really combines two relationships that involve the value of x. It states that:

1 must be less than or equal to x
and

x must be less than or equal to 10.

Java provides an operator that can be used to express the conjunction “and” in such a statement.
The symbol used for this operator is a pair of consecutive ampersands, &&. Thus, a correct way to
express this condition in an if statement is

if ((1 <= x) && (x <= 10)) {

The && operator takes boolean values as operands and produces a boolean value as its result.
Such operators are called logical operators. In addition to the operator &&, Java provides an operator
that can be used to express conditions involving the conjunction “or”. This operator is typed as
two consecutive vertical bars, ||.

The or operator provides the tool we need to complete the buttonClicked method for our
calculator program. In our latest version of the outline for the calculator’s buttonClicked method,
the only aspect that still needs to be replaced with real code is the condition in the first if statement:

if (/* clickedButton is an operator or the = key */ ...) {

The button clicked is an operator key only if it is either the “+” key, or the “-” key, or the “*”
key, or the “” key, or the “=” key. We can use the || operator to express this as

if (clickedButton == minus || clickedButton == times ||
clickedButton == divide || clickedButton == plus ||
clickedButton == equals) {

183

// Accept digits entered and perform arithmetic operations requested

public void buttonClicked(JButton clickedButton) {
if (clickedButton == minus || clickedButton == times ||

clickedButton == divide || clickedButton == plus ||
clickedButton == equals) {

if (digitsEntered > 0) {
// Apply last operator to the number entered and current total

int numberEntered = Integer.parseInt(entry.getText());

if (lastOperator == plus) {
total = total + numberEntered;

} else if (lastOperator == minus) {
total = total - numberEntered;

} else if (lastOperator == times) {
total = total * numberEntered;

} else if (lastOperator == divide) {
total = total / numberEntered;

} else {
total = numberEntered;

}
entry.setText("" + total);
digitsEntered = 0;
lastOperator = clickedButton;

}

} else if (clickedButton == clearButton) {
// Zero the total and clear the entry field

total = 0;
digitsEntered = 0;
entry.setText("0");
lastOperator = equals;

} else { // If clickedButton is a numeric key, add digit to entry

if (digitsEntered == 0) {
entry.setText("");

}

digitsEntered = digitsEntered + 1;
if (digitsEntered < MAX_DIGITS) {

entry.setText(entry.getText() + clickedButton.getText());
}

}
}

Figure 7.7: The complete buttonClicked method for a calculator program

184

Java will consider this condition to be true if the name clickedButton refers to any of the five
operator keys. This leads to a complete specification of the code for buttonClicked as shown in
Figure 7.7.

In addition to && and ||, Java provides a third logical operator that expects just a single
operand. This operator is represented using the exclamation point, !. This operator is read as
the word “not”. It produces the boolean value that is the opposite of its operand. That is, !true
is false and !false is true. For example, the condition

! (clickedButton != plus)

always produces the same result as

(clickedButton == plus)

We should be clear, however, that there is no good reason to ever write an expression like

! (clickedButton != plus)

Simply using the == operator is simpler and clearer. Later, we will see that more useful applications
of the ! operator occur when we are using boolean variables or accessor methods that produce
boolean values.

7.3 double Time

Our calculator is still lacking at least one feature found on even the cheapest calculators you can
buy. There is no decimal point button. That means there is no direct way to enter a number like
.5 or any other number with digits after the decimal point.

If you were trying to use our calculator to evaluate a formula that involved .5, you might imagine
that you could still complete the calculation without a decimal point button by simply entering
1 divided by 2 where you wanted to use the value .5. If you tried this, however, you would be
disappointed. If a user presses the keys 1, ÷, 2, and = on our calculator, the program displays 0 as
the answer, rather than .5.

The reason for this behavior is simple. Within our program, we have declared the variables
total and numberEntered to refer to values of type int. The name int is short for integer, the set
of numbers that have no fractional parts. When we tell Java that we want to work with integers, it
ignores the fractional parts of any computations it performs for us. 1/2 becomes 0, 14/5 becomes
2, and so on. Our calculator doesn’t just have no decimal point button in its keypad, it doesn’t
even know about decimal points.

Fortunately, it is quite easy to teach our calculator about decimal points. In addition to the
type int, Java has another primitive type for numbers with fractional parts (what mathematicians
call rational numbers). The odd thing is that this type is not named rational (or even rat).
Instead, it is called double. We will try to explain the logic behind this odd name later. For now,
we will ask you to just accept it and we will use it to quickly convert our program into a calculator
that supports numbers other than integers. We can do this by simply replacing the name int with
double in the declaration of the instance variable total. That is, the declaration for total would
now look like:

// Value of current calculation

private double total = 0;

185

We have seen that Java interprets the + operator as concatenation if either operand is a String
to convert int values into String representations. Fortunately, this property of the + operator
extends to double values as well. As a result, after changing the declaration of total to make it
a double variable, we can still use the instruction

entry.setText("" + total);

to display its value. Therefore, once total’s declaration is changed, our calculator will perform
calculations that produce fractional values correctly. If a user enters “1 ÷ 2”, the modified program
will now display 0.5 as the result. We still won’t be able to enter decimal points (we will save the
task of supporting a decimal point key for the next section), but the results our calculator produces
will at least be accurate.

7.3.1 Seeing double

While we can use the concatenation operator to convert double values into String form for display,
the results of such conversions are sometimes a bit surprising.

First, whenever a double is converted to a String. Java includes a decimal point. If we declare

private int anInt;
private double aDouble;

and then associate these names with equivalent values by executing the assignments

anInt = 1000;
aDouble = anInt;

executing the command

entry.setText(anInt + " = " + aDouble);

will produce the display

1000 = 1000.0

Things get a bit more interesting when large values of type double are converted to String
form. Suppose that rather than initializing the two variables above to 1000, we instead execute the
assignments

anInt = 1000000000;
aDouble = anInt;

so that both variables have a value of one billion. In this case, the display produced will be

1000000000 = 1.0E9

The strange item “1.0E9” is an example of Java’s version of scientific notation. Where Java
displays 1.0E9, you probably expected to see 1000000000.0. This value is one billion or 109. The
“E9” in the output Java produces is short for “times ten raised to the power 9”. The “E” stands for
“exponent”. In general, to interpret a number output in this form you should raise 10 to the power
found after the E and multiply the number before the E by the result. The table below shows some
examples of numbers written in this notation and the standard forms of the same values.

186

E-notation Standard Representation Standard Scientific Notation
1.0E8 100, 000, 000 1× 108

1.86E5 186, 000 1.86× 105

4.9E-6 .0000049 4.9× 10−6

Not only does Java display large numbers using this notation, it also recognizes numbers typed
in this format as part of a program. So, if you really like scientific notation, you can include a
statement like

avogadro = 6.022E26;

in a Java program.

7.3.2 Choosing a Numeric Type

While changing the declarations of total from int to double is sufficient to make our calculator
work with numbers that are not integers, we could go even further. We could convert all of the
int variables in our program into double variables and the program would still work as desired. In
particular, we could declare the variable digitsEntered as a double. Any value that is an integer
is also a rational number. Therefore, even though the values associated with digitsEntered will
always be integers, it would not change the program’s behavior if we simply told Java that this
name could be associated with any number. We mention this to highlight an important question.
Why does Java distinguish between the types int and double? Why isn’t a single numeric type
sufficient?

To understand why Java includes both of these types, consider the following two problems.
First, suppose you and two friends agree to share a bottle of soda, but that at least one of you is
a bit obsessive and insists that your portions have to be exactly equal. If the bottle contains 64
ounces of soda, how much soda should each of you receive?(Go ahead. Take out your calculator.)

Now, suppose that you are the instructor of a course in which 64 students are registered and
you want to divide the students into 3 laboratory sections. How many students should be assigned
to each section?

With a bit of luck, your answer to the first question was 21 1/3 ounces. On the other hand,
even though the same numbers, 64 and 3, appear in the second problem, “21 1/3 students” would
probably not be considered an acceptable answer to the second problem (at least not by the student
who had to be chopped in thirds to even things out). A better answer would be that there should
be two labs of 21 students and a third lab with 22 students.

The point of this example is that there are problems in which fractional results are acceptable
and other problems where we know that only integers can be used. If we use a computer to help
us solve such problems, we need a way to inform the computer whether we want an integer result
or not.

In Java, we do this by choosing to use ints or doubles. For example, if we declare three instance
variables:

private double ounces;
private double friends;
private double sodaRation;

and then execute the assignment statements

187

ounces = 64;
friends = 3;
sodaRation = ounces/friends;

the number associated with the name sodaRation will be 21.33333... On the other hand, if we
declare the variables

private int students;
private int labs;
private int labSize;

and then execute the assignments

students = 64;
labs = 3;
labSize = students/labs;

the number associated with labSize will be 21. In the first example, Java can see that we are
working with numbers identified as doubles, so when asked to do division, it gives the answer as a
double. In the second case, since Java notices we are using ints, it gives us just the integer part
of the quotient when asked to do the division.

Of course, the answer we obtain in the second case, 21, isn’t quite what we want. If all the
labs have exactly 21 students, there will be one student excluded. We would like to do something
about such leftovers. Java provides an additional operator with this in mind. When you learned to
divide numbers, you probably were at first taught that the result of dividing 64 by 3 was 21 with
a remainder of 1. That is, you were taught that the answer to a division problem has two parts,
the quotient and the remainder. When working with integers in Java, the / operator produces the
quotient. The percent sign can be used as an operator to produce the remainder. Thus, 64/3 will
yield 21 in Java and 64 % 3 will yield 1. In general, x % y will only equal 0 if x is evenly divisible
by y.

Used in this way the percent sign is called the mod or modulus operator. We can use this
operator to improve our solution to the problem of computing lab sizes by declaring an extra
variable

private int extraStudents;

and adding the assignment

extraStudents = students % labs;

Exercise 7.3.1 For each numerical value below, decide which values could be stored as ints and
which must be stored as doubles.

a. the population of Seattle

b. your height in meters

c. the price of a cup of coffee in dollars

d. the inches of rain that have fallen

e. the number of coffee shops in Seattle

f. the number of salmon caught in a month

188

7.3.3 Arithmetic with doubles and ints

The distinction between doubles and ints in Java is a feature intended to allow the programmer
to control the ways in which arithmetic computations are performed. In Section 5.1.1, we saw that
the way in which Java interprets a plus sign differs significantly based on whether the operands to
the operator are Strings or numbers. In one case, + is interpreted as concatenation. In the other,
+ is interpreted as addition. In a similar way, Java’s interpretation of all its arithmetic operators
depends on the numeric types to which the operands belong. If all of the operands to an arithmetic
operator are int values, the operation will return an int value. If any of the operands are doubles,
then the operation will return a double as its result.

The consequences of this distinction are most pronounced when division is involved. When
we use a numeric literal in a program, Java assumes the value should be interpreted as an int if
it contains no decimal point and as a double if it contains a decimal point (even if the fractional
part is 0). As a result, the expression

1/2

produces the int value 0 as its result while the expressions

1.0/2

and

1/2.0

and

1.0/2.0

all produce the double 0.5.
Because of this, the order in which Java performs arithmetic operations sometimes becomes

critical in determining the value produced. This order is determined by two basic precedence rules:

• Division and multiplication are considered to be of higher precedence than addition and
subtraction. That is, unless constrained by the use of parentheses in an expression, Java will
perform multiplications and divisions before additions and subtractions.

• Operations of equal precedence are performed in order from left to right.

These rules are not unique to Java. We follow the same rules when interpreting formulas in
mathematics. That is why we interpret the formula

3x + 1

as equivalent to (3x) + 1 rather than 3(x + 1). We know that we are supposed to perform the
multiplication before the addition. Because of issues like the interactions between ints and doubles,
however, these rules often become more critical in Java programs than they typically are in math
classes.

For example, in Java, the expressions

64.0*1/3

189

and

1/3*64.0

produce different values! In the first expression, the computer first multiples 64.0 times 1. Since
the first operand is a double, the computer will produce the double result 64.0 and then divide
this by the int 3. Again, since at least one operand of the division is double the computer will
produce the double result 21.3333...

On the other hand, when the second expression is evaluated, the process begins with the division
of 1 by 3. In this case, both operands are ints so the result produced must be an int. In particular,
the result of this division will be 0. This result is then multiplied by the double 64.0. The final
result will be the double value 0.0.

While Java distinguishes between ints and doubles, it recognizes that they are related. In
particular, in contexts where one should technically have to provide a double, Java will allow you
to use an int. This was already illustrated in the example above where we declared an instance
variable

private double ounces;

and then wrote the assignment

ounces = 64;

The literal 64 is identified by Java as an int because it contains no decimal point. The variable is
declared to be a double. Normally, Java considers an assignment invalid if the type of the value
described by the expression to the right of the equal sign is different from the type of the variable
on the left side of the equal sign. The assignments

ounces = new JTextField(10);

and

ounces = "10";

would be considered illegal because ounces is a double rather than a JTextField or a String.
Java will, however, accept the assignment

ounces = 64;

even though it assigns an int to a variable that is supposed to refer to a double.
Java is willing to convert ints into doubles because it knows there is only one reasonable way to

do the conversion. It simply adds a “.0” to the end of the int. On the other hand, Java knows that
there are several ways to convert a double into an int. It could drop the fractional part or it could
round. Because it can not tell the correct technique to use without understanding the context or
purpose of the program, Java refuses to convert a double into an int unless explictly told how to do
so using mechanisms that we will discuss later. Therefore, given the instance variable declaration

private int students;

Java would reject the assignment

students = 21.333;

190

as erroneous. It would also reject the assignment

students = 64.0;

Even if the only digit that appears after the decimal point in a numeric literal is 0, the presence of
the decimal point still makes Java think of the number as a double.

Exercise 7.3.2 What is the value of each of the following expresions?

a. 12 / 5

b. 35 / 7

c. 15.0 / 2.0;

d. 65.0 / 4;

e. 79 % 12;

Exercise 7.3.3 Given that the variable ratio is of type double, what value will be associated with
the ratio by each of the following assignments?

a. ratio = 12.0 / 4;

b. ratio = 32 / 6;

c. ratio = 48.0 / 5;

d. ratio = 22 % 8;

7.3.4 Why are Rational Numbers Called double?

As a final topic in this section, we feel obliged to try to explain why Java chooses to call numbers
that are not integers doubles rather than something like real or rational. The explanation
involves a bit of history and electronics.

To allow us to manipulate numbers in a program, a computer’s hardware must encode the
numbers we use in some electronic device. In fact, for each digit of a number there must be a tiny
memory device to hold it. Each of these tiny memory devices costs some money and, not long ago,
they cost quite a bit more than they do now. So, if a program is only working with small numbers,
the programmer can reduce the hardware cost by telling the computer to set aside a small number
of memory devices for each number. On the other hand, when working with larger numbers, more
memory devices should be used.

On many machines, the programmer is not free to pick any number of memory devices per
number. Instead only two options are available: the “standard” one, and another that provides
double the number of memory devices per number. The name of the Java type double derives
from such machines.

While the cost of memory has decreased to the point where we rarely need to worry that using
doubles might increase the amount of hardware memory our program uses, the name does reflect
an important aspect of computer arithmetic. Since each number represented in a computer is stored
in physical devices, the total number of digits stored is always limited.

191

The number of binary digits used to represent a number limits the range of numbers that can
be stored. In the computer’s memory, thirty-one binary digits are used to store the numeric value
of each int. As a result, as we mentioned in Section 5.4, the values that can be processed by Java
as ints range from -2,147,483,648 (= −231) to 2,147,483,647 (= 231 − 1). If you try to assign
a number outside this range to an int variable, Java is likely to throw away some of the digits,
yielding an incorrect result. If you need to write a program that works with very large integers,
there is another type that is limited to integer values but that can handle numbers with twice as
many digits. This type is called long. There is also a type named short that uses half as much
memory as int to represent a number. For numbers that are not integers, there is also a type
named float that is like double but uses half as many bits to represent numeric values. All of
these types are primitive types.

The range of numbers that can be stored as double values is significantly larger than even
the long type. The largest double value is approximately 1.8 × 10308 and the smallest double is
approximately −1.8×10308. This is because Java stores double values as you might write numbers
in scientific notation. It rewrites each number as a value, the mantissa, times 10 raised to an
appropriate exponent. For example, the number

32, 953, 923, 804, 836, 184, 926, 273, 582, 140, 929.584, 289

might be written in scientific notation as

3.2953923804836184926273582140929584289× 1031

Java, however, does not always encode all the digits of the mantissa of a number stored as a
double. The amount of memory used to store a double enables Java to record approximately 15
significant digits of each number. Thus, Java might actually record the number used as an example
above as

3.295392380483618× 1031

This means that if you use numbers with long or repeating sequences of digits, Java will actually
be working with approximations of the numbers you specified. The results produced will therefore
be slightly inaccurate. Luckily, for most purposes, the accuracy provided by 15 digits of precision
is sufficient.

There is one final aspect of the range of double values that is limited. First, the smallest
number greater than 0 that can be represented as a double is approximately 5× 10−324. Similarly,
the largest number less than 0 that can be represented as a double is approximately −5× 10−324.

7.4 boolean Variables

Now that our calculator works with doubles, it would certainly make sense to add a decimal point
key to its interface. In this section, we will consider the changes required to make this addition. The
interesting part of this process will be making sure that the decimal point key is used appropriately.
In particular, we have to make sure that it is not possible to enter a number that contains more
than one decimal point. Implementing this restriction as part of our buttonClicked method will
give us the opportunity to explore one remaining aspect of the type boolean, the use of variables
that are associated with boolean values.

Adding a decimal point key to our program’s interface would be quite simple if we were willing
to assume that the user would always use it correctly. We would add a declaration of the form

192

Figure 7.8: Layout for calculator interface with decimal point key

// Button used to enter decimal points

private JButton decimalPoint = new JButton(".");

to the instance variables already declared in our class. We would also have to add this new button
to the content pane. Of course, we would first have to decide how to rearrange the existing buttons
to make room for this addition while still presenting an interface that is easy to use. With a bit
of shuffling, we came up with the layout shown in Figure 7.8. This would require reordering the
instructions in our program’s constructor that add GUI components to the content pane.

Finally, since it is now possible for a user to enter a number that contains a decimal point, using
the Integer.parseInt method to convert the number from the String type to the double type is
no longer appropriate. Luckily, there is a very similar method named Double.parseDouble that is
designed to convert Strings that look like double literals into double values. Therefore, we would
replace the initialized local variable declaration

int numberEntered = Integer.parseInt(entry.getText());

found in our buttonClicked method with the declaration

double numberEntered = Double.parseDouble(entry.getText());

Like the Integer.parseInt method, the Double.parseDouble method will cause a program
error if the String that is passed to it as an argument does not take the expected form. Our program
uses the contents of the entry text field as the argument to Double.parseDouble. Therefore, the
program should make sure that the contents of this field will always look like a valid double literal
before we try to convert it to a double. If we made no additional changes to our program, this
would not be the case. It would be possible for a user to press the decimal key several times while
entering a number. To ensure that this is not possible, we must modify our buttonClicked method
to keep track of how many times the decimal point key is pressed in such a way that it can ignore
attempts to place several decimal points in one number just as it already ignores attempts to enter
a number with more than 9 digits.

We could accomplish this by using an int variable to count how many decimal points have been
entered, much as we used the variable digitsEntered to count how many digit keys have been

193

pressed. If we did this, however, the variable we used would never take on any value other than 0
or 1. We don’t really need to know how many decimal points have been entered, we simply need
to know whether a decimal point has been entered or not. A variable like digitsEntered provides
the ability to answer the question “How many digits have been entered?” To handle decimal points
correctly, all we need is to be able to answer the question “Has a decimal point been entered yet?”
This is the type of question we use when writing the condition of an if statement. It is a question
with only two possible answers. The type boolean provides two values, true and false, that can
be used to represent the answer to such a question. Therefore, we can use a boolean variable rather
than an int variable to record the information we need to remember about the decimal points that
have been entered.

To do this we will include an instance variable declaration of the form

// Remember whether or not a decimal point has been entered

private boolean decimalPtEntered = false;

We will also have to add assignments that will associate this variable with the correct value at
appropriate places in our program. When the user does press the decimal point key, we need to
make sure our program executes an assignment of the form

decimalPtEntered = true;

When the user presses an operator key or the clear button, we will have to execute an assignment
of the form

decimalPtEntered = false;

Then, it will be possible to ignore duplicate decimal points by using an if statement of the form

if (! decimalPtEntered) {
// Add a decimal point to the number being entered

...
}

This if statement’s condition looks different from all the other examples of if statements we
have considered. It does not contain any of the relational operators like == or <. This shows
that it is not necessary to include such an operator in a condition. All that Java requires is
that the condition we provide in an if statement describes a boolean value. The expression
!decimalPtEntered describes the value obtained by reversing the true/false value currently
associated with decimalPtEntered. If the value associated with this variable answers the question
“Has a decimal point been entered yet?” then by using the ! operator to reverse its value we are
telling Java that it should only execute the body of the if statement if no decimal point has been
entered.

All of the changes required to handle the decimal point key correctly in the buttonClicked
method are shown in Figure 7.9. The code is slightly abridged to fit on one page. We have replaced
the 5-way if statement that determines which operator to apply with a single comment.

In addition to the changes discussed above, it is worth noting that the boolean variable
decimalPtEntered is also used in the condition of the if statement that determines when the
entry text field is cleared. Here it is used in a more complex condition involving the logical opera-
tor && since clearing the field depends on whether either a digit or decimal point has been entered.

194

// Accept digits entered and perform arithmetic operations requested

public void buttonClicked(JButton clickedButton) {
if (clickedButton == minus || clickedButton == times ||

clickedButton == divide || clickedButton == plus ||
clickedButton == equals) {

// Apply last operator to the number entered and current total

if (digitsEntered > 0) {

double numberEntered = Double.parseDouble(entry.getText());

. . . // 5-way if statement omitted to compress code

entry.setText("" + total);
digitsEntered = 0;
decimalPtEntered = false;

lastOperator = clickedButton;
}

} else if (clickedButton == clear) {
// Zero the total and clear the entry field

total = 0;
digitsEntered = 0;
decimalPtEntered = false;
entry.setText("0");
lastOperator = equals;

} else { // If clickedButton is a numeric or decimal key, add to entry

if (digitsEntered == 0 && ! decimalPtEntered) {
entry.setText("");

}

if (clickedButton == decimalPoint) {
if (! decimalPtEntered) {

decimalPtEntered = true;
entry.setText(entry.getText() + ".");

}
} else {

digitsEntered = digitsEntered + 1;
entry.setText(entry.getText() + clickedButton.getText());

}
}

}

Figure 7.9: Handling decimal points using a boolean variable

195

7.5 Summary

In this chapter, we explored the basic mechanisms Java provides for working with numeric data
in a program. Java distinguishes its numeric types from types such as the GUI components we
have used in many of our examples in several ways. Numeric values belong to what are called the
set of primitive types, while GUI components are examples of members of object types or classes.
Values of primitive types cannot be constructed. Instead, they can be described using literals in
our programs. In addition, operators rather than methods are provided to manipulate numeric
types.

Java provides several distinct types for representing numbers. The biggest difference between
these types is that while the types double and float are designed for working with numbers with
fractional parts, Java’s other numeric types, including long, int, and short can only represent
whole numbers. The distinctions between doubles and floats and between longs, ints, and
shorts involve the range of values that are supported by these types.

Java provides the operators +, -, *, and / for the standard operations of addition, subtraction,
multiplication and division. These operators can be used with any of the numeric types. When all
of the operands to one of these operators are integers, the result will be an integer. If any of the
operands is a double, the result will be a double. For the integer types, Java also provides the %
operator which returns the remainder associated with a division operation.

In addition to its numeric types, Java provides one additional type that is considered a primitive
type, the type boolean. Java provides the logical operators &&, ||, and ! for manipulating boolean
values. It also provides relational operators that produce boolean values as their results. Java
requires that the conditions used in if statements be expressions that produce boolean values as
their results.

196

Chapter 8

String Theory

A great deal of the data processed by computer programs is represented as text. Word processors,
email programs, and chat clients are primarily concerned with manipulating text. Most web pages
contain plenty of text in addition to media of other forms. In addition, we have seen that the
communication protocols upon which many network applications rely are based on sending text
messages back and forth between client and server computers.

Up to this point, we have seen only a small portion of the mechanisms Java provides for
processing text. We have learned that pieces of text can be described in our programs using quoted
literals and associated with variable names as objects of the type String. We have seen that
such objects can be used as parameters in constructions and invocations associated with many
other types. We have, however, seen very few operations designed to process the String values
themselves. The notable exception is that we have seen that the concatenation operator, +, can be
used to combine the contents of two Strings to form a longer String.

In fact, Java provides an extensive collection of methods for manipulating Strings. In this
chapter we will introduce some of the most important of these methods. We will learn how to
access sub-parts of Strings, how to search the text of a String for particular subsequences, and
how to make decisions by comparing String values with one another. We will deliberately avoid
trying to cover all of the String operations that Java provides. There are far too many. We will
limit our attention to the most essential methods. We will, however, explain how you can access
the online documentation for the standard Java libraries so that you can learn about additional
methods you can use with Strings.

8.1 Cut and Paste

Anyone who has used a computer is probably familiar with “cut and paste.” This phrase refers to
the paradigm that is used by almost all programs that support text editing with a graphical user
interface. Such programs let you extract a fragment of a larger text document (i.e., cut) and then
insert a copy of the fragment elsewhere in the document (i.e., paste). Not surprisingly, two of the
most important operations you can perform on text within a program are essentially “cutting” and
“pasting.”

The ability to paste text together within a Java program is provided by the concatenation
operator, +. As we have seen, if prefix and suffix are two String variables, then the expression

prefix + suffix

197

describes the String obtained by pasting their contents together. For example, if we set

suffix = "ion field"

and

prefix = "enter the construct"

then the expression prefix + suffix will describe the String

"enter the construction field"

A fragment can be extracted (i.e., cut) from a String using a method named substring.
Actually, the substring method is a bit more akin to an editor’s “copy” operation than the
standard “cut” operation. It allows a program to extract a copy of a subsection of a String but
leaves the source String unchanged.

When you cut or copy text within a word processor or text editor, you select the desired text
using the mouse. When you are using the substring method, however, you must specify the
fragment of text you want to extract using the arguments you provide in the method invocation.
This is done by providing an int parameter identifying the first character of the desired fragment
and, optionally, an int identifying the first character following the fragment.

The parameter values provided to the substring method specify the number of characters that
come before the character being identified. That is, a parameter value of 0 describes the first
character in a String since there are 0 characters before this character and a value of 1 describes
what you would normally call the second character. Therfore, if we declared and initialized a string
variable

String bigword = "thermoregulation";

then the expression

bigword.substring(1, 4)

would produce the result "her", while the expression

bigword.substring(0, 3)

would produce the result "the".
It is important to note that the second parameter of the substring method indicates the

position of the first character that should not be included in the result, rather than the position of
the last character that should be included. Thus, assuming that the variable bigword was declared
and initialized as shown above, the value described by the expression

bigword.substring(1, 2)

would be "h", since this invocation asks for all the characters from position 1 in bigword up to but
not including position 2. In general, an expression of the form

bigword.substring(p, p+n)

returns a String containing the n characters found starting at position p within bigword. In
particular, an expression of the form

198

bigword.substring(p, p)

describes the String containing zero characters, "".
Java provides a method named length that returns the number of characters found within a

String. For example,

bigword.length()

would return the value 16. As a result, an invocation of the form

bigword.substring(p, bigword.length())

describes all the characters from position p within bigword through the last character in the
String. Using substring to extract a suffix from a String in this way is common enough that
Java provides an easier way to do it. The second parameter to the substring method is optional.
When substring is invoked with just one parameter, it acts as if the length of the String was
provided as the second parameter. That is,

bigword.substring(p)

is equivalent to

bigword.substring(p, bigword.length())

For example,

bigword.substring(13)

would return the value "ion".
The values provided as parameters to the substring method should always fall between 0 and

the length of the String to which the method is being applied. If two parameters are provided,
then the value of the first parameter must not be greater than that of the second. For example,
the invocation

bigword.substring(11, 20)

would cause a run-time error since bigword only contains 16 characters. The invocation

bigword.substring(10, 5)

would produce an error since the starting position is greater than the ending position, and

bigword.substring(-1, 10)

would cause an error since -1 is out of the allowed range for positions within a String.
The substring method does not modify the contents of the String to which it is applied. It

merely returns a portion of that String. Thus, still assuming that bigword is associated with the
String "thermoregulation", if we were to declare a local variable

String smallword;

and then execute the statement

smallword = bigword.substring(5, 8);

199

the value associated with smallword would be "ore", but the value associated with bigword would
remain "thermoregulation". While it would not make much sense to do so, we could even execute
the statement several times in a row as in

smallword = bigword.substring(5, 8);
smallword = bigword.substring(5, 8);
smallword = bigword.substring(5, 8);

The final result would still be the same. Since the value associated with bigword is not changed,
the final value associated with smallword would still be "ore".

In fact, none of the methods presented in this chapter actually modify the String values to
which they are applied. Instead, they return new, distinct values. The only way to change the
String associated with a variable name is to assign a new value to the name. For example, if we
wanted to make bigword refer to a substring of "thermoregulation" we might say

bigword = bigword.substring(6);

After this statement was executed, bigword would be associated with the String "regulation".
Unlike the assignment to smallword discussed in the preceding paragraph, the result of executing
this assignment several times will not be the same as executing the assignment just once. Executing

bigword = bigword.substring(6);

a second time will leave bigword associated with the String "tion" since t appears in position
6 (i.e., it is the seventh letter) in "regulation". A third execution would result in an error since
there are less than 6 characters in the String "tion".

In general, executing the statement

bigword = bigword.substring(p);

will effectively remove a prefix of length p from the value associated with the variable bigword.
Similarly, executing the statement

bigword = bigword.substring(0, p);

will remove a suffix from bigword so that only a prefix of length p remains. If, on the other hand,
we want to remove a substring from the middle of a String value, the substring method alone is
not enough. To do this, we have to use substring and concatenation together.

Suppose for example, that we want to turn "thermoregulation" into "thermion".1 The ex-
pression

bigword.substring(0, 5)

describes the String "therm", and, as we showed above,

bigword.substring(13)

describes the String "ion". Therefore, the assignment

bigword = bigword.substring(0, 5) + bigword.substring(13);

will associate bigword with the value "thermion". In general, executing an assignment of the form

bigword = bigword.substring(0, start) + bigword.substring(end);

will associate bigword with the String obtained from its previous value by removing the characters
from position start up to but not including position end.

1“Thermion” is actually a word! It refers to an ion released by a material at a high temperature.

200

8.2 Search Options

The substring method can be very handy when writing programs that support communications
through the Internet. Many of the Internet’s protocols depend on Strings. Web page addresses,
email addresses, and IM screen names are all Strings. To interpret these and other Strings,
programs often need the ability to access the subparts of a String. To apply the substring method
effectively in such applications, however, we need a way to find the positions of the subparts of
interest. In this section, we will introduce a method named indexOf which makes it possible to do
this.

For example, if you want to visit a web page and know its address, you can enter this address
in a form known as a URL (Uniform Resource Locator) or URI (Uniform Resource Identifier).
For example, if you wanted to read the editorial section of the New York Times online, you could
enter the URL

http://www.nytimes.com/pages/opinion/index.html

An address of this form has two main parts. The text between the pair of slashes and the
first single slash, "www.nytimes.com", is the name of a computer on the Internet that acts as
the web server for the New York Times. The characters that appear after this machine name
"/pages/opinion/index.html" describe a file on that server that contains a description of the
contents of the editorial page. In particular, it indicates that the desired file is named index.html
and that it can be found within a directory or folder named opinion within a directory named
pages. Such a complete specification of the location of a file is called a file path name.

In order to display the contents of a web page, a web browser requests that the server named
in the page’s URL send it the contents of the file named by the text following the server name in
the URL. The first step in making such a request, is to create a TCP connection to port 80 on the
web server.

To imagine how the code within a web browser might actually accomplish this, suppose that
the URL shown above was associated with a local variable declared as

String url = "http://www.nytimes.com/pages/opinion/index.html";

The substring method could then be used to extract either the server name or the file path name
from the URL. For example, the expression

url.substring(7, 22)

would produce the server name "www.nytimes.com" as a result. The browser could therefore
establish a TCP connection to the server and associate it with the name toServer using the
declaration

NetConnection toServer = new NetConnection(url.substring(7,22), WEB_PORT);

(assuming that the name WEB PORT was associated with the port number 80).
The problem with such code is that while the numbers 7 and 22 will work for the New York

Times site, they will not work for many other URLs. If you decided you needed to read the editorials
published in the Wall Street Journal, you would need to enter the URL

http://www.wsj.com/public/page/opinion.html

201

If this String was associated with the variable named url, then the expression

url.substring(7, 22)

would return the value "www.wsj.com/pub". If you tried to use this value as a parameter in a
NetConnection construction, you would receive an error message because this String is not the
name of any server on the network. If you want to connect to the server for the Wall Street Journal,
you have to replace 22 with the position of the end of the server’s name within its URL, 18. This
would lead to a declaration of the form

NetConnection toServer = new NetConnection(url.substring(7,18), WEB_PORT);

Of course, we cannot include separate code for every web server in the world within a browser.
We need to find a way to write code that can extract the server’s name from a URL correctly
regardless of its length. The indexOf method makes this possible.

In its simplest form, the indexOf method takes a substring to look for as a parameter and
returns an int value describing the position at which the first copy of the substring is found within
the String to which the method is applied. For example, assuming we declare

String url = "http://www.nytimes.com/pages/opinion/index.html";

then the expression

url.indexOf("www")

would produce the value 7, and the expression

url.indexOf("http")

would return the value 0.
We could use such simple invocations of indexOf to write code to extract the server’s name

from a URL, but it would be a bit painful. The problem is that the best way to find the end of the
server’s name is to use indexOf to look for the "/" that comes after the name. If we try to use the
expression

url.indexOf("/")

to do this, it won’t return 22, the position of the "/" that comes after the server name. Instead, it
will return 5, the position of the first "/" that appears in the prefix http://. By default, indexOf
returns the position of the first occurrence of the String it is asked to search for. To dissect a
URL, however, we need a way to make it find the third "/".

Java makes this easy by allowing us to specify a position at which we want indexOf to start its
search as a second, optional parameter. For example, while the expression

url.indexOf("ht")

would return the value 0 since the value associated with url begins with the letters "ht", the
expression

url.indexOf("ht", 5)

202

would return 43 because the first place that the letters "ht" appear after position 5 in the String
is in the "html" at the very end.

It is important to remember that indexOf starts it search immediately at the position specified
by the second parameter. Thus the expressions

url.indexOf("/", 5)

and

url.indexOf("/", 6)

would return 5 and 6, respectively, because there are slashes at positions 5 and 6 in url. The
expression

url.indexOf("/", 7)

on the other hand, would return 22, the position of the first slash found after the "http://" prefix.
In general, this expression will return the position of the slash that indicates the end of the server’s
name within the URL. This is exactly what we need to extract the server’s name from the URL.

To make the code to extract the server name as clear as possible, we will associate names with
the positions where the server’s name begins and ends. We will therefore begin with two variable
declarations

int nameStart = 7;
int nameEnd = url.indexOf("/", nameStart);

Then, we can extract the server name and associate it with a local variable

String serverName = url.substring(nameStart, nameEnd);

Finally, we can use the server’s name to create a NetConnection through which we can send a
request for the desired web page.

NetConnection toServer = new NetConnection(serverName, WEB_PORT);

These instructions will work equally well for both of the URLs

http://www.nytimes.com/pages/opinion/index.html

and

http://www.wsj.com/public/page/opinion.html

as well as many others.
There is one remaining aspect of indexOf that we need to discuss. What should indexOf do if

it cannot find the substring we ask it to search for? For example, consider what will happen if we
try to execute the code in the preceding paragraph when the variable url is associated with the
familiar address

http://www.google.com

203

int nameStart = 7;
int nameEnd = url.indexOf("/", nameStart);
String serverName;
if (nameEnd == -1) {

serverName = url.substring(nameStart);
} else {

serverName = url.substring(nameStart, nameEnd);
}
NetConnection toServer = new NetConnection(serverName, WEB_PORT);

Figure 8.1: Code fragment to connect to a server specified in a URL

The last slash in Google’s URL appears at position 6. Therefore, if indexOf starts searching for a
slash in position 7, it will not find one.

By definition, in any situation where indexOf cannot find a copy of the substring it is asked
to search for, it returns the value -1. Therefore, when indexOf is used it is typical to include an
if statement to check whether the value returned is -1 and to execute appropriate code when this
occurs. For example, if indexOf cannot find a slash after position 7 in a URL, then we can assume
that everything from position 7 until the end of the String should be treated as the host name.
Based on this idea, code that will correctly extract the server name from a URL and connect to
the server is shown in Figure 8.1.

There is one slightly subtle aspect of the code in Figure 8.1. Note that the declaration of the
local variable serverName is placed before the if statement rather than being combined with the
first assignment to the name as we have done for the local variables nameStart and nameEnd. This
is essential. If we had attempted to declare serverName by replacing the first assignment within
the if statement with an initialized declaration of the form

String serverName = url.substring(nameStart);

the program would produce an error message when compiled. The problem is that the first assign-
ment within the if statement appears within a set of curly braces that form a separate scope. Any
name declared within this scope can only be referenced within the scope. Therefore, if serverName
was declared here it could only be used in the first half of the if statement.

8.3 Separate but .equals()

There are many situations where a program needs to determine whether the contents of an entire
String match a certain word or code. For example, a program might need to determine whether
a user entered "yes" or "no" in answer to a question in a dialog, or whether the code an SMTP
server sent to a client included the code for success ("250") or failure ("500"). Java includes a
method named equals that can be used in such programs. As an example of the equals method,
we will show how it can be used to perform the appropriate action when one of several menu items
is selected.

Many programs include menus that are used to enter a time of day. There may be one menu
to select the hour, one to select a number of minutes, and a final menu used to indicate whether

204

Figure 8.2: Selecting daytime from an AM/PM menu

Figure 8.3: Menu selection makes darkness fall

the time is "AM" or "PM". To explore a very specific aspect of the code that such programs might
contain, we will consider a somewhat silly program that contains just one menu used to select
between "AM" or "PM". This menu will appear alone in a window like the one shown in Figure 8.2.

During the day, it is bright outside. Accordingly, when the "AM" menu item in our program is
selected, the background of its window will be white as in Figure 8.2. On the other hand, when the
"PM" menu item is selected, the program’s window will become pitch black as shown in Figure 8.3.

A program that implements this behavior is shown in Figure 8.4. The code that uses the equals
method can be found in the menuItemSelected method. When the user selects either the "AM" or
"PM" menu item, the first line in this method:

String chosen = menu.getSelectedItem().toString();

associates the local variable name chosen with the item that was selected. Then, an if statement
with the header

if (chosen.equals("AM")) {

is used to decide whether to make the background black or white. The equals method will return
true only if the String passed as a parameter, "AM" in this example, is composed of exactly the
same sequence of symbols as the String to which the method is applied, chosen.

This should all seem quite reasonable, but if you think hard about some of the conditions we
have included in if statements in other examples, the existence of the equals method may strike
you as a bit odd. Recall that in many if statements we have used relational operators like < and
>=. One of the available relational operators is ==, which we have used to test if two expressions
describe the same value. If Java already has ==, why do we also need an equals method? Why
not simply replace the header of the if statement seen in Figure 8.4 with:

205

// A menu driven program that illustrates the use of .equals

public class NightAndDay extends GUIManager {
// Dimensions of the programs’s window

private final int WINDOW_WIDTH = 300, WINDOW_HEIGHT = 100;

// The menu that controls the background color

private JComboBox menu = new JComboBox();

// Place a menu in a window on the screen

public NightAndDay() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

menu.addItem("AM");
menu.addItem("PM");
contentPane.add(menu);

changeBackground(Color.WHITE);
}

// Respond to menu selections by setting the background color

public void menuItemSelected() {
String chosen = menu.getSelectedItem().toString();

if (chosen.equals("AM")) {
changeBackground(Color.WHITE);

} else {
changeBackground(Color.BLACK);

}
}

// Set the background color of both the menu and contentPane

private void changeBackground(Color shade) {
menu.setBackground(Color.WHITE);
contentPane.setBackground(Color.WHITE);

}
}

Figure 8.4: A trivial simulation of the cycle of night and day

206

if (chosen == "AM") {

Wouldn’t this version of the program do the same thing?
The short and somewhat embarrassing answer to the last question is that the behavior of the

program in Figure 8.4 would not change if we used == instead of equals. In general, however, ==
and equals do not always produce the same answer, as we can see by making a very minor change
in our program.

The difference between using equals and == is closely connected to the differences between
primitive values and objects that we discussed in Section 7.2.2. Java views values of primitive
types like int as abstract and unchanging. As we explained in that section, it would not make
sense to say

new int(3)

in a Java program, because there is only one value called 3. It would make no sense to make another
one. If several variables in a Java program are associated with the value 3 at the same time, then
we think of them as all being associated with exactly the same thing rather than each with their
own separate copy of 3.

With objects, on the other hand, it is possible to have two names refer to two objects that are
identical but distinct. For example, if we say

JButton start = new JButton("Start");
JButton go = new JButton("Start");

the two variables declared will refer to distinct but identical objects.
Strings are not primitive values in Java. Strings are objects. Therefore, it is possible to have

two Strings that are identical, in the sense that they contain exactly the same characters, but still
distinct. This usually happens when at least one of the String values involved is produced using
a String method or the concatenation operator. For example, suppose that we replaced the code
to construct the menu used in the NightAndDay program with the following code:

String commonSuffix = "M":
menu.addItem("A" + commonSuffix);
menu.addItem("P" + commonSuffix);

While this is a silly change to make, one would not expect this change to alter the way in which the
program behaves. If the program used == to determine which menu item was selected, however,
this change would make the program function incorrectly.

The issue is that when we tell Java to create a String using the + operator, it considers the
new string to be distinct from all other Strings. Even though we didn’t explicitly perform a
construction, the concatenation operator produces a new value. In particular, the String produced
by the expression

"A" + commonSuffix

would be distinct from the String produced by the expression "AM", even though both Strings
would have exactly the same contents.

When we ask Java if two Strings (or in fact if any two objects) are ==, it produces the result
true only if the two operands we provide are actually identical. When we ask Java if two Strings

207

are equals, on the other hand, it produces the result true only if the two operands are Strings
that contain exactly the same sequence of symbols.

In particular, if we change the NightAndDay program to use the expression

"A" + commonSuffix

to describe the first item to be placed in menu, then when the user selects this item, evaluating the
condition

chosen.equals("AM")

will produce true, while the condition

chosen == "AM"

would produce false. As a result, the program would never recognize that a user selected the "AM"
item and therefore never set the background back to white after it had become black.

As this example illustrates, it can be hard to predict when Java will consider two Strings to
be identical. The good news is that it is not hard to avoid the issue in your programs. Simply
remember that when you want to check to see if two String values are the same you should use
equals. You should almost never use == to compare the values of two Strings.

8.4 Methods and More Methods

At this point, we have introduced just a handful of the methods Java provides for working with
String values. The methods we have presented are all that you will really need for the vast
majority of programs that manipulate Strings. Many of the remaining methods, however, can be
very convenient in certain situations.

For example, suppose that you need to test whether the word "yes" appears somewhere in a
message entered by a user. You can do this using a technique involving the indexOf method. The
code in an if statement of the form

if (userMessage.indexOf("yes") >= 0) {
. . .

}

will only be executed if the substring "yes" appears somewhere within userMessage. (Can you see
why?) Nevertheless, Java provides a different method that is a bit easier to use in such situations
and leads to much clearer code. The method is named contains. It returns true only if the value
provided to the method as a parameter appears within the String to which it is applied. Thus, we
can replace the code shown above with

if (userMessage.contains("yes")) {
. . .

}

An important special case of containing a substring is starting with that substring. For example,
we have seen that the messages an SMTP server sends to a client all start with a three digit code
indicating success or failure. The success code used by SMTP is "250". Therefore, an SMTP

208

client is likely to contain code to determine whether each message it receives from the server
starts with "250". This could be done using the length, equals, and substring methods (and it
would probably benefit the reader to take a moment to figure out exactly how), but Java provides
a convenient alternative. There are String methods named startsWith and endsWith. Both of
these methods take a single String as a parameter and return true or false depending on whether
the parameter appears as a prefix (or suffix) of the String to which the method is applied. For
example, an if statement of the form

if (serverMessage.startsWith("250")) {
. . .

}

will execute the code in its body only if "250" appears as a prefix of serverMessage.
Several String methods are designed to make it easy to deal with the difference between upper

and lower case characters. In many programs, we simply want to ignore the difference between
upper and lower case. For example, if we were trying to see if userMessage contained the word
“yes”, we probably would not care whether the user typed "yes", "Yes", "YES", or even "yeS".
The two if statements shown earlier, however, would only recognize "yes".

There are two String methods named toUpperCase and toLowerCase that provide a simple
way to deal with such issues. The toLowerCase method returns a String that is identical to
the String to which it is applied except that all upper case letters have been replaced by the
corresponding lower case letters. The toUpperCase method performs the opposite transformation.
As an example, the body of an if statement of the form

if (userMessage.toLowerCase().contains("yes")) {
. . .

}

will be executed if userMessage contains "yes", "Yes", "YES", or even "yeS". The subexpression

userMessage.toLowerCase()

describes the result of replacing any upper case letters that appeared in userMessage with lower case
letters. Therefore, if userMessage had contained "Yes" or "YES", the String that toLowerCase
returned would contain "yes".

8.5 Online Method Documentation

We could continue describing additional String methods for quite a few more pages. There are
methods named replace, equalsIgnoreCase, compareTo, trim, and many others. A better alter-
native, however, is to tell you how to find out about them yourself.

Sun Microsystems, the company that created and maintains the Java programming language,
provides online documentation describing all the methods that can be applied to object types
defined within the standard Java library including Strings.If you point your favorite web browser
at

http://java.sun.com/j2se/1.5.0/docs/api/

209

Figure 8.5: Initial page displayed when visiting Sun’s Java documentation site

210

you should see a page that looks something like the one shown in Figure 8.5.2

Sun has organized its on-line Java documentation around the classes in the Java libraries. There
is a page that describes the methods associated with the String class, a page that describes the
JTextField class, and so on. Therefore, to navigate through the documentation, it helps to know
what class you are trying to learn more about. Luckily, we know that we want to learn about the
String class.

The windows in which Sun’s documentation are displayed are divided into three panels. As
shown in Figure 8.5, the panel on the right side of the window occupies most of the available space.
This is used to display the documentation you have asked to see. In Figure 8.5 is is used to display
brief summaries of the “packages” into which all of the classes in the Java libraries are divided.
Once you select a particular class, the documentation for this class will be placed in this panel.

The left margin of the window is divided into two smaller panels. The upper panel holds a list
of package names and the lower panel holds a list of class names. Initially, the lower panel contains
the names of all the classes in the Java libraries. By clicking on a package name in the upper panel,
you can reduce the list of classes displayed in the lower panel to just those classes in the selected
package.

To examine the documentation of a particular class, you can simply scroll through the names
shown in the lower left panel until you find the name of that class. If you then click on the name,
the documentation for that class will be placed in the panel on the right. For example, in Figure 8.6
we show how the window might look immediately after we clicked on the name of the String class
in the lower left panel.

We could use the scroll bar on the right side of the window in Figure 8.6 to read through the
entire description of the String class, but if we are just trying to learn about more of the methods
provided by the class, there is a shortcut we can use. Near the top of the class, there is a short list
of links to summaries of the features of the class. One of these, which is identified with an arrow
in Figure 8.6 appears under the word “METHOD”. If you click on this link, it scrolls the contents
of the page to display a collection of short summaries of the methods of the String class as shown
in Figure 8.7.

In many cases, these short summaries provide enough information to enable you to use the
methods. If not, you can easily get a more detailed description. Just click on the name of the
method in which you are interested. For example, if you click on the name of the contains
method, the contents of the window will scroll to display the complete description of the contains
method as shown in Figure 8.8. As you can see, unfortunately, the complete description of a method
sometimes provides little more than the summary.

Of course, by following similar instructions you can use Sun’s online documentation to learn
more about other types we have worked with. For example, if you search for JButton or JComboBox
in the list found within the bottom left panel of the documentation window, you will be able to
read about many additional methods associated with these GUI components.

2There is, of course, a risk in including a web site address in any published text. At some point in the future,
Sun Microsystems is likely to reorganize their online documentation so that the address given above simply does not
work. In this event, try going to http://java.sun.com and follow the links for “API documentation”. With a bit of
luck, you will still be able to find the pages described here.

211

Figure 8.6: Page displaying the documentation for the String class

212

Figure 8.7: Summaries of the methods of the String class

Figure 8.8: Online documentation for the contains method of the String class

213

8.6 What a character!

As we have noted, String is not a primitive type. There is, however, a primitive type within Java
that is closely related to the String type. This type is named char. The values of the char type
are individual characters.

The relationship between the String and char types is fairly obvious. A String is a sequence
of char values, i.e., characters. A similar relationship exists in mathematics between a set and its
elements. The set {2, 3, 5} has the numbers 2, 3, and 5 as elements. In mathematics, the curly
braces used to surround the members of a set make it easy to tell the difference between a set
containing a single element and the element itself. The set containing the number 2, which we
write as {2} is clearly different from the number 2. Java provides a similar notational distinction
between String and char literals.

In Java, a char literal is denoted by placing a single character or an escape sequence that
describes a single character between single rather than double quotes. Thus, while "E" is a String
containing a single character, ’E’ is a single character or char value. Similarly, ’7’, ’?’, ’ ’, and ’\n’
are char literals describing the digit 7, the question mark, the space character, and the newline
character.

While related, char and String are distinctly different types in Java. If we declare two variables

private char c;
private String s;

then the assignments

c = "E";

and

s = ’E’ ;

would both be considered illegal as would the assignments

c = s;

and

s = c;

There is a method that makes it possible to extract individual characters from a String. This
method is named charAt. It takes the position of the character within the String as a parameter,
treating 0 as the position of the first character. Thus, if we executed the assignments

s = "characters";
c = s.charAt(3);

the variable c would become associated with the value ’r’
None of the String methods described above can be applied to char values. For example, given

the variable c declared as a char, it would be illegal to say

c.toLowerCase() // This is incorrect code!

214

Actually, there are no methods that can be applied to char values. char is a primitive type like
int and boolean. Like these other primitive types, there are operators that can be applied to char
values, but no methods.

In fact, the char type is more closely related to the other primitive types than you might
imagine. Internally, the computer uses a numeric code to represent each character value. For
example, the number 65 is used to represent the character ’A’, 95 is used to represent ’a’, and 32
is use to represent the space (’ ’). The numbers assigned to various characters are in some sense
arbitrary. ’A’ is clearly not the 65th letter of the alphabet. However, the numbers used to represent
characters are not chosen at random. They are part of a widely accepted standard for representing
text in a computer that is known as Unicode.

In many contexts, Java treats char values very much like the numeric type int. For example,
if you evaluate the expression

’A’ + 1

the answer will be 66, one more than the number used to represent an ’A’ internally. In Unicode,
consecutive letters in the alphabet are represented using consecutive numeric values. Therefore, if
you evaluate

’B’ - ’A’

the answer will be 1, and

’Z’ - ’A’

produces 25. On the other hand, the expression

’z’ - ’A’

produces 57 as an answer. The numeric values used for upper and lower case letters are not as
meaningfully related as for letters of a single case.

On the other hand, in some situations, Java treats char values as characters rather than num-
bers. For example, if you write

"ON" + ’E’

the answer produced is "ONE", not "ON69". On the other hand, if you write

"ON" + (’E’ + 1)

the result produced is "ON70". This may seem confusing at first, but the rules at work here are
fairly simple.

Java understands that char values are numbers. Therefore, Java allows you to perform arith-
metic operations with char values. You can even say things like

’a’ * ’b’ + ’d’

Java also understands, however, that the number produced when it evaluates such an expression is
unlikely to correspond to a code that can be meaningfully interpreted in Unicode. Therefore, Java
treats the result of an arithmetic expression involving char values or a mixture of char and int
values as an int value. For example, it would be illegal to say

215

char newChar = ’z’ - ’a’;

but fine to say

int charSeparation = ’z’ - ’a’;

This explains the fact that

"ON" + (’E’ + 1)

produces "ON70". We already know that if you apply the + operator to a String value and an int
value, Java appends the digits that represent the int to the characters found in the String. The
character ’E’ is represented internally by the number 69. Therefore, Java interprets the expression
’E’ + 1 as a rather complicated way to describe the int value 70.

On the other hand, when you apply the + operator to a String value and a char value, Java
appends the character corresponding to the char’s numeric value to the characters found in the
String. Basically, in this context, Java interprets the char as a character rather than as a number.

There is one way in which it is particularly handy that Java treats char values as numbers.
This involves the use of relational operators. If we declare

private char c;

then we can say things like

if (c > ’a’) { . . .

When relational operators are applied to char values, Java simply compares the numeric codes
used to represent the characters. This is useful because Unicode assigns consecutive codes to
consecutive characters. As a result, numeric comparisons correspond to checking relationships
involving alphabetical ordering.

For example, consider the if statement

if (c >= ’a’ && c <= ’z’) {
. . .

} else if (c >= ’A’ && c <= ’Z’) {
. . .

}

The condition in the first if checks to see if the value associated with c is somewhere between the
values used to represent lower case ’a’ and ’z’. This will only happen if c is associated with a lower
case letter. Therefore, the code placed in the first branch of the if will only be executed if c is a
lower case letter. For similar reasons, the second branch will only be executed if c is upper case.

8.7 Summary

In this chapter, we have explored the facilities Java provides for manipulating text. We introduced
one new type related to textual data, the char type and presented many methods of the String
type that had not been discussed previously. We showed how the substring and indexOf methods
together with the concatenation operator can be used to assemble and disassemble String values.
We also introduced several additional methods including contains, startsWith, toLowerCase and

216

toUpperCase. More importantly, we outlined how you can use online documentation to explore
even more methods of the String class and of other Java classes.

Since the bulk of this chapter was devoted to introducing new methods, we conclude this section
with brief descriptions of the most useful String methods. We hope these summaries can serve as
a reference.

8.7.1 Summary of String Methods

someString.contains(otherString)
The contains method produces a boolean
indicating whether or not otherString ap-
pears as a substring of someString. If the
string provided as the otherString argu-
ment appears within someString then the
value produced will be true. Otherwise,
the result will be false.

someString.endsWith(otherString)
The endsWith method produces a boolean
indicating whether or not otherString ap-
pears as a suffix of someString. If the
string provided as the otherString ar-
gument is a suffix of someString then
the value produced will be true. If
otherString is not a suffix of someString,
the result will be false.

someString.equals(otherString)
The equals method produces a boolean in-
dicating whether or not otherString con-
tains the same sequence of characters as
someString. If the string provided as
the otherString argument is identical to
someString then the value produced will be
true. Otherwise, the result will be false.

217

someString.indexOf(otherString)
someString.indexOf(otherString, start)

The indexOf method searches a string look-
ing for the first occurrence of another string
provided as the first or only parameter to
the method. If it finds an occurrence of
the argument string, it returns the posi-
tion of the first character where the match
was found. If it cannot find an occurrence
of the argument string, then the value -1
is produced. If a second actual parame-
ter is included in an invocation of indexOf,
it specifies the position within someString
where the search should begin. The result
returned will still be a position relative to
the beginning of the entire string.

someString.length()
The length method returns an int equal
to the number of characters in the string.
Blanks, tabs, punctuation marks, and all
other symbols are counted in the length.

someString.startsWith(otherString)
The startsWith method produces a
boolean indicating whether or not
otherString appears as a prefix of
someString. If the string provided as
the otherString argument is a prefix of
someString then the value produced will
be true. If otherString is not a prefix of
someString, the result will be false.

someString.substring(start)
someString.substring(start, end)

The substring method returns a specified
sub-section of the string to which it is ap-
plied. If a single argument is provided, the
string returned will consist of all charac-
ters in the original string from the position
start to the end of the string. If both a
start and end position are provided as ar-
guments, the string returned will consist of
all characters from the position start in the
original string up to but not including the
character at position end. Positions within
the string are numbered starting at 0. If
start or end are negative or larger than
the length of the string, an error will occur.
An error will also occur if end is less than
start. If end is equal to start, then the
empty string ("") will be returned.

218

someString.toLowerCase()
The toLowerCase method produces a
String that is identical to someString ex-
cept that any upper case letters are replaced
with the corresponding lower case letters.
someString itself is not changed.

someString.toUpperCase()
The toUpperCase method produces a
String that is identical to someString ex-
cept that any lower case letters are replaced
with the corresponding upper case letters.
someString itself is not changed.

219

220

Chapter 9

Doomed to Repeat

Looking up synonyms for the word “repetitive” in a thesaurus yields a list that includes the words
“monotonous”, “tedious”, “boring”, “humdrum”, “mundane”, “dreary”, and “tiresome”. This
reflects the fact that in life, repeating almost any activity often enough makes it unpleasant. In
computer programs, on the other hand, repetition turns out to be very exciting. In some sense, it
is the key to exploiting the power of the computer.

To appreciate this, think about how quickly computers can complete the instructions we place
in a program. The speed of a modern computer is measured in gigahertz. That means that such
a computer can perform billions of steps per second. These are very small steps. It may take tens
or hundreds of them to complete a single line from a Java program. Even so, your computer is
probably capable of completing the instructions in millions of lines of Java instructions in seconds.
Any programmer, on the other hand, is unlikely to be fast enough to write a million lines of Java
instructions in an entire lifetime. Basically, a computer can execute more instructions than we can
write for it. This means the only possible way to keep a computer busy is to have it execute many
of the instructions we write over and over and over again.

Programming languages provide constructs called loops to enable us to specify that a sequence
of instructions be executed repetitively. In this chapter, we will introduce one of Java’s looping
constructs, which is called the while loop.

To use while loops or any other looping construct effectively, one must learn to write instructions
that perform useful work when executed repeatedly. Typically, this means that even though the
computer will execute exactly the same instructions over and over again, these instructions should
do something at least slightly different each time they are executed. We will see that this can
be accomplished by writing instructions that depend on variable values or other aspects of the
computer’s state that are modified during their execution. In particular, we will introduce several
important patterns for writing loops including counting loops and input loops.

9.1 Repetition without Loops

Before talking about new Java constructs, we should explore the idea that executing the same
sequence of instructions over and over again does not necessarily mean doing exactly the same
thing over and over again. You have already seen examples of this in many of the programs
we have examined. As a very simple case, consider the numeric keypad program presented in
Figure 3.12. The display produced by this program is shown in Figure 9.1.

221

Figure 9.1: A numeric keypad user interface

The buttonClicked method in the program contains just one line of code:

entry.setText(entry.getText() + clickedButton.getText());

The name associated with the text field displayed at the bottom of the program’s window is entry,
and clickedButton is the formal parameter name associated with the button whose clicking caused
the execution of the buttonClicked method. As a result, each time a button is clicked, its digit
value is appended to the string of digits shown in the text field.

In some sense, every time any button in the keypad is pressed, this program does exactly the
same thing. It executes the single line that forms the body of the buttonClicked method. The
effect of executing this line, however, depends both on which button was just pressed and on what
buttons were previously pressed. Therefore, the behavior that results each time the line is executed
is slightly different.

If the first button pressed is the “1” key, then executing this line will cause a “1” to be displayed
in the text field named entry. If the user next presses the “2” key, the same line will be executed,
but instead of causing “1” to be displayed, the pair “12” will be displayed. Even if the user had
pressed exactly the same key both times, the first execution would display “1” while the second
would display “11”.

The key to the way in which this code’s behavior varies is the fact that it both depends upon
and changes the contents of the text field entry. It accesses the contents of this field using the
getText method and then changes it using setText.

There are many other ways in which we can write code that bears repetition by making the
code both depend upon and change some aspect of the state of the computer. One very common
approach is to write code that depends on and changes the values associated with one or more
variables. To illustrate this, we will consider a rather impractical way to construct the keyboard
shown in Figure 9.1.

The constructor used to create the keypad which was originally presented in Figure 3.12 is
repeated for convenience in Figure 9.2. Ten lines of this code are extremely similar to one another,
but they are not quite identical. We are looking for examples where executing exactly the same

222

public NumericKeypad() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

contentPane.add(new JButton("1"));
contentPane.add(new JButton("2"));
contentPane.add(new JButton("3"));

contentPane.add(new JButton("4"));
contentPane.add(new JButton("5"));
contentPane.add(new JButton("6"));

contentPane.add(new JButton("7"));
contentPane.add(new JButton("8"));
contentPane.add(new JButton("9"));

contentPane.add(new JButton("0"));

entry = new JTextField(DISPLAY_WIDTH);
contentPane.add(entry);

}

Figure 9.2: Constructor that creates a keyboard interface

instructions over and over again produces useful results, so lets think about how we can replace
these nearly identical instruction with instruction that are actually identical.

The only difference between the lines that invoke contentPane.add is the value that is provided
as a label for the JButtons being constructed. We can eliminate this difference by replacing the
literals "1", "2", etc. with an expression that depends on a variable.

Recall that if buttonNumber is an int variable associated with the value 1, then the expression

"" + buttomNumber

produces the String value

"1"

Therefore, if the value associated with the variable buttonNumber is 1, then the statement

contentPane.add(new JButton("" + buttonNumber));

is equivalent to

contentPane.add(new JButton("1"));

Similarly, if buttonNumber is associated with 2, then the same statement is equivalent to

contentPane.add(new JButton("2"));

223

Given these observations, it should be clear that if we initially associate the value 1 with
buttonNumber then we could replace the first nine lines of the code shown in Figure 9.2 with nine
copies of the two instructions

contentPane.add(new JButton("" + buttonNumber));

buttonNumber = buttonNumber + 1;

The result of executing this pair of instructions depends on the value of the variable buttonNumber,
but the instructions also change the value of this variable. As a result, executing one copy of this
pair of instructions will produce a button with the label “1”, executing a second copy will produce
a button displaying “2”, and so on. Thus, nine copies of these two lines can be used to produce
the buttons “1” through “9”.

If we tried to use a tenth copy of these two lines to produce the last button, we would be
disappointed. Executing a tenth copy of these two lines would produce a button labeled with “10”.
Unfortunately, the last button in the keyboard should be labeled with “0” rather than “10”. It is
possible, however, to write two instructions that will correctly generate all ten buttons if executed
ten times.

In Section 7.3.2, we introduced the modulus operator, %. If a and b are integer-valued expres-
sions, then a % b produces the remainder that results when a is divided by b. If we divide any
number between 1 and 9 by 10, then the quotient is 0 and the remainder is just the original number.
If we divide 10 by 10, however, the quotient is 1 and the remainder is 0. Therefore, the expression
buttonNumber % 10 will return the value of buttonNumber if that value falls between 1 and 9 and
0 if the value of buttonNumber is 10.

We can, therefore, use ten copies of the two instructions

contentPane.add(new JButton("" + (buttonNumber % 10)));

buttonNumber = buttonNumber + 1;

to create the entire keypad as shown in Figure 9.3. The last copy of the statement

buttonNumber = buttonNumber + 1;

is clearly unnecessary, but it accomplishes our goal of replacing the 10 similar instructions in the
original code with 10 identical code segments.

9.2 Worth Your While

You may have the feeling that we didn’t accomplish anything useful in the preceding section.
Replacing 10 somewhat repetitive lines of code with 20 even more repetitive lines is not usually
considered a good thing. The changes we have made, however, put us in position to use a new
Java language construct called the while statement or while loop to make the code required to
construct the keyboard much more compact.

The general form of a while statement is

while (condition)

statement

224

public NumericKeypad() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

int buttonNumber = 1;

contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;

entry = new JTextField(DISPLAY_WIDTH);
contentPane.add(entry);

}

Figure 9.3: Extremely repetitive code to create a keyboard interface

225

public NumericKeypad() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

int buttonNumber = 1;

while (buttonNumber <= 10) {
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;

}

entry = new JTextField(DISPLAY_WIDTH);
contentPane.add(entry);

}

Figure 9.4: Using a while statement to construct a key pad

The keyword while and the condition included are called the loop header and the statement included
is called the loop body. It is very common to use a compound statement formed by placing a series
of statements in curly braces as the body of a while loop. That is, in practice, while statements
are almost always written as

while (condition) {
one or more statements

}

The condition included in the header of a while statement must be an expression that returns a
value of the type boolean. When a program’s execution reaches a while statement, the computer
repeatedly executes the statement(s) found in the body of the loop until evaluating the condition
yields false.

To see how to use this construct, recall the code we devised for creating a keypad in the last
section. To draw the keypad, all we did was repeatedly execute the two statements

contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;

by placing 10 copies of these statements in our code. Now, we can replace these 20 lines with the
four line while loop shown in Figure 9.4.

Let us consider how the loop in Figure 9.4 would be executed by a computer. Just before
beginning to execute the while loop, the computer will process the declaration

int buttonNumber = 1;

which initializes buttonNumber to refer to the value 1. Next, the computer will begin the process
of executing the loop by checking to see if the condition buttonNumber <= 10 specified in the loop
header is true. Given that the value 1 has just been associated with buttonNumber, the condition
will be true at this point, and the computer will proceed to execute the two statements in the loop
body. The first of these statements will place the “1” button in the program’s window. The second
statement will change the value associated with buttonNumber from 1 to 2.

226

Figure 9.5: Flow of execution through a while loop

After the first execution of the loop body, the computer will again check whether evaluating the
condition of the loop produces true or false. Executing the body will have increased the value
associated with buttonNumber to 2, but it will still be true that buttonNumber <= 10. Accordingly,
the computer will proceed to execute the body a second time, placing the “2” button in the window
and changing the value associated with buttonNumber to 3.

The process will be repeated in very much the same way 7 more times for the buttons “3”
through “9”. After the ninth execution of the loop body, the computer will again verify that the
condition buttonNumber <= 10 is true. The value 10 will be associated with buttonNumber, so it
will proceed to execute the two statements in the loop body a tenth time.

This last execution of the loop places the “0” button on the screen and associates buttonNumber
with the value 11. At this point, the condition buttonNumber <= 10 is no longer true. Therefore,
after the tenth execution of the loop body, the computer will check the condition for the eleventh
time and notice that the condition is now false. This will cause the computer to realize that the
execution of the loop is complete. The machine will proceed to execute the two statements that
follow the loop in the constructor:

entry = new JTextField(DISPLAY_WIDTH);

contentPane.add(entry);

The diagram in Figure 9.5 illustrates the way in which Java executes all while loops.

227

Figure 9.6: American Airlines on-line reservation interface

9.3 Count to Ten

The loop we presented in the previous section is an example of a very common and important type
of loop: a loop that counts. In that loop, we counted how many buttons had been displayed to
determine both how to label each button and how many times to execute the body of the loop.
To solidify your understanding of the basics of while loops, we will consider several additional
examples of counting loops before moving on to explore other ways to write loops.

In our first example, we used a counting loop to place buttons in a window. In this section,
we will use very similar loops to place items in pop-up menus. As motivation, imagine that you
decided that a little time in a tropical paradise would be nice and set out to plan a trip to Hawaii.
Among other arrangements, you would have to book a flight. Chances are that you would look for
the best deal you could find on airline websites and travel sites like Orbitz, Kayak, and Travelocity.

On most of these sites, you would encounter an interface similar to that shown in Figure 9.6.
This figure shows the contents of the American Airlines reservation web site captured as a user is
changing the date for the return flight from July 11th to July 12th. The pop-up menu obscures
several of the component displayed beneath it. We have included a slightly enlarged image of these
components below the image of the browser window. We will explore how to write Java code to
create components similar to these in a Java program rather than in a web page.

The interface we have in mind for our Java program is shown in Figure 9.7. This figure includes
two images of the program’s window, one showing all of the components in their idle state and the

228

Figure 9.7: A Java version of an airline reservation interface

int buttonNumber = 1;

while (buttonNumber <= 10) {
contentPane.add(new JButton("" + (buttonNumber % 10)));
buttonNumber = buttonNumber + 1;

}

Figure 9.8: A counting loop to create keyboard buttons

other showing one of the menus being used to select a return date.
The interface consists of two, nearly identical rows of components. The top row is intended

for specifying the departure location, date, and time. The bottom row is for the destination and
return flight date and time. Each row contains a JTextField for the departure or destination city,
a few JLabels, and three JComboBoxes. We will focus on the last two JComboBoxes on each row.

Our first goal is to write a loop to fill the menu used to select a date within a month. This is
the menu shown in use in Figure 9.7. The loop we need is almost identical to the loop we used to
create the buttons for our keyboard in Figure 9.4, so we start by considering the exact roles of the
components of that code. The lines of interest are repeated in Figure 9.8.

The variable buttonNumber was used to keep track of how many buttons had been added to
the content pane. We need to keep track of how many dates have been added to the menu we are
creating. Accordingly, the first line of code we need is something like

int date = 1;

229

// Fill a menu with the numbers of the days in a particular month

private void fillDateMenu(JComboBox dateMenu, int lengthOfMonth) {

dateMenu.removeAllItems();

int date = 1;
while (date <= lengthOfMonth) {

dateMenu.addItem("" + date);
date = date + 1;

}
}

Figure 9.9: A method that uses a counting loop to fill a menu with dates

The condition in the loop for keyboard buttons stopped the loop as soon as 10 buttons had
been created. We want our new loop to stop as soon as an entry has been added for every day
of the month. Unfortunately, different months have different numbers of days. So, we assume
that our loop will be preceded by code to associate the appropriate value with a variable named
lengthOfMonth. Then, we can use a loop header of the form

while (date <= lengthOfMonth) {

Finally, the body of the loop should contain one statement to add an item to the menu each
time the loop executes and one statement to increase the date variable’s value by 1. Assuming the
menu is named dateMenu, the two instructions

dateMenu.addItem("" + date);
date = date + 1;

could be used as the body of the loop.1

We can put all these pieces together to form a private method that fills an existing JComboBox
with the list of dates appropriate for a particular month. Figure 9.9 shows the complete code
for such a method. The method is designed so that it can be invoked to update the list of dates
included in the menu whenever the user selects a new month from the associated menu of month
names. It therefore begins by removing any existing entries from the menu and then fills the menu
using the counting loop we have described.

It should be clear that the loops in Figures 9.8 and 9.9 are extremely similar. They both have
the basic form illustrated by the following mix of Java and English:

Associate starting value with a counter variable

while (counter is no greater than final value desired) {
Do a bit of interesting work using the counter

Increase the value associated with the counter

}
1This code can be simplified if you are using Java 5.0 or later. The addItem method can now accept numeric

parameter values. Therefore, you can replace the parameter "" + date with just date.

230

This, in fact, is the basic form of all counting loops. There are, however, many ways to vary this
basic pattern.

We can reverse the order of the two components of the loop body as long as we adjust the
starting value and the loop condition appropriately. That is, the following loop could be used in
place of the loop used in Figure 9.9:

int date = 0;
while (date < lengthOfMonth) {

date = date + 1;
dateMenu.addItem("" + date);

}

This loop reveals one slightly subtle point about the way in which the condition controls the
execution of the loop. During the final repetition of this loop, the computer first executes the
instruction

date = date + 1;

At this point, the condition date < lengthOfMonth will no longer be true. The computer, how-
ever, does not immediately stop executing the body of the loop. The condition that controls the
execution of a loop is checked exactly once for each repetition of the loop body before the computer
begins to execute the statements in the loop body. Once the computer begins to execute the loop
body, it does not check the condition again until the process of executing the body is complete.
Therefore, even though date becomes equal to lengthOfMonth in the middle of the last execution
of the loop body, the computer will proceed to execute the statement

dateMenu.addItem("" + date);

placing the last entry in the window.
We don’t always have to count by ones in our loops. Just like the cheer “2, 4, 6, 8, who do we

appreciate”, if we replace the 1 in

date = date + 1;

with some other value we can count using a different increment. This would not be a sensible
change in this loop because we want the menu to contain every number from 1 up to the last day
in the month. But there are many examples where increments other than 1 are useful.

Consider the menus in our program used to indicate the desired departure times for flights.
We would like to fill these menus with one entry for each of the 24 hours in a day. We can
(and shortly will) fill this menu with entries including the suffixes “AM” and “PM” to distinguish
between morning and afternoon departure times. An alternative that avoids these suffixes is to use
“military” or “railroad” time in which the hours are numbered from 1 through 24. In this system,
7AM becomes 700 or “seven hundred hours” while 7PM is 1900 or “nineteen hundred hours.”
Figure 9.10 shows a menu of times built using this system. We can fill such a menu by writing a
loop that counts by 100 instead of 1. The code required is shown in Figure 9.11.

We can even count backwards by decreasing the value associated with the counter variable each
time the loop executes. Of course, we have to associate the counter variable with the largest value
just before the loop and change the condition to test whether we have reached the smallest value.

231

Figure 9.10: A menu of hours using 24-hour clock times

JComboBox timeMenu = new JComboBox();

int hour = 100;
while (hour <= 2400) {

timeMenu.addItem("" + hour);
hour = hour + 100;

}

Figure 9.11: A counting loop to create a 24-hour clock menu

JComboBox timeMenu = new JComboBox();

int hour = 2400;
while (hour >= 100) {

timeMenu.addItem("" + hour);
hour = hour - 100;

}

Figure 9.12: A counting loop to create a reversed 24-hour clock menu

232

Thus, if we want our 24-hour clock menu to appear with 2400 at the top and 100 at the bottom
we would use the loop shown in Figure 9.12.

While counting by 100s or 10s or even backwards is useful in many situations, the most common
form of counting loop is the loop that counts by 1s. In fact, Java includes a special shorthand for
writing an instruction that increments a counter variable by 1. If counter is a numeric variable,
then the statements

++counter;

and

counter++;

are both2 equivalent to the statement

counter = counter + 1;

Thus, we could replace the loop to fill our date menu with the loop

int date = 0;
while (date < lengthOfMonth) {

++date;
dateMenu.addItem("" + date);

}

Similarly, the statements

--counter;

and

counter--;

decrease the value associated with a numeric variable by 1.

9.4 Nesting Instinct

In our generic template for a counting loop, one of the two parts of the loop body was described as
“Do a bit of interesting work using the counter.” More interesting variations of counting loops can
be formed by doing more interesting work. In particular, there is nothing that limits us to using
just a single Java statement to describe this work. We can use as many statements as we need and
we can use complex statements including if statements and even additional while loops.

To illustrate the use of a loop within a loop, consider making some additional travel arrange-
ments. While the airlines make the reasonable assumption that no one should specify their desired
flight time with more precision than the nearest hour, some car rental companies expect customers
to be even more precise. For example, the Budget Rent-A-Car reservation web site includes a menu
with times at 15 minute intervals. A small fragment of this menu is shown in Figure 9.13

2There is no difference between ++counter and counter++ when they are used as statements. Java, however,
allows a programmer to use these constructs as expressions. Using these constructs as expressions can produce code
that is difficult to understand. We urge you to avoid such use. When these constructs are used as expressions, they
both increment counter and produce a value. The expression ++counter produces the value associated with counter

after the increment is performed. The expression counter++ produces the value associated with counter before the
increment.

233

Figure 9.13: A section of the Budget Rent-A-Car pickup time menu

JComboBox timeMenu = new JComboBox();

int hour = 100;
while (hour <= 2400) {

Do a bit of interesting work using the counter.

hour = hour + 100;
}

Figure 9.14: An incomplete counting loop to create a clock menu

At first, it might seem easy to adapt the code shown in Figure 9.11 to build such a menu. That
code counted by 100s. What if we just changed it to count by 15s?

Unfortunately, the computer has no way to know that the value stored in the variable hour is
supposed to represent a time of day. It only knows that it is a number. If the value of hour starts
at 100 and we repeatedly add 15, the values placed in the menu will be 100, 115, 130, 145, 160,
175, 190, 205, etc. The computer has no way to know that it should skip from 145 to 200!

To see a way to fix this, suppose that we replace the line in Figure 9.11 that adds items to
the menu with our generic “Do a bit of interesting work using the counter.” The resulting code is
shown in Figure 9.14. Now, think about what sort of “interesting work” we need to perform if we
want to produce a menu like that shown in Figure 9.13. Each time we perform this “interesting
work” we should include four menu items for 0, 15, 30, and 45 minutes past the value in hour.
This itself is a repetitive task. It can be performed by a counting loop that counts the number of
minutes past the hour starting at 0 in steps of 15. A loop to do this might look like

int minutes = 0;
while (minutes <= 45) {

Do a bit of interesting work using the minute counter.

minutes = minutes + 15;
}

Putting this fragment together with the template shown in Figure 9.14 gives us complete code
to fill a menu similar to the Budget Rent-A-Car time menu. This code is shown in Figure 9.15.

234

JComboBox timeMenu = new JComboBox();

int hour = 100;
while (hour <= 2400) {

// Add four menu items in 15 minute increments

int minutes = 0;
while (minutes <= 45) {

timeMenu.addItem("" + (hour + minutes));
minutes = minutes + 15;

}

hour = hour + 100;
}

Figure 9.15: Nested loops to create a 15-minute increment time menu

This code is an example of what is called loop nesting. The counting loop that increments minutes
is referred to as the inner loop and the loop that increments hours is called the outer loop.

To reinforce the fact that we can use whatever statements are appropriate to do the “interesting
work” in a while loop, let us consider one final variation of our time menu. For people who cannot
figure out that 1800 hours is dinner time, we will write code to produce a menu with each time
followed by the appropriate “AM” or “PM” suffix.

We will begin with a counting loop that simply counts hours in increments of one. That is, our
basic template for this loop is

int hours = 1;
while (hours <= 24) {

Do a bit of interesting work using the hour counter.

++hours;
}

This time we have to do two bits of “interesting work” for each execution of the loop.
We have to use the value of hour to determine what number to display in the menu. When

hour is 6, we should just display 6, but when hour is 16 we want to display 4. We can do this using
a simple if statement. For example, we might say

int timeToDisplay = hour;
if (timeToDisplay > 12) {

timeToDisplay = timeToDisplay - 12;
}

We also have to decide whether to use the suffix “AM” or “PM”. This is a bit trickier because
midnight (i.e., 2400 hours) is considered “AM” while noon (i.e., 1200 hours) is considered “PM”.

235

JComboBox timeMenu = new JComboBox();

int hour = 1;
while (hour <= 24) {

// Translate 24-hour time into 12 hour time

int timeToDisplay = hour;
if (timeToDisplay > 12) {

timeToDisplay = timeToDisplay - 12;
}

// determine the correct suffix and add to menu

if (12 <= hour && hour < 24) {
timeMenu.addItem(timeToDisplay + "PM");

} else {
timeMenu.addItem(timeToDisplay + "AM");

}

++hour;
}

Figure 9.16: Nesting if statement in a loop to form a time menu

All the times from noon until just before midnight are considered “PM”. Everything else is “AM”.
Therefore, the if statement

if (12 <= hour && hour < 24) {
timeMenu.addItem(timeToDisplay + "PM");

} else {
timeMenu.addItem(timeToDisplay + "AM");

}

will insert menu items with the appropriate suffixes. Putting these two if statements together
with the loop template shown above gives us a complete loop to form the desired menu as shown
in Figure 9.16.

9.5 Line by Line

Text documents, whether they be email messages, word processing documents, simple web pages,
or the text of a Java program, have at least one level of structure that is quite repetitive. They
are composed of a series of lines. This structure leads very naturally to loops that process the
information in such documents by repeatedly performing one or more instructions to process each
line. If the text to be processed is being received through a NetConnection, such loops will
repeatedly invoke the nextLine method. Such loops are called read loops or input loops. We will
consider the structure of read loops in this section. Later, you will see that read loops can also be
used to process the lines of text stored in files on a machine’s local disk.

236

To illustrate a very simple application of a read loop, we will revise one version of the SMTP
client we explored in Chapter 4. Recall that when using the SMTP protocol, a client is expected
to send a sequence of commands or requests starting with prefixes like “HELO”, “MAIL FROM”,
“RCPT TO”, etc. In response to each of these commands, the server sends a line indicating whether
it was able to process the request successfully. These lines start with numeric codes like “250”,
which indicates success, and “501”, which indicates an error in the request sent by the client.

The clients we constructed in Chapter 4 all displayed the responses received from the server
in a JTextArea so that the user could verify that everything worked. We took several different
approaches to accomplish this. In one version, we used the nextLine method to retrieve the server’s
response immediately after each client request. In another, we used the dataAvailable method to
handle all server responses. In a third approach, we showed a version of the client that first sent
all its requests to the server and then afterwards processed all of the server’s responses together.
We will use this third version as our starting point for the introduction of read loops. For your
convenience, the buttonClicked method from this version is reproduced in Figure 9.17.

At this point, you know enough about loops that it should be obvious that we could use a while
loop to replace the sequence of seven invocations of log.append and connection.in.nextLine
that occur near the end of the method in Figure 9.17. A simple loop that counted from 1 to 7 and
contained one copy of the line that invokes nextLine would do the trick. You certainly could write
such a loop (and you probably should for practice). Java, however, provides an alternative to using
a counting loop that is preferable in this situation.

There is a method named hasNextLine associated with the in stream of every NetConnection
that can be used to determine how often to execute a read loop without counting lines. This
method returns a boolean value. It returns true if a line has been received from the server and
not yet retrieved by invoking nextLine. It returns false if the server has closed its side of the
NetConnection and all the lines sent have been processed. Otherwise, it makes the program wait
to see whether the server sends another line or closes the connection and then returns true or
false as appropriate.

Using the hasNextLine method, we can replace the seven lines that invoke nextLine near the
end of the code in Figure 9.17 with the shorter loop:

while (connection.in.hasNextLine()) {
log.append(connection.in.nextLine() + "\n");

}

Even though this loop is very short, it is worth thinking carefully about how it works. In our
introduction to loops, we stressed that it is boring to do exactly the same thing over and over again.
With counting loops, we avoided exact repetition by making the action performed by the loop body
depend on a counter variable whose value changed each time the body was executed. The loop
body in our short read loop does not contain any assignment statement. Its execution does not
change the value of any variable. It does however, change the state of the NetConnection to the
server. It is important to understand that each time nextLine is invoked, the system attempts to
return a line that has not previously been accessed. Therefore, every time nextLine is invoked, it
does something slightly different by definition.

Of course, read loops do not have to be as simple as this first example. Just as we can place
many statements including nested loops and if statements within a counting loop, we can design
read loops with more complex bodies if appropriate. For example, given that most of the messages
sent by an SMTP server are fairly incomprehensible, we might decide to alter our program so that

237

// Send a message when the button is clicked

public void buttonClicked() {
// Establish a NetConnection and say hello to the server

NetConnection connection = new NetConnection(SMTP_SERVER, SMTP_PORT);
connection.out.println("HELO " + this.getHostName());

// Send the TO and FROM addresses

connection.out.println("MAIL FROM: <" + from.getText() +">");
connection.out.println("RCPT TO: <" + to.getText() +">");

// Send the message body

connection.out.println("DATA");
connection.out.println(message.getText());
connection.out.println(".");

// Terminate the SMTP session

connection.out.println("QUIT");

// Display the responses from the server

log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");
log.append(connection.in.nextLine() + "\n");

connection.close();
}

Figure 9.17: The buttonClicked method of a simple SMTP client

238

while (connection.in.hasNextLine()) {
String response = connection.in.nextLine();
if (response.startsWith("4") || response.startsWith("5")) {

log.append(response + "\n");
}

}

Figure 9.18: A read loop for displaying SMTP error messages

it only shows the user lines that indicate an error has occurred. The codes that SMTP servers place
at the beginning of each response are organized so that responses that indicate errors begin with a
“4” or “5”. Therefore, we can include an if statement in our read loop to selectively display only
errors as shown in Figure 9.18.

In the original loop, we never associated a name with any of the lines received from the server.
In the version shown in Figure 9.18, on the other hand, each line received is associated with the
name response during the execution of the loop body that processes that line. This is essential.
To emphasize this, consider the following code which will not work correctly because it invokes
nextLine several times within the loop’s body rather than associating a name with the result of a
single invocation of nextLine.

// This is an example of INCORRECT CODE!!!

if (connection.in.nextLine().startsWith("4") ||
connection.in.nextLine().startsWith("5")) {
log.append(connection.in.nextLine() + "\n");

}

Suppose that we replaced the body of the loop in Figure 9.18 with this if statement and then
deliberately made a mistake when executing the program by entering “baduser@funnyplace.giv” as
the sender address for our message. In this case, the sequence of responses sent by the server will
look something like

220 smptserver.cs.williams.edu ESMTP Wed, 11 Jul 2007 11:07:04 -0400 (EDT)

250 smptserver.cs.williams.edu Hello 141.154.147.159, pleased to meet you

553 5.1.8 <baduser@funnyplace.giv> Domain of address baduser@funnyplace.giv does not exist

503 5.0.0 Need MAIL before RCPT

503 5.0.0 Need MAIL command

500 5.5.1 Command unrecognized: "This should not work at all"

500 5.5.1 Command unrecognized: "."

221 2.0.0 smptserver.cs.williams.edu closing connection

The correct version of the loop would display all but the first two and the last of these lines. Let
us consider how the incorrect version would work.

When the loop body was first executed, it would retrieve the line

220 smptserver.cs.williams.edu ESMTP Wed, 11 Jul 2007 11:07:04 -0400 (EDT)

from the server and check to see if it started with “4”. Since it does not start with “4” it would
then evaluate

connection.in.nextLine().startsWith("5")

239

to see if it starts with “5”. This condition, however, invokes nextLine again. Because each
invocation of nextLine attempts to retrieve a new line from the NetConnection, rather than
testing to see if the first line started with “5” it would actually check whether the second line
received from the server:

250 smptserver.cs.williams.edu Hello 141.154.147.159, pleased to meet you

starts with “5”. It does not, so the first execution of the loop body would terminate without
displaying any line.

The second execution of the body would start by checking to see if the third line received

553 5.1.8 <baduser@funnyplace.giv> Domain of address baduser@funnyplace.giv does not exist

starts with “4”. It does not, so the computer would continue checking the condition of the loop
looking at the fourth line

503 5.0.0 Need MAIL before RCPT

to see if it starts with a “5”. This condition will return true. Therefore the statement

log.append(connection.in.nextLine() + "\n");

will be executed to display the line. Unfortunately, since this command also invokes nextLine it
will not display the fourth line. Instead, it will access and display the fifth line

503 5.0.0 Need MAIL command

Luckily, this line is at least an error.
A very similar scenario will play out with even worse results on the next three lines. The

statement in the loop body will test to see if the sixth line

500 5.5.1 Command unrecognized: "This should not work at all"

starts with a “4”. Since it does not, it will continue to check if the seventh line

500 5.5.1 Command unrecognized: "."

starts with a “5”. Since this test returns true it will then display the eight line

221 2.0.0 smptserver.cs.williams.edu closing connection

which is not even an error message from the server!
The basic lesson is that a read loop should almost always execute exactly one command that

invokes nextLine during each execution of the loop body.

9.5.1 Sentinels

The hasNextLine method is not the only way to determine when a read loop should stop. In fact,
in many situations it is not sufficient. The hasNextLine method does not return false until the
server has closed its end of the connection. In many applications a client program needs to process a
series of lines sent by the server and then continue to interact with the server by sending additional
requests and receiving additional lines in response. Since the server cannot close the connection
if it expects to process additional requests, protocols have to be designed to provide some other

240

way for a client to determine when to stop retrieving the lines sent in response to a single request.
To illustrate how this is done, we will present components of a client based on one of the major
protocols used to access email within the Internet, IMAP.

IMAP and SMTP share certain similar features. They are both text based protocols. In both
protocols, most interactions consist of the client sending a line describing a request and the server
sending one or more lines in response. IMAP, however, is more complex than SMTP. There are
many more commands and options in IMAP than in SMTP. Luckily, we only need to consider a
small subset of these commands in our examples:

LOGIN
After connecting to a server, an IMAP client logs in by sending a command with the request
code “LOGIN” followed by a user name and password.

SELECT
IMAP organizes the messages it holds for a user into named folders or mailboxes. Before
messages can be retrieved, the client must send a command to select one of these mailboxes.
All users have a default mailbox named “inbox” used to hold newly arrived messages. A
command of the form “SELECT inbox” can be used to select this mailbox.

FETCH
Once a mailbox has been selected, the client can retrieve a message by sending a fetch request
including the number of the desired message and a code indicating which components of the
message are desired.

LOGOUT
When a client wishes to disconnect from the server, it should first send a logout request.

Each request sent by an IMAP client must begin with a request identifier that is distinct from
the identifiers used in all other requests sent by that client. Most clients form request identifiers by
appending a sequence number to some prefix like “c” for “client”. That is, client commands will
typically start with a sequence of identifiers like “c1”, “c2”, “c3”, etc.

Every response the server sends to the client also starts with a prefix. In many cases, this
prefix is just a single “*”. Such responses are called untagged responses. Other server responses are
prefixed with the request identifier used as a prefix by the client in the request that triggered the
response. Such responses are called tagged responses.

An example should make all of this fairly clear. Figure 9.19 shows the contents of an exchange
in which a client connects to an IMAP server and fetches a single message from the user’s inbox
folder. To make the requests sent by the client stand out, we have drawn rectangles around each
of them and displayed the text of these requests in bold-face italic font.3

The session begins with the client establishing a connection to port 143 on the IMAP server. As
soon as such a connection is established, the server sends the untagged response “* OK [CAPABILITY
...” to the client.

Next, the client sends a LOGIN request and the server responds with a tagged request which,
among other things, tells the client that the user identifier and password were accepted. The client
request and the server’s response to the login request are both tagged with “c1”, a prefix chosen
by the client.

3The contents of the session have also been edited very slightly to make things fit a bit better on the page and to
hide the author’s actual password.

241

* OK [CAPABILITY IMAP4REV1 STARTTLS AUTH=LOGIN] 2004.357 at Wed, 11 Jul 2007 15:53:00 -0400 (EDT)

c1 LOGIN tom somethingSecret

c1 OK [CAPABILITY IMAP4REV1 NAMESPACE UNSELECT SCAN SORT MULTIAPPEND] User tom authenticated

c2 SELECT inbox
* 549 EXISTS

* 0 RECENT

* OK [UIDVALIDITY 1184181410] UID validity status

* OK [UIDNEXT 112772] Predicted next UID

* FLAGS (Forwarded Junk NotJunk Redirected $Forwarded \Answered \Flagged \Deleted \Draft \Seen)

c2 OK [READ-WRITE] SELECT completed

c3 FETCH 81 (BODY[])

* 81 FETCH (BODY[] {532}
Return-Path: <sales@lacie.com>

Received: from mail.inherent.com (lacie1.inherent.com [207.173.32.81])

by ivanova.inherent.com (8.10.1/8.10.1) with ESMTP id g0OGhZh12957

for <tom@cs.williams.edu>; Thu, 24 Jan 2007 08:43:35 -0800

Message-Id: <200201241643.g0OGhZh12957@ivanova.inherent.com>

Content-type: text/plain

Date: Thu, 24 Jan 2007 08:42:46 -0800

From: sales@lacie.com

Subject: Thanks for shopping LaCie

To: tom@cs.williams.edu

Your order has been received and will be processed.

Thanks for shopping LaCie.

)

c3 OK FETCH completed

c4 LOGOUT
* BYE bull IMAP4rev1 server terminating connection

c4 OK LOGOUT completed

Figure 9.19: A short IMAP client/server interaction

242

Figure 9.20: Interface for an ugly (but simple) IMAP client

The client then sends a SELECT request to select the standard inbox folder. The server has a bit
more to say about this request. It sends back a series of untagged responses providing information
including the number of messages in the folder, 549, and the number of new messages, 0. Finally,
after five such untagged responses, it sends a response tagged with the prefix “c2” to tell the client
that the SELECT request has been completed successfully.

The client’s third request is a FETCH for message number 81. The server responds to this
request with two responses. The first is an untagged response that is interesting because it spans
multiple lines. It starts with “* 81 FETCH (BODY[] {532}”, includes the entire contents of the
requested email message and ends with a line containing a single closing parenthesis. It is followed
by a tagged response that indicates that the fetch was completed.

Finally, the client sends a LOGOUT request. Again the server responds with both an untagged
and a tagged response.

The aspects of this protocol that are interesting here are that the lengths of the server responses
vary considerably and that the server does not indicate the end of a response by closing the con-
nection. You may have noticed, however, that the server does end each sequence of responses with
a response that is fairly easy to identify. The last line sent in response to each of the client requests
is a tagged response starting with the identifier the client used as a prefix in its request. Such a
distinguished element that indicates the end of a sequence of related input is called a sentinel.

To illustrate how to use a sentinel, suppose we want to write an IMAP client with a very

243

primitive interface. This client will simply provide the user with the ability to enter account
information and a message number. After this is done, the user can press a “Get Message” button
and the program will attempt to fetch the requested message by sending requests similar to those
seen in Figure 9.19. As it does this, the client will display all of the lines exchanged with the server.
A nicer client would only display the message requested, but this interface will enable us to keep
our loops a bit simpler. An image of how this interface might look is shown in Figure 9.20.

We will assume that the program includes declarations for the following four variables:

int requestCount;
To keep track of the number of requests that have been sent to the server.

String requestID;
To refer to the request identifier placed as a prefix on the last request sent to the server.

JTextArea display;
To refer to the JTextArea in which the dialog with the server is displayed.

NetConnection toServer;
To refer to the connection with the server.

Let us consider the client code required to send the “SELECT” request to the server and
display the responses received. Sending this command is quite simple since it does not depend on
the account information or message number the user entered. Processing the responses, on the
other hand, is interesting because the number of responses the server sends may vary. For example,
if you compare the text in Figure 9.19 to that displayed in the window shown in Figure 9.20 you
will notice that if a new message has arrived, the server may add a response to tell the client about
it.

The code to send the select request might look like this:

++requestCount;
requestID = "c" + requestCount;

toServer.out.println(requestID + " SELECT inbox");
display.append(requestID + " SELECT inbox" + "\n");

The first two lines determine the request identifier that will be included as a prefix. The next line
sends the request through the NetConnection. The final line adds it to the text area.

After sending this request, the client should retrieve all the lines sent by the server until the
first line tagged with the prefix the client included in the select request. This prefix is associated
with the variable requestID. Since the number of requests can vary, we should clearly use a read
loop. One might expect the loop to look something like

// Warning:
//
// This loop will not work!!

//
while (! responseLine.startsWith(requestID)) {

responseLine = toServer.in.nextLine();
display.append(responseLine + "\n");

}

244

Unfortunately, this will not work. The variable responseLine is assigned its first value when
the loop’s body is first executed. The condition in the loop header, however, will be executed
before every execution of the loop body, including the first. That means the condition will be
evaluated before any value has been associated with responseLine. Since the condition involves
responseLine, this will lead to a program error.

You might have heard the expression “prime the pump.” It refers to the process of pouring
a little liquid into a pump before using it to replace any air in the pipes with water so that the
pump can function. Similarly, to enable our loop to test for the sentinel the first time, we must
“prime” the loop by reading the first line of input before the loop. This means that the first time
the loop body is executed, the line of input it should process (i.e., add to display) will already be
associated with responseLine. To make the loop work, we need to design the loop body so that
this is true for all executions of the loop. We do this by writing a loop body that first processes
one line and then retrieves the next line so that it can be processed by the next execution of the
loop body. The resulting loop looks like

String responseLine = toServer.in.nextLine()";
while (! responseLine.startsWith(requestID)) {

display.append(responseLine + "\n");
responseLine = toServer.in.nextLine();

}

The original loop performed two basic steps: retrieving a line from the server and displaying the
line on the screen. We prime the loop by performing one of these steps before its first execution.
As a result, we also need to finish the loop’s work by performing the other step once after the loop
completes. To appreciate this, consider what will happen to the last line processed. This line will
start with the sentinel value. It will be retrieved by the last execution of the second line in the loop
body

responseLine = toServer.in.nextLine();

The computer will then test the condition in the loop header and conclude that the loop should not
be executed again. As a result, the instruction inside the loop that appends lines to the display
will never be executed for the sentinel line. If we want the sentinel line displayed, we must add a
separate command to do this after the loop. Following this observation, complete code for sending
the select request and displaying the response received is shown in Figure 9.21.

9.6 Accumulating Loops

The code shown in Figure 9.21 includes everything needed to process a select request. To complete
our IMAP client, however, we also need code to handle the login, fetch and logout requests. The
code to handle these requests would be quite similar to that for the select request. We should exploit
these similarities. Rather than simply writing code to handle each type of request separately, we
should write a private helper method to perform the common steps.

In particular, we could write a method named getServerResponses that would retrieve all of
the responses sent by the server up to and including the tagged response indicating the completion
of the client’s request, and return all of these responses together as a single String. This method
would take the NetConnection and the request identifier as parameters. Given such a method, we
could rewrite the code for a select request as

245

++requestCount;
requestID = "c" + requestCount;

toServer.out.println(requestID + " SELECT inbox");
display.append(requestID + " SELECT inbox" + "\n");

display.append(getServerResponses(toServer, requestID));

Preliminary code for a getServerResponses method is shown in Figure 9.22. The method
includes a loop very similar to the one we included in Figure 9.21. This loop, however, does not
put the lines it retrieves into a JTextArea. Instead, it combines them to form a single String. A
variable named allResponses refers to this String.

The variable allResponses behaves somewhat like the counters we have seen in earlier loops. It
is associated with the empty string as an initial value before the loop just as an int counter variable
might be initialized to zero. Then, in the loop body we “add” to its contents by concatenating the
latest line received to allResponses. We are, however, doing something more than counting. We
are accumulating the information that will serve as the result of executing the loop. As a result,
such variables are called accumulators.

Of course, we can accumulate things other than Strings. To illustrate this, we will use an
accumulator to fix a weakness in the approach we have taken to implementing our IMAP client.

Suppose that we use our IMAP client to retrieve an email message about the Star Wars movies
including the following text (adapted from the IMDB web site):

A New Hope opens with a rebel ship being boarded by the tyrannical
Darth Vader. The plot then follows the life of a simple farmboy, Luke
Skywalker, as he and his newly met allies (Han Solo, Chewbacca, Ben Kenobi,
c3-po, r2-d2) attempt to rescue a rebel leader, Princess Leia, from the
clutches of the Empire. The conclusion is culminated as the Rebels,
including Skywalker and flying ace Wedge Antilles make an attack on the
Empires most powerful and ominous weapon, the Death Star.

Can you see why retrieving this particular message might cause a problem?
The IMAP client we have written uses the sequence “c1”, “c2”, “c3”, etc. as its request

identifiers. The request identifier used in the request to fetch the message will always be “c3”.
The fourth line of the text shown above starts with the characters “c3” as part of the robot name
“c3-po”. As a result, the loop in getServerResponses will terminate when it sees this line, failing
to retrieve the rest of the message and several other lines sent by the server. An error like this
might seem unlikely to occur in practice, but the designers of IMAP were concerned enough to
include a mechanism to avert the problem in the rules of the protocol.

If you examine the first line of the untagged response to the fetch request shown in Figure 9.19:

* 81 FETCH (BODY[] {532}

246

// Determine the request identifier

++requestCount;
requestID = "c" + requestCount;

// Send and display the request

toServer.out.println(requestID + " SELECT inbox");
display.append(requestID + " SELECT inbox" + "\n");

// Prime the loop by retrieving the first response

String responseLine = toServer.in.nextLine();

// Retrieve responses until the sentinel is received

while (! responseLine.startsWith(requestID)) {
display.append(responseLine + "\n");
responseLine = toServer.in.nextLine();

}

// Display the final response

display.append(responseLine + "\n");

Figure 9.21: Client code to process an IMAP “SELECT inbox” request

// Retrieve all responses the server sends for a single request

public String getServerResponses(NetConnection toServer, String requestID) {
String allResponses = "";

String responseLine = toServer.in.nextLine();
while (! responseLine.startsWith(requestID)) {

allResponses = allResponses + responseLine + "\n";
responseLine = toServer.in.nextLine();

}
allResponses = allResponses + responseLine + "\n";

return allResponses;
}

Figure 9.22: A method to collect an IMAP server’s responses to a single client request

247

you will notice that it ends with the number 532 in curly braces. This number is the total length
of the text of the email message that follows. According to the rules of IMAP, when a server wants
to send a response that spans multiple lines, the first line must end with a count of the total size of
the following lines. When the client receives such a response, it retrieves lines without checking for
the sentinel value until the total number of characters retrieved equals the number found between
the curly braces. In the IMAP protocol description, such collections of text are called literals. The
only trick is that the count includes not just the characters you can see, but additional symbols
that are sent through the network to indicate where line breaks occur. There are two such invisible
symbols for each line break known as the “return” and “new line” symbols. Both must be included
at the end of each line sent through the network.

Figure 9.23 shows a revised version of the getServerResponses method designed to handle
IMAP literals correctly. At first, it looks very different from the preceding version of the method,
but its basic structure is the same. The body of the while loop in the original version of the
method contained just two instructions:

allResponses = allResponses + responseLine + "\n";
responseLine = toServer.in.nextLine();

The new version retains these two instructions as the first and last instructions in the main loop.
However, it also inserts one extra instruction — a large if statement designed to handle literals —
between them. The condition of the if statement checks for literals by seeing if the first line of a
server response ends with a “}”. If no literals are sent by the server, the body of this if statement
is skipped and the loop works just like the earlier version.

If the condition in the if statement is true then the body of the if statement is executed to
process the literal. The if statement contains a nested while loop. With each iteration of this
loop, a new line sent by the server is processed. Two types of information about each line are
accumulated. The line

allResponses = allResponses + responseLine + "\n";

which is identical to the first line of the outer loops, continues the process of accumulating the
entire text of the server’s response in the variable allResponses. The line

charsCollected = charsCollected + responseLine.length() + LINE_END;

accumulates the total length of all of the lines of the literal that have been processed so far in the
variable charsCollected. The value NEW LINE accounts for the two invisible characters transmitted
to indicate the end of each line sent. charsCollected is initialized to 0 before the loop to reflect
the fact that initially no characters in the literal have been processed.

The instructions that precede the inner loop extract the server’s count of the number of charac-
ters it expects to send from the curly braces at the end of the first line of the response. The header
of the inner loop uses this information to determine when the loop should stop. At each iteration,
this condition compares the value of charsCollected to the server’s prediction and stops when
they become equal.

9.7 String Processing Loops

Strings frequently have repetitive structures. Inherently, every string is a sequence of characters.
Some strings can be interpreted as sequences of words or larger units like sentences. When we need

248

// Retrieve all responses the server sends for a single request

public String getServerResponses(NetConnection toServer, String requestID) {
// Number of invisible symbols present between each pair of lines

final int LINE_END = 2;

String allResponses = "";
String responseLine = toServer.in.nextLine();

while (! responseLine.startsWith(requestID)) {

allResponses = allResponses + responseLine + "\n";

// Check for responses containing literal text

if (responseLine.endsWith("}")) {

// Extract predicted length of literal text from first line of response

int lengthStart = responseLine.lastIndexOf("{") + 1;
int lengthEnd = responseLine.length() - 1;
String length = responseLine.substring(lengthStart, lengthEnd);
int promisedLength = Integer.parseInt(length);

// Used to count characters of literal as they are retrieved

int charsCollected = 0;

// Add lines to response until their length equals server’s prediction

while (charsCollected < promisedLength) {
responseLine = toServer.in.nextLine();
allResponses = allResponses + responseLine + "\n";
charsCollected = charsCollected + responseLine.length() + LINE_END;

}

}

// Get the next line following a single line response or a literal

responseLine = toServer.in.nextLine();
}

return allResponses + responseLine + "\n";
}

Figure 9.23: A method to correctly retrieve responses including literals

249

to process a String in a way that involves such repetitive structure, it is common to use loops. In
this section, we introduce some basic techniques for writing such loops.

Our first example involves a public confession. For years, I pestered my youngest daughter about
a punctuation “mistake” she made when typing. The issue involved the spacing after periods. In
the olden days, when college-bound students left home with a typewriter rather than a laptop, they
(we?) were taught to place two spaces after the period at the end of a sentence. In the world of
typewriters in which all characters had the same width, this rule apparently improved readability.
Once word processors and computers capable of using variable-width fonts arrived, this rule became
unnecessary and students were told to place just one space after each sentence. Unfortunately, no
one told me that the rule had changed. I was trying to teach my daughter the wrong rule!

To make up for my mistake, let’s think about how we could write Java code to take a String
typed the old way and bring it into the present by replacing all the double spaces after periods with
single spaces. In particular, we will define a method named reduceSpaces that takes a String
in which some or all periods may be followed by double spaces and returns a String in which
any sequence of more than one space after a period has been replaced by a single space. Even if
you have always typed the correct number of spaces after your periods, this example illustrates
techniques that can be used to revise the contents of a String in many other useful ways.

A good way to start writing a loop that repeats some process is to write the code to perform
the process once. Generally speaking, if you do not know how to do something just once, you are
not going to be able to do it over and over again. In our case, “the process” is finding a period
followed by two spaces somewhere in a String and replacing the two spaces with a single space.

As our English description suggests, the first step is to find a period followed by two spaces. This
can be done using the indexOf method. Assuming that the String to be processed is associated
with a variable named text, then the statement

int periodPosition = text.indexOf(". ");

associates name periodPosition with the position of the first period within text that is followed
by two spaces. Since it is probably a bit difficult to count the spaces between the quotes in this
code, in the remainder of our presentation, we will use the equivalent expression

"." + " " + " "

in place of ". ".
Once indexOf tells us where the first space that should be eliminated is located, we can use

the substring method to break the String into two parts: the characters that appear before the
extra space and the characters that appear after that space as follows

int periodPosition = text.indexOf("." + " " + " ");
String before = text.substring(0, periodPosition + 2);
String after = text.substring(periodPosition + 3);

Then, we can associate the name text with the String obtained by removing the second space by
executing the assignment

text = before + after;

With this code to remove a single extra space, we can easily construct a loop and a method
to remove all of the extra spaces. A version of reduceSpaces based on this code is shown in

250

private String reduceSpaces(String text) {

while (text.contains("." + " " + " ")) {
int periodPosition = text.indexOf("." + " " + " ");
String before = text.substring(0, periodPosition + 2);
String after = text.substring(periodPosition + 3);
text = before + after;

}
return text;

}

Figure 9.24: A method to compress double spaces after periods

Figure 9.24. We have simply placed the instructions to remove one double space in a loop whose
condition states that those instructions should be executed repeatedly as long as text still contains
at least one double space after a period.

Suppose instead that we were given text in which each sentence was ended with a period followed
by a single space and we wanted to convert this text into “typewriter” format where every period
was followed by two spaces. Again, we start by writing instructions to add an extra space after
just one of the periods in the text. The following instructions do the job by splitting the text into
“before” and “after” components right after the first period:

int periodPosition = text.indexOf("." + " ");
String before = text.substring(0, periodPosition + 1);
String after = text.substring(periodPosition + 1);
text = before + " " + after;

However, if we put these instruction inside a loop with the header

while (text.contains("." + " ")) {

the resulting code won’t add extra spaces after all of the periods. Instead, it will repeatedly add
extra spaces after the first period over and over again forever.

To understand why this loop won’t work, note that even after we replace a copy of the substring
"." + " " in text with the longer sequence "." + " " + " " , text still contains a copy of "." +
" " at exactly the spot where the replacement was made. This interferes with the correct operation
of the proposed code in two ways. First, if the condition in the loop header is true before we execute
the body of the loop, it will still be true afterwards. This means that the loop will never stop.
If you run such a program, your computer will appear to lock up. This is an example of what is
called an infinite loop. Luckily, most program development environments provide a convenient way
to terminate a program that is stuck in such a loop.

In addition, each time the loop body is executed the invocation of indexOf in the first line will
find the same period. The first time, there will only be one space after this period. The second time
there will be two spaces, then three and so on. Not only does this loop execute without stopping,
as it executes, it only changes the number of spaces after the first period.

There are two ways to solve these problems. The first is to take advantage of the fact that
indexOf accepts a second, optional parameter telling it where to start its search. If we always start

251

int periodPos = -1;
while (text.indexOf("." + " ", periodPos + 1) != -1) {

periodPos = text.indexOf("." + " ", periodPos + 1);
String before = text.substring(0, periodPos + 1);
String after = text.substring(periodPos + 1);
text = before + " " + after;

}

Figure 9.25: An inefficient loop to add spaces after periods

the search after the last period we processed, each period will only be processed once. Also, recall
that indexOf returns -1 if it cannot find a copy of the search string. Therefore, if we replace the
use of the contains method with a test to see if an invocation of indexOf returned -1, our loop
will stop correctly after extra blanks are inserted after all of the periods. A correct (but inefficient)
way to do this is shown in Figure 9.25.

The body of this loop is identical to the preceding version, except that periodPos + 1 is
included as a second parameter to the invocation of indexOf. This ensures that each time the
computer looks for a period it starts after the position of the period processed the last time the
loop body was executed. To make this work correctly for the first iteration, we initially associate
-1 with the periodPos variable.

The other difference between this loop and the previous one is the condition. Instead of depend-
ing on contains, which always searches from the beginning of a String, we use an invocation of
indexOf that only searches after the last period processed. This version is correct but inefficient.
Having replaced contains with indexOf, the loop now invokes indexOf twice in a row with exactly
the same parameters producing exactly the same result each time the body is executed.

Efficiency is a tricky subject. Computers are very fast. In many cases, it really does not matter
if the code we write does not accomplish its purpose in the fewest possible steps. The computer
will do the steps so quickly no one will notice the difference anyway. When working with loops,
however, a few extra steps in each iteration can turn into thousands or millions of extra steps if
the loop body is repeated frequently. As a result, it is worth taking a little time to avoid using
indexOf to ask the computer to do exactly the same search twice each time this loop executes.

The way to make this loop more efficient is to “prime” the loop much as we primed read loops.
In this case, we prime the loop by performing the first indexOf before the loop and saving the
result in a variable. In addition, we will need to perform the indexOf needed to set this variable’s
value as the last step of each execution of the loop body in preparation for the next evaluation of
the loop’s condition. We can then safely test this variable in the loop condition. An addSpaces
method that uses this approach is shown in Figure 9.26.

If you think about it for a moment, you should realize that the same inefficiency we identified
in Figure 9.25 exists in the code shown for the reduceSpaces method in Figure 9.24. It is not
as obvious in the reduceSpaces method because we do not invoke indexOf twice in a row. The
invocations of contains and indexOf in this method, however, make the computer search through
the String twice in a row looking for the same substring. Worse yet, both searches start from the
very beginning of the text, rather than after the last period processed. As a result, it would be
more efficient to rewrite reduceSpaces in the style of Figure 9.26. We encourage the reader to
sketch out such a revision of the method.

252

private String addSpaces(String text) {

int periodPos = text.indexOf("." + " ");
while (periodPos >= 0) {

String before = text.substring(0, periodPos + 1);
String after = text.substring(periodPos + 1);
text = before + " " + after;
periodPos = text.indexOf("." + " ", periodPos + 1);

}
return text;

}

Figure 9.26: A method to place double spaces after periods

An alternative approach to the problem of implementing addSpaces is to use a variable that
accumulates the result as we process periods. Suppose we call this variable processed and declare
it as

String processed = "";

The loop body will now function by moving segments of the original String from the variable text
to processed fixing the spacing after one period in each segment copied.

Again, let’s start by thinking about how to do this just once. In fact, to make things even
simpler, just think about doing it for the first period in the String. The code might look like

int periodPos = text.indexOf("." + " ");
processed = text.substring(0, periodPos + 2) + " ";
text = text.substring(periodPos + 2);

We find the period, and then we move everything up to and including the period and following
spaces to processed while leaving everything after the space following the first period in text.

Now, all we need to do to make this work for periods in the middle of the text, rather than
just the first period, is to add the prefix from text to processed rather than simply assigning it
to processed. That is, we change the assignment

processed = text.substring(0, periodPos + 2) + " ";

to be

processed = processed + text.substring(0, periodPos + 2) + " ";

We still want to avoid searching the text in both the loop condition and the loop body. Therefore,
we prime the loop by searching for the first period and repeat the search as the last step of the loop
body. The complete loop is shown in Figure 9.27. Note that any suffix of the original text after
the last period will remain associated with the variable text after the loop terminates. Therefore,
we have to concatenate processed with text to determine the correct value to return.

The behavior of the values associated with text by this loop is in some sense the opposite
of that of the values of processed. In the case of processed, information is accumulated by

253

private String addSpaces(String text) {
String processed = "";

int periodPos = text.indexOf("." + " ");
while (periodPos >= 0) {

processed = processed + text.substring(0, periodPos + 2) + " ";
text = text.substring(periodPos + 2);
periodPos = text.indexOf("." + " ");

}
return processed + text;

}

Figure 9.27: Another method to place double spaces after periods

gathering characters together. As the loop progresses, on the other hand, the contents of text are
gradually dissipated by throwing away characters. In fact, it is frequently useful to design loops
that gradually discard parts of a String as those parts are processed and terminate when nothing
of the original String remains.

As an example of this, consider how to add one useful feature to the SMTP client that was
introduced in Chapter 4 and discussed again in Section 9.5. That program allows a user to send an
email address to a single destination at a time. Most real email clients allow one to enter an entire
list of destination addresses when sending a message. These clients send a copy of the message to
each destination specified. Such clients allow the user to type in all of the destination addresses
on one line separated from one another by spaces or commas. An example of such an interface is
shown in Figure 9.28

The SMTP protocol supports multiple destinations for a message, but it expects each destination
to be specified as a separate line rather than accepting a list of multiple destinations in one line.
We have seen that an SMTP client typically transmits a single message by sending the sequence
of commands “HELO”, “MAIL FROM”, “RCPT TO”, “DATA”, and “QUIT” to the server. To
specify multiple destinations the client has to send multiple “RCPT TO” commands so that there
is one such command for each destinations address.

Our goal is to write a loop that will take a String containing a list of destinations and send
the appropriate sequence of “RCPT TO” commands to the server. To keep our code simple, we
assume that exactly one space appears between each pair of addresses.

Once again, start by thinking about the code we would use to send just one of the “RCPT TO”
commands to the server. Assuming that the variable destinations holds the complete String of
email addresses and that connection is the name of the NetConnection to the server, we could
use the instructions

int endOfAddress = destinations.indexOf(" ");
String destination = destinations.substring(0, endOfAddress);
connection.out.println("RCPT TO: <" + destination +">");

The first of these instructions finds the space after the first email address. The second uses the
position of this space with the substring method to extract the first address from destinations.
The final line sends the appropriate command to the server.

254

Figure 9.28: Typical interface for specifying multiple email destinations

We clearly cannot simply repeat these commands over and over to handle multiple destinations.
If we repeat just these instructions, the first line will always find the same space and the loop will
just send identical copies of the same “RCPT TO” command forever:

RCPT TO: <mworth@global.com>
RCPT TO: <mworth@global.com>
RCPT TO: <mworth@global.com>

. . .

We can get much closer to what we want by adding the following line to the end of the code we
have already written

destinations = destinations.substring(endOfAddress + 1);

This line removes the address processed by the first three lines from the value of destinations.
Therefore, if we execute these four lines repeatedly, the program sends a “RCPT TO” for the
first address in destinations the first time, a command for the second address during the second
execution, and so on:

RCPT TO: <mworth@global.com>
RCPT TO: <glord@myschool.edu>

. . .

The last address, however, will be a problem. When all but one address has been removed from
destinations, there will be no spaces left in the String. As a result, indexOf will return -1 as the
value to be associated with endOfAddress. Invoking substring with -1 as a parameter will cause a
program error.

255

// Warning: This code is correct, but a bit inelegant

while (destinations.length() > 0) {
int endOfAddress = destinations.indexOf(" ");
if (endOfAddress != -1) {

String destination = destinations.substring(0, endOfAddress);
connection.out.println("RCPT TO: <" + destination +">");
destinations = destinations.substring(endOfAddress + 1);

} else {
connection.out.println("RCPT TO: <" + destinations +">");
destinations = "";

}
}

Figure 9.29: An awkward loop to process multiple destinations

One way to address this problem is to place the statements that depend upon the value that
indexOf returns within a new if statement that first checks to see if the value returned was -1.
A sample of how this might be done is shown in Figure 9.29. The code in the first branch of this
if statement handles all but the last address in a list by extracting one address from the list using
the value returned by indexOf. The code in the second branch is only used for the last address in
the list. It simply treats the entire contents of destinations as a single address and then replaces
this one element list with the empty string.

While the code shown in Figure 9.29 will work, it should bother you a bit. The whole point
of a loop is to tell the computer to execute certain instructions repeatedly. Given the loop in
Figure 9.29, we know that the statements in the else part of the if statement will not be executed
repeatedly. The code is designed to ensure that these statements will only be executed once each
time control reaches the loop. What are instructions that are not supposed to be repeated doing in
a loop? This oddity is a clue that the code shown in Figure 9.29 probably is not the most elegant
way to solve this problem.

There is an alternate way to solve this problem that is so simple it will seem like cheating.
Accordingly, we want to give you a deep and meaningful explanation of the underlying idea before
we show you its simple details.

When dealing with text that can be thought of as a list, it is common to use some symbol
to indicate where one list element ends and the next begins. This is true outside of the world of
Java programs. In English, there are several punctuation marks used to separate list items. These
include commas, semi-colons, and periods. The preceding sentence show a nice example of how
commas are used in such lists. Also, this entire paragraph can be seen as a list of sentences where
each element of this list is separated from the next by a period.

There is, however, an important difference between commas and periods in English. The comma
is a separator. We place separators between the elements of a list. The period is a terminator.
We place one after each element in a list, including the last element. When a separator is used to
delimit list items, there is always one more list item than there are separators. When a terminator
is used the number of list items equals the number of terminators.

This simple difference can lead to awkwardness when we try to write Java code to process
text that contains a list in which separators are used as delimiters. The loop is likely to work by

256

destinations = destinations + " ";
while (destinations.length() > 0) {

int endOfAddress = destinations.indexOf(" ");
String destination = destinations.substring(0, endOfAddress);

connection.out.println("RCPT TO: <" + destination +">");

destinations = destinations.substring(endOfAddress + 1);
}

Figure 9.30: A simpler loop to process multiple email destination addresses

searching for the delimiter symbols. If a separator is being used, there will still be one item left
to process after the last separator has been found and removed. This is the difficulty the code
in Figure 9.29 was designed to handle. The spaces that separate the email addresses are used as
separators.

We can fix this by using spaces to terminate the email addresses rather than separate them. It
would be odd to make someone using our program type in an extra space after the last address, but
it is quite easy to write code to add such an extra space. Once such a space is added, we can treat
the spaces as terminators instead of separators. This make it unnecessary to treat the last address
as a special case. Figure 9.30 shows the complete code to handle a list of destination addresses
using this approach.

9.8 Summary

This chapter is different from the chapters that have preceded it in an important way. In each of
the earlier chapters, we introduced several new features of the Java language. In this chapter, we
only introduced one. Strangely, this chapter is not any shorter than the others. This reflects the
fact that while the technical details of the syntax and interpretation of a while loop in Java are
rather simple, learning to write loops effectively is not. Therefore, although we introduced all of the
rules of Java that govern while loops in Section 9.2, we filled several other sections with examples
designed to introduce you to important techniques and common patterns for constructing loops.

As we tried to stress in several of our examples, it is frequently helpful to write complete
code to perform a task once before seriously thinking about how a loop can be used to do it
repeatedly. Having concrete code at hand to perform an operation once can expose details you
have to understand in order to incorporate the code into a loop.

Technically, a loop only has two parts, its header and its body. In many of the loops we discussed,
however, it was possible to identify four parts. The first part is the statement or statements
preceding the loop that are designed to initialize the variables that are critical to the loops operation
or prepare other aspects of the computer’s state for the loop. For counting loops, this simply
involved initializing a numeric variable. For read loops, we saw that we sometimes prime a loop by
retrieving the first input from its source before the loop body.

The loop condition is the second component of all loops. It is crucial to ensure that repeatedly
executing the body of the loop eventually leads to a point where this condition is false. Otherwise,

257

the result will be an infinite loop. It is also important to realize that the condition is tested just
before every execution of the loop body including the first. This is critical when deciding how to
initialize variables before the loop.

The loop body can often be divided into two subparts. One subset of the instructions in the loop
body can be identified as commands designed to do the actual work of the loop. The remaining
instructions are designed to alter program variables so that the next execution of the loop will
correctly move on to the next step required. Thus, almost all while loops can be abstracted to fit
the following template

// Initialize loop variables and other state

while (// loop variable values indicate more work is left) {
// Do some interesting work

// Update the loop variables

}

This template can also serve as a very useful guide when constructing loops.
Important patterns are also seen in the ways loop variables are manipulated. We have seen

examples of several of these including counter variables, accumulators, and String variables whose
values are gradually reduced to the empty string during loop processing.

258

Chapter 10

Recurring Themes

In Chapter 9, we learned how while loops can be used to command a computer to execute millions
of instructions without having to actually type in millions of instructions. Now that we know how
to make a computer perform millions of operations, we would like to be able to write programs
that process millions of pieces of information. We have seen how to manipulate small quantities
of information in a program. Names have been essential to this process. In order to work with
information, we must first associate a name with the value or object to be manipulated so that
we can write instructions telling the computer to apply methods or operators to the data. It is,
however, hard to imagine writing a program containing millions of instance variable declarations!
There must be another way.

We encounter programs that process large collections of information every day. The book you
are reading contains roughly a million words. The program used to format this book has the ability
to manage all of these words, decide how many can fit on each page, etc. When you go to Google
and search for web pages about a particular topic, the software at Google somehow has to examine
data describing millions of web pages to find the ones of interest to you. When you load a picture
from your new 8 megapixel digital camera into your computer, the computer has to store the 8
million data values that describe the colors of the 8 million dots of color that make up the image
and arrange to display the right colors on your screen.

In this and the following chapter, we will explore two very different ways of manipulating large
collections of information in a program. The technique presented in the following chapter involves
a new feature of the Java language called arrays. The technique presented in this chapter, on the
other hand, is interesting because it does not involve any new language features. It merely involves
using features of Java you already know about in new ways.

The technique we discuss in this chapter is called recursion. Recursion is a technique for defining
new classes and methods. When we define new classes and methods, we usually use the names of
other classes and methods to describe the behavior of the class being defined. For example, the
definition of the very first class we presented, TouchyButton depended on the JButton class and
the definition of the buttonClicked method in that class depended on the add method of the
contentPane. Recursive definitions differ from other examples of method and class definitions we
have seen in one interesting way. In a recursive definition, the name of the method or class being
defined is used as part of the definition.

At first, the idea of defining something in terms of itself may seem silly. It certainly would not
be helpful to look up some word in the dictionary and find a definition that assumed you already

259

knew what the word meant:1

recursion (noun)

• A formula that generates the successive terms of a recursion.

In programming, surprisingly, recursive definitions provide a way to describe complex structures
simply and effectively.

10.1 Long Day’s Journey

An ancient proverb explains that

“A journey of a thousand miles begins with a single step.”
Lao-Tzu, Chinese Philosopher (604 BC - 531 BC)

In today’s world, however, a long journey often begins with getting driving instructions from
maps.google.com or some similar site. Figure 10.1 shows an example of the type of information one
can obtain at such sites.

The web page in Figure 10.1 shows the directions requested in several forms. On the right side
of the page, the route is traced on a map showing the starting point and destination. To the left,
the directions are expressed step-by-step in textual form.

1. Head northwest on E 69th St toward 2nd Ave 0.5 mi

2. Head southwest on 5th Ave toward E 68th St 0.5 mi

3. Turn right at Central Park S 0.4 mi

4. Turn left at 7th Ave 0.2 mi

The data required to generate these instructions is an example of a collection. It is a collection
of steps. We will explore how to define a class that can represent such a collection of driving
instructions as our first example of a recursive definition in Java.

In our introduction to loops, we stressed that it is important to know how to perform an
operation once before attempting to write a loop to perform the operation repeatedly. Similarly,
if we want to define a collection of similar objects, we better make sure we know how to represent
a single member of the collection first. Therefore, we will begin by defining a very simple class to
represent a single step from a set of driving directions.

The code for such a Step class is shown in Figure 10.2. It is a very simple class. We use
three pieces of information to describe a step in a set of driving directions. The instance variable

1The definition used as an example here was actually found in the online version of the American Heritage
Dictionary. I must, however, admit to a bit of cheating. The American Heritage Dictionary provides two definitions
for recursion. The entry listed in the text is the second. The first definition provided does not depend on the word
“recursion”, but provides little insight that will be helpful here:

recursion (noun)

• An expression, such as a polynomial, each term of which is determined by application of a formula
to preceding terms.

260

Figure 10.1: Driving directions provided by maps.google.com

261

// Describe a single step in directions to drive from one location to another

public class Step {
// The distance to drive during this step

private double length;

// A brief description of the road used during this step

private String roadDescription;

// The angle of the turn made at the start of the step.

// Right turns use positive angles, left turns use negative angles

private int turn;

// Create a description of a new step

public Step(int direction, double distance, String road) {
length = distance;
roadDescription = road;
turn = direction;

}

// Return text that summarize this step

public String toString() {
return sayDirection() + roadDescription + " for " + length + " miles";

}

// Return the length of the step

public double length() { return length; }

// Return the angle of the turn at the beginning of the step

public int direction() { return turn; }

// Return the name of the road used

public String routeName() { return roadDescription; }

// Convert turn angle into short textual description

private String sayDirection() {
if (turn == 0) {

return "continue straight on ";
} else if (turn < 0) {

return "turn left onto ";
} else {

return "turn right onto ";
}

}
}

Figure 10.2: A class to represent a single step in a journey

262

length will be associated with the total distance traveled. The instance variable turn holds the
angle of the turn the driver should make at the beginning of the step. If we were only interested
in displaying the instructions as text, we might simply save a String describing the turn, but the
angle provides more information. In particular, it could be used to draw the path to be followed
on a map. Finally, roadDescription will be associated with a String describing the road traveled
during a step like “Main St.” or “5th Avenue”.

The constructor defined with the Step class simply takes the three values that describe a step
and associates them with the appropriate instance variables. For example, the construction

new Step(-90, 0.5, "5th Ave toward E 68th St")

could be used to create a Step corresponding to the second instruction in the Google Maps results
shown in Figure 10.1.

The Step class definition also includes several methods. The length, direction, and routeName
methods provide access to the three values used to describe the Step. The toString method is
designed to convert a Step into a string that could be displayed as part of a set of driving directions.
For example, if invoked on the Step created by the construction shown above, this method would
return the text

turn left onto 5th Ave toward E 68th St for 0.5 miles

The definition of toString depends heavily on a private method named sayDirection which
converts the turning angle associated with the instance variable turn into an appropriate String.
This method could easily be refined to say things like “head southwest on” or “make a sharp right
onto,” but the simple version shown is sufficient for our purposes.

Given the definition of the Step class, we could represent the four steps from the instructions
shown in Figure 10.1 by declaring the four local variables

Step stepOne = new Step(0, 0.5, "E 69th St toward 2nd Ave");
Step stepTwo = new Step(-90, 0.5, "5th Ave toward E 68th St");
Step stepThree = new Step(90, 0.4, "Central Park S");
Step stepFour = new Step(-90, 0.2, "7th Ave");

This approach, however, is not very flexible. What if we need to manipulate a different set of
instructions that required ten steps? We would need to modify our program by adding six additional
variables. Worse yet, this approach does not scale well to handle really large sets of instructions.
Would if seem reasonable to define 1000 variables to handle the thousand-step journey described
in Lao-Tzu’s proverb? Probably not.

Let’s think a little bit harder about the proverb

“A journey of a thousand miles begins with a single step.”

By telling us how a journey begins, this proverb also suggests something important about how a
journey ends. It might be tempting to parrot Lao-Tzu’s famous words by saying

“A journey of a thousand miles ends with a single step.”

but doing so would fail to capture the full nature of a journey. “Begin” and “end” are opposites.
What is not a beginning is an ending. So a “deeper” way to rephrase Lao-Tzu’s words would be

263

class Journey {

// The first step

private Step beginning;

// The rest of the journey

private Journey end;

. . .

Figure 10.3: The first step in defining a Journey class

“A journey of a thousand miles ends with a journey of a thousand miles minus a single
step.”

or more succinctly

“A long journey ends with a long journey.”

The beauty of twisting Lao-Tzu’s words in this way is that it leads to a recursive definition of
a journey:

journey (noun)

• A single step followed by a journey.

In fact, we can construct a recursive class in Java based our somewhat creative interpretation of
Lao-Tzu’s saying about journeys.

In other class definitions we have considered, instance variables have been used to keep track
of the pieces of information that describe the object the new class is designed to represent. The
instance variables in the Step class are nice examples of using instance variables in this way. In our
Journey class, we will similarly define two instance variables to represent the two key parts of the
journey, the beginning and the end. The declarations that will be used for these instance variables
are shown in Figure 10.3. The first of the instance variables refers to a Step, and the other refers
to another Journey. This is how the Journey class becomes recursive. One of its instance variables
is of the same type that the class defines.

We will add other instance variables and methods to complete this class definition shortly, but
to give some sense of how a recursive class actually encodes a description of a collection, we will
first describe an incomplete constructor for our incomplete class and show how it could be used.

The constructor for our Step class simply associated values provided as parameters with the
instance variables in the class. For each instance variable in the Step class, there was a correspond-
ing parameter to the constructor. The constructor for the Journey class will work similarly. Most
of the code for the constructor is shown in Figure 10.4.

Looking at this code, you should quickly recognize an interesting problem. Since the Journey
constructor requires a Journey as a parameter, you cannot construct a Journey unless you already
have constructed a Journey. Which comes first, the chicken or the egg? Isn’t recursion fun?

264

public Journey(Step first, Journey rest) {
beginning = first;
end = rest;
. . .

}

Figure 10.4: A (slightly incomplete) Journey constructor

Figure 10.5: Objects used to build a bigger Journey

We will explain how to resolve this issue in the next section. For now, let us just assume that
somehow we have built a Journey composed of the two last steps in the Google Maps directions
shown in Figure 10.1 and associated it with a local variable named collectedSteps declared as

Journey collectedSteps;

In addition, assume that we have declared two Step variables as

Step stepOne;
Step stepTwo;

and associated them with Steps constructed by executing the assignments

stepOne = new Step(0, 0.5, "E 69th St toward 2nd Ave");
stepTwo = new Step(-90, 0.5, "5th Ave toward E 68th St");

Figure 10.5 represents the assumptions we are making about the variables collectedSteps,
stepOne, and stepTwo. In the figure, each of these variable names is connected by an arrow to a
diagram of the object with which it has been associated. The arrow leading to the value associated

265

with collectedSteps points to a cloud-like blob containing an image of the route described by the
last two steps of the instructions shown in Figure 10.1. This amorphous shape is used because we
cannot yet accurately explain how this object would be constructed. The two Step variables, on the
other hand, point to tabular diagrams meant to represent the internal structure of the Step objects
to which they refer. The name of the class Step appears at the top of the diagrams representing
these objects. Each Step has three instance variables: length, turn, and roadDescription. There
is a slot for each of these three variables in each of the tabular diagrams representing a Step. Just
as arrows are used to show the values associated with the local variables, arrows lead from each
entry in the Step objects to the values associated with the corresponding instance variables. For
clarity, we have annotated these values with units like “mi.” and “degrees” even though only the
actual numeric values would be associated with the variables by the computer.

While we cannot yet explain how to construct a Journey from scratch at this point, we can
explain how to construct a Journey given the objects and variables shown in Figure 10.5. In
particular, we could use the (still incomplete) constructor definition shown in Figure 10.4 to create
a three step Journey by evaluating the construction

new Journey(stepTwo, collectedSteps)

This construction forms a new Journey whose “beginning” is step 2 from our Google Map directions
and whose “end” is the third and fourth steps from those instructions. The resulting Journey would
be a bigger collection of steps, but it would still be a collection of steps. Therefore, we could include
this construction in an assignment of the form

collectedSteps = new Journey(stepTwo, collectedSteps);

Just as we represented Steps using tabular diagrams in Figure 10.5, we can use similar diagrams
to represent this new Journey and its relationship to the objects involved. Such a diagram is shown
in Figure 10.6. The arrow showing the object associated with the name collectedSteps no longer
points to the amorphous blob representing the last two steps. Instead, it shows that this name is
associated with a newly constructed Journey object. Since we know the structure of this object, it is
represented using a tabular diagram similar to the Steps. The name Journey appears at the top of
the table representing the new object. It has one entry for each of the instance variables, beginning
and end. The arrows showing the values associated with these instance variables, however, don’t
point to simple numbers or Strings. Instead they point to one of the existing Step objects and
the blob representing the existing Journey.

We can repeat this process to create a longer, four-step Journey representing the entire route
described in our Google Maps example. To do this, we would execute the assignment

collectedSteps = new Journey(stepOne, collectedSteps);

The state of the objects and variables in the computer after this assignment is executed is shown in
Figure 10.7. The name collectedSteps now refers to the most recently constructed Journey. This
Journey’s end instance variable refers to the three-step Journey created earlier, and the three-step
Journey’s end variable in turn refers to the mysteriously created two-step Journey.

Obviously, if we created more Step objects, we could also create additional Journey objects to
represent even longer collections of instructions.

In some sense, none of the Journey objects created in this process contain any information.
They merely refer to information held in the Step objects. We will see, however, that they fill the
key role of providing the links needed to access this information. As a result, structures of this
form are called linked lists.

266

Figure 10.6: Relationships between a Journey and its parts

Figure 10.7: Relationships between multiple Journeys and their parts

267

10.2 Journeys End

As presented so far, our recursive definition of a journey is not really workable. If every journey is
composed of a first step and another journey, then no journey can ever end! After you take any
step, there must be another journey to complete and it must start with a first step followed by
another journey, and so on. This flaw in our abstract definition of a journey is also reflected in the
fragments of the definition of the Journey class we have presented. It is the fundamental reason
we cannot yet explain how to create a Journey from scratch. Before we can understand how to
start the process of creating a Journey, we have to refine our recursive definition of a journey so
that a journey can end.

In a certain sense, it is obvious when a journey ends. It ends with the last step. That, however,
is not the sense we have in mind. Recall that our goal is to learn how to use recursion to manipulate
large collections of information. In this context, a journey is a collection of steps. A collection of
a million steps is definitely a journey, but is a collection of 10 steps a journey? To know when a
journey ends, we need to know when a collection of steps no longer qualifies as a journey.

If by steps we really mean putting one foot in front of another, a series of 500 steps might be
considered “going for a walk”, but most people would not consider 500 steps a journey. Somewhere
around 5000 steps, most of us might be willing to talk about taking a “hike” rather than a walk,
but even 5000 steps (roughly 3 miles), isn’t what we think of when we talk about a “journey”. On
the other hand, 100,000 steps is enough of a hike, we might be willing to call traveling that far a
journey.

If we can agree on a number like 100,000 as the minimum number of steps that qualify as a
journey, there is a fairly simple way to fix our recursive definition. In English, words often have
two meanings. If you look up such a word in the dictionary, the definition provided will be broken
down into several entries or cases. For example, the definition of the word “case” will include at
least five cases:

case (noun)

1. a container designed to hold or protect something

2. a set of circumstances or conditions, i.e., “is the statement true in all three cases”

3. an instance of a disease, or problem

4. a legal action, esp. one to be decided in a court of law

5. any of the inflected forms of a noun, adjective, or pronoun that express the semantic
relation of the word to other words in the sentence

If a particular case in a word’s definition refers to the word being defined, we say it is a recursive
case. If all of the cases in a word’s definition are recursive, the definition will indeed be circular
(and useless). If at least one of the entries is not recursive, however, the circularity can be broken.
Such a non-recursive components of a recursive definition is called a base case.

To illustrate this, let us give a give a refined, recursive definition of a journey:

journey (noun)

1. A single step followed by a journey.

2. Any collection of 100,000 steps.

268

Figure 10.8: Google’s answer to a request for simple driving instructions

Given this definition, it is clear that a trip that involves 100,000 steps is a journey because the
second case in the definition states so explicitly. It is also true that a trip that involves 100,001
steps is a journey since it is composed of a single step followed by 100,000 steps which we already
know is a journey. That is, it fits the first case in the definition. Similarly, now that we know
that a trip involving 100,001 steps is a journey, it is clear that a trip involving 100,002 steps is a
journey. With similar reasoning, we can see that any trip involving more than 99,999 step fits this
definition. On the other hand, a trip that only takes 10 steps is not a journey according to this
definition.

While this definition works, it is not clear everyone would agree with the choice of 100,000 as
the boundary between journeys and hikes. Similarly, it might not be clear how many steps qualify
as a “journey” in the context for which we are designing the Journey class, representing computer-
generated driving directions. Requiring 100,000 steps is clearly too much. The example “journey”
shown in the Google Maps response only consisted of four steps.

We can resolve the question of how few steps Google considers a journey by experimenting
with the site. As shown in Figure 10.8, Google definitely recognizes cases where just a single step
qualifies as a journey. If you get even sillier, however, and ask Google for directions from an address
to the same address, it refuses to accept the idea that this particular journey involves no steps at
all. Instead, as shown in Figure 10.9, it insist that you take one step of distance 0.

Who are we to argue with Google?! We will complete our Journey class on the assumption
that the shortest journey we need to be able to represent is a journey of one step. That is, for our
purposes, the abstract definition of a journey will be

269

Figure 10.9: How to get to where you already are

journey (noun)

1. A single step followed by a journey.

2. A collection containing just 1 step.

To realize this abstract definition in concrete Java code, we need to define a class with instance
variables corresponding to the parts of each of the alternatives included in the definition. The
incomplete code in Figure 10.3 already contains the variables beginning and end needed to describe
the step and journey mentioned in alternative 1:

A single step followed by a journey.

We could add an additional variable to keep track of the single step mentioned in alternative 2:

A collection containing just 1 step.

An even simpler approach, however, is to use the beginning variable to describe this step. After
all, if a journey consists of just one step, that step is both its beginning and its end.

We still need to add one new instance variable to enable our Journey class to reflect the two part
definition of a journey. We need a way to determine which of the alternative definitions describes
each Journey we create. Since there are only two choices, we can do this using a boolean variable.
We will add the instance variable declaration

// Does this journey contain exactly one step?

private boolean singleStep;

270

Figure 10.10: A complete Journey and its parts

to our class. If the value of this variable is false, then we will assume that Journey contains
more than one Step. In such a Journey both of the other instance variables must be associated
with appropriate objects. If the value of singleStep is true, then we will assume that Journey
contains only one Step. In that case, the variable end will have no useful information associated
with it. It will be null.

With this addition, we can now do away with the cloud used to represent the last two steps
of the Journey we described in the preceding section. Figure 10.10 shows a representation of a
complete collection of Journeys representing the set of driving instructions from Google we first
showed in Figure 10.1.

Given the number of objects represented in this figure, we have used a slightly different notation
to show the values of an object’s instance variables. For instance variable’s of types int, double,
boolean, and String, we have simply written the value of each variable in the same box as its
name rather than connecting the names to the values using arrows. In particular, note that the
value of the new instance variable singleStep is shown in each of the tables representing a Journey
object. As one would expect, as one follows the chain of end arrows through the steps of a journey,
the values associated with singleStep are all false until we reach the final step of the Journey.
Then, in the last Journey, singleStep is true. This is how Journeys end.

10.3 Overload

Now that we have added the singleStep instance variable to the Journey class, we can complete
the process of defining the constructor for the class. If we followed the pattern we used when defining
the constructor for the Step class, the addition of singleStep would lead to the definition of a
constructor that expected three parameter values, one for each instance variable. This constructor
would simply associate the instance variables with the parameter values provided. We could proceed
in this way, but Java supports a better approach.

When defining a class, we can include several constructor definitions as long as each constructor
we define expects a different number of parameters or parameters of different types than any of the
other constructors. In this case, the constructor is said to be overloaded. When asked to evaluate a
construction for an object of a type containing multiple constructor definitions, Java uses the types

271

of the actual parameter values provided to determine which of the constructor definitions should
be used.

We will use this feature to provide two constructors for the Journey class, one will be for
Journeys with just one step, the base case, and the other constructor will be for multi-step
Journeys, the recursive case.

The beginning of the text of the Journey class including all of the instance variables and the
definitions of these two constructors is shown in Figure 10.11. The first constructor definition is
very similar to the incomplete definition shown in Figure 10.4. The only change we have made is
to add the assignment

singleStep = false;

This constructor will be used to construct Journeys that represent driving directions that contain
multiple steps. We set singleStep equal to false to reflect this.

The second constructor will be used only if we evaluate a construction in which we provide only
a single Step parameter like

new Journey(aStep)

This version of the constructor associates the instance variable beginning with its parameter value
and sets singleStep equal to true to reflect the fact that there are no other steps in this journey.
It has no value to associate with end. Just to be safe, it explicitly associates end with null, the
name that represents “no value” in Java.

To better illustrate the roles of these constructors, consider how we could construct the complete
collection of objects shown in Figure 10.10. First, we could create the four Steps involved and
associate them with local variable using the initialized declarations

Step stepOne = new Step(0, 0.5, "E 69th St toward 2nd Ave");
Step stepTwo = new Step(-90, 0.5, "5th Ave toward E 68th St");
Step stepThree = new Step(90, 0.4, "Central Park S");
Step stepFour = new Step(-90, 0.2, "7th Ave");

Then, we would create a Journey representing just the last step using the initialized declaration

Journey collectedSteps = new Journey(stepFour);

Because only one parameter is included in the construction used in this statement, Java will use
the second constructor definition shown in Figure 10.11 to process this construction.

Finally, we could execute the sequence of assignments

collectedSteps = new Journey(stepThree, collectedSteps);
collectedSteps = new Journey(stepTwo, collectedSteps);
collectedSteps = new Journey(stepOne, collectedSteps);

to add each of the other steps to the structure associated with the variable collectedSteps. Each
of these assignments would be processed using the first constructor definition.

While these instructions will create the structure shown in Figure 10.11, they do not really
show how recursion makes it easier to manipulate large collections of information. We still need
one variable for each step in the instructions for the Journey we want to represent. Therefore,

272

class Journey {

// The first step

private Step beginning;

// The rest of the journey

private Journey end;

// Does this journey contain exactly one step?

private boolean singleStep;

// Construct a multi-step journey given a step to add to an existing journey

public Journey(Step firstStep, Journey remainder) {
beginning = firstStep;
end = remainder;
singleStep = false;

}

// Construct a single step journey

public Journey(Step onlyStep) {
beginning = onlyStep;
end = null;
singleStep = true;

}

. . . more to come . . .

}

Figure 10.11: Overloaded constructors for the Journey class

273

you may have already guessed that this code is not typical of the instructions used to construct a
collection of linked Journey objects in a real program.

If our Journey class was part of a program that generated driving directions for a site like Google
Maps, it would be used in conjunction with an algorithm that could derive a good route to travel
from one location to another. Such algorithms are called routing algorithms. The presentation of
a routing algorithm is far beyond the scope of this chapter. We will not attempt to explain such
algorithms here. However, to give you a realistic sense of how a Journey would be constructed in
a real program, we will describe a possible interface to a routing algorithm and then show code to
construct a Journey using this interface.

We will assume the existence of two additional classes:

RoadMap — This class will represent the information in a map.
Location — This class will represent a location within the area described by the map.

We will not discuss the details of the implementation of these classes, but we will assume that the
code for the RoadMap class includes the implementation of a routing algorithm. We will also assume
that the class provides one method through which we can request information from the routing
algorithm.

Given two Locations and a RoadMap, we need a method that will use the routing algorithm
to determine the path from one location to the other. We do not want a method that will return
the entire path as a Journey. We want a method that will return one Step of the path at a time.
With this in mind, we will assume that if aMap is a Map object, and startingLoc and endingLoc
are Locations, then an invocation of the form

aMap.getLastStepOfRoute(startingLoc, endingLoc)

will return a Step object describing the last step someone should follow to drive from startingLoc
to endingLoc. This may seem a bit counterintuitive. You might have expected a method that
would return the first step or the Nth step to a destination. The getLastStepOfRoute method,
however, provides just what we will need.

We will also assume the existence of two methods that connect the Location class with our
Step class. Our Step class provides directions that would take a person from one location on the
map to another. Therefore, we will assume that if aStep is an object of the Step class, then the
method invocations

aStep.getStart()
aStep.getEnd()

will return the Location objects describing the locations at either end of a Step.
Given such class and method definitions, the code we might use to construct a Journey repre-

senting the entire route to follow from a given startingLoc and endingLoc is shown in Figure 10.12.
It first creates a single step Journey containing just the last step of the route. Then it executes
a loop that repeatedly creates longer Journeys by adding earlier steps. The most recently added
step is always associated with the name currentStep. Therefore, the loop terminates when the
starting position of currentStep equals the starting location for the complete route.

Note that this code can handle a journey of as few or as many steps as necessary. Regardless
of the number of Steps included in the Journey created by the loop, only the single Step variable
currentStep is required within the code for the loop. When the loop is complete, each Step
returned by the routing algorithm is associated with the name beginning in one of the list of
Journey objects created.

274

// Create a Journey containing just the last step

Step currentStep = aMap.getLastStepOfRoute(startingLoc, endingLoc);
Journey completeRoute = new Journey(currentStep);

// The variable intermediateLoc will always refer to the

// current starting point of completeRoute

Location intermediateLoc = currentStep.getStart();

// Repeatedly add earlier steps until reaching the starting position

while (! startingLoc.equals(intermediateLoc)) {

currentStep = aMap.getLastStepOfRoute(startingLoc, intermediateLoc);
completeRoute = new Journey(currentStep, completeRoute);
intermediateLoc = currentStep.getStart();

}

Figure 10.12: Using the Journey class in a realistic algorithm

10.4 Recurring Methodically

Our Journey class now has all the instance variables and constructors it needs, but it does not
have any methods. Without methods, all we can do with Journeys is construct them and draw
lovely diagrams to depict them like Figure 10.10. To make the class more useful, we need to add a
few method definitions.

Our Step class included a toString method. It would be helpful to have a similar method for
the Journey class. The toString method of the Journey class would create a multi-line String
by concatenating together the Strings produced by applying toString to each of the Steps in
the Journey, placing a newline after the text that describes each step. Such a method would
make it easy to display the instructions represented by a Journey in a JTextArea or in some other
human-readable form.

Since the value returned by applying the toString method to a Journey will usually include
multiple lines, you might expect the body of the method to contain a loop. In fact, no loop will
be required. Instead, the repetitive behavior the method exhibits will result from the fact that the
method, like the class in which it is defined, will be recursive. Within the body of the toString
method, we will invoke toString on another Journey object.

10.4.1 Case by Case

The defintion of a recursive method frequently includes an if statement that reflects the different
cases used in the definition of the recursive class in which the method is defined. For each case in
the class definition, there will be a branch in this if statement. The branches corresponding to
recursive cases will invoke the method recursively. The branches corresponding to non-recursive
cases will return without making any recursive invocations. The definition of our Journey class had
two cases: the recursive case for journeys containing several steps and the base case for journeys

275

public String toString() {
if (singleStep) {

... Statements to handle single- Step Journeys (the base case) ...
} else {

... Statements to handle multi- Step Journeys ...
}

}

Figure 10.13: Basic structure for a Journey toString method

containing just one step. As a result, the body of our toString method will have the structure
shown in Figure 10.13

The code to handle a single step Journey is quite simple. The method should just return the
text produced by applying toString to that single Step and appending a newline to the result.
That is, the code in the first branch of the if statement will be

return beginning.toString() + "\n";

The code to handle multiple step Journeys is also quite concise and quite simple (once you get
used to how recursion works). The String returned to describe an entire Journey must start with
a line describing its first step. This line is produced by the same expression used in the base case:

beginning.toString() + "\n"

The line describing the first step should be followed by a sequence of lines describing all of the
other steps. All of these other steps are represented by the Journey associated with the instance
variable end. We can therefore obtain the rest of the String we need by invoking toString
recursively on end.

One of the tricky things about describing a recursive method is making it very clear exactly
which object of the recursive type is being used at each step. We are writing a method that will
be applied to a Journey object. Within that method, we will work with another Journey object.
This second Journey has a name, end. The original object really does not have a name. We will
need a way to talk about it in the following paragraphs. We will do this by referring to it as the
“original Journey” or the “original object.”

When the toString method is applied to end, it should return a sequence of lines describing
all of the steps in the Journey named end. That is, it should return a String describing all but
the first step of the original Journey. Therefore, the expression

end.toString()

describes the String that should follow the line describing the first step of the original Journey.
Putting this together with the line describing the first step will give us a complete description of the
original Journey. As a result, we can complete the code in Figure 10.13 by placing the instruction

return beginning.toString() + "\n" + end.toString();

in the second branch of the if statement.2 The complete code for toString as it would appear in
the context of the definition of the Journey class is shown in Figure 10.14.

2In fact, if we want to be even more concise, we can use the statement

276

class Journey {

// The first step

private Step beginning;

// The rest of the journey

private Journey end;

// Does this journey contain exactly one step?

private boolean singleStep;

. . .

// Constructor code has been omitted here to save space.

// The missing code can be found in Figure 10.11

. . .

// Return a string describing the journey

public String toString() {
if (singleStep) {

return beginning.toString() + "\n";
} else {

return beginning.toString() + "\n" + end.toString();
}

}

. . . more to come . . .

}

Figure 10.14: The recursive definition of the Journey toString method

277

Note that using the expression beginning.toString() in our toString method does not make
the method recursive. At first, it might seem like it does. We are using a method named toString
within the definition of toString. When we use a method name, however, Java determines how to
interpret the method name by look at the type of the object to which the method is being applied.
In this case, it looks at the type of the name beginning that appears before the method name.
Since beginning is a Step, Java realizes that the toString method we are using is the toString
method of the Step class. The method we are defining is the toString method of the Journey
class. These are two different methods. Therefore, this invocation alone does not make the method
recursive. It is the invocation of end.toString() that makes the definition recursive. Since end
refers to another Journey, Java interprets this use of the name toString as a reference to the
method being defined.

10.4.2 Understanding Recursive Methods

When trying to understand a recursive method, whether you are writing it yourself or trying to
figure out how someone else’s method works, there are several key steps you should take:

1. identify the cases involved, distinguishing base cases from recursive cases,

2. ensure that the definition is recursive but not circular by verifying that all recursive invoca-
tions involve “simpler cases”, and

3. verify the correctness of the code for each case while assuming that all recursive invocations
will work correctly.

As we have explained in the description of the toString method, the cases that will be included
in a recursive method often parallel the cases included in the recursive class with which the method
is associated. We will, however, see that additional cases are sometimes necessary.

There is a danger when we write a recursive method that one recursive invocation will lead to
another in a cycle that will never terminate. The result would be similar to writing a loop that
never stopped executing.

To ensure that a recursive method eventually stops, the programmer should make sure that
the objects involved in all recursive invocations are somehow simpler than the original object. In
the case of our recursive toString method, the Journey associated with the name end is simpler
than the original Journey in that it is shorter. It contains one less step. In general, if we invoke
a method recursively, the object used in the recursive invocation must be “simpler” by somehow
being closer to one of the base cases of the recursive method. This is how we ensure the method
will eventually stop. Every recursive invocation gets closer to a base case. Therefore, we know
that our repeated recursive invocations will eventually lead to base cases. The base cases will stop
because they do not make any recursive invocations.

Even if one believes a recursive method will stop, it may still not be obvious that it will work
as desired. The correct way to write a recursive method is to assume the method will work on
any object that is “simpler” than the original object. Then, for each case in the definition of the

return beginning + "\n" + end;

because Java automatically applies the toString method to any object that is not a String when that object is used
as an argument to the concatenation operator (“+”). For now, however, we will leave the toStrings in our statement
to make the recursion in the definition explicit.

278

recursive class, figure out how to calculate the correct result to return using the results of recursive
invocations on simpler objects as needed. As a result, the correct way to convince yourself that a
recursive method is correct if by checking the code written to handle each of the cases under the
assumption that all recursive invocations will work correctly.

How can we assume our method definition will work if we have not even finished writing it? To
many people, an argument that a method will work that is based on the assumption that it will
work (on simpler objects) seems vacuous. Surprisingly, even if we make this strong assumption, it
will still be not be possible to conclude that an incorrect method is incorrect.

As a simple example of this, suppose we replaced the instruction

return beginning.toString() + "\n" + end.toString();

in our recursive toString method with

return beginning.toString() + end.toString();

While similar to the original definition, this method would no longer work as expected. It would
concatenate together all the lines of instructions as desired, but it would not place any new line
characters between the steps so that they would all appear together as one long line of text.

Suppose, however, that we did not notice this mistake and tried to verify the correctness of
the alternate version of the code by assuming that the invocation end.toString() would work
correctly. That is, suppose that we assumed that the recursive invocation would return a sequence
of separate lines describing the steps in a Journey. Even is we make this incorrect assumption
about the recursive invocations we will still realize that the new method will not work correctly if
we examine its code carefully. Looking at the code in the recursive branch of the if statement, it
is clear the first newline will be missing. The assumption that the recursive calls will work is not
sufficient to hide the flaw in the method. This will always be the case. If you can correctly argue
that a recursive works by assuming that all the recursive calls it makes work correctly, then the
method must indeed work as expected.

10.4.3 Blow by Blow

At first, most programmers find it necessary to work through the sequence of steps involved in the
complete processing of a recursive invocation before they can really grasp how such methods work.
With this in mind, we will carefully step through the process that would occur while a computer
was evaluating the invocation collectedSteps.toString() which applies our toString method
to the structure discussed as an example in Section 10.3.

Warning! We do not recommend doing this every time you write or need to understand a
recursive method. Tracing through the steps of the execution of a recursive method can be quite
tedious. Once you get comfortable with how recursion works, it is best to understand a recursive
method by thinking about its base cases and recursive cases as explained in the previous section.
In particular, if you become confident you understand how the recursive toString method works
before completing this section, feel free to skip ahead to the next section.

As we examine the process of applying toString recursively, it will be important to have a
way to clearly identify each of the objects involved. With this in mind, we will assume that the
Journey to which toString is applied is created slightly differently than we did in Section 10.3.
We will still assume that the process begins with the creation of the four Step objects

279

Figure 10.15: A Journey with names for all of its parts

Step stepOne = new Step(0, 0.5, "E 69th St toward 2nd Ave");
Step stepTwo = new Step(-90, 0.5, "5th Ave toward E 68th St");
Step stepThree = new Step(90, 0.4, "Central Park S");
Step stepFour = new Step(-90, 0.2, "7th Ave");

Now, however, we will assume that the Journey objects are created using the code

Journey journey1 = new Journey(stepFour);
Journey journey2 = new Journey(stepThree, journey1);
Journey journey3 = new Journey(stepTwo, journey2);
Journey journey4 = new Journey(stepOne, journey3);
Journey collectedSteps = journey4;

This code creates exactly the same structure as the code in Section 10.3, but it associates a distinct
name with each part of the structure. The structure and the names associated with each component
are shown in Figure 10.15. We will use the names journey1, journey2, journey3, and journey4 to
unambiguously identify the objects being manipulated at each step in the execution of the recursive
method.

Having distinct names for each of the objects involved will be helpful because as we trace
through the execution of this recursive method invocation we will see that certain names refer to
different objects in different contexts. For example, the condition in the if statement that forms
the body of the toString method of the Journey class checks whether the value associated with
the name singleStep is true or false. Looking at Figure 10.15 we can see that singleStep is
associated with values in all four of the Journey objects that will be involved in our example. In
three of the objects, it is associated with false and in one it is associated with true. In order to
know which branch of this if statement will be executed, we have to know which of the four values
associated with singleStep should be used.

280

When singleStep or any other instance variable is referenced within a method, the computer
uses the value associated with the variable within the object identified in the invocation of the
method. In the invocation

collectedSteps.toString()

toString is being applied to the object associated with the names collectedSteps and journey4.
Therefore, while executing the steps of the method, the values associated with instance variable
are determined by the values in journey4. Within this object, singleStep is false. On the other
hand, if we were considering the invocation journey1.toString(), then the values associated
with instance variables would be determined by the values in the object named journey1. In this
situation, the value associated with singleStep is true.

One final issue that complicates the description of the execution of a recursive method is that fact
that when a recursive invocation is encountered, the computer begins to execute the statements in
the method again, even though it hasn’t finished its first (or nth) attempt to execute the statements
in the method. When a recursive invocation is encountered, the ongoing execution of the recursive
method is suspended. It cannot complete until all the steps of the recursive invocation are finished
and the result of the recursive invocation are available. As we step through the complete execution
process, it is important to remember which executions of the method are suspended pending the
results of recursive invocations. We will use a simple formatting trick to help your memory. The
entire description of any recursive invocation will be indented relative to the text describing the
execution that is awaiting its completion and result. To make this use of indentation as clear as
possible, we will start the description of the execution process on a fresh page.

281

The first thing a computer must do to evaluate

collectedSteps.toString()

is determine which branch of the if statement in the toString method to execute. It does this by
determining the value of singleStep within the object named collectedSteps. Since singleStep
is false in this object, the computer will execute the second branch of the if statement:

return beginning.toString() + "\n" + end.toString();

To do this, the computer must first evaluate the expression

beginning.toString() + "\n"

by appending a newline to whatever is produced by applying toString to beginning. Looking
at Figure 10.15, we can see that within collectedSteps, beginning is associated with stepOne.
Applying toString to beginning will therefore produce

continue straight on E 69th St toward 2nd Ave for 0.5 miles

Next the computer must evaluate end.toString(). Within collectedSteps, the name end is
associated with journey3. Therefore, this invocation is equivalent to journey3.toString(). This
is a recursive invocation, so we will indent the description of its execution.

The computer begins executing journey3.toString() by examining the value of singleStep
within journey3. In this context, singleStep is false, so the computer will again ex-
ecute the second, recursive branch of the if statement. Within journey3, the name
beginning refers to the object stepTwo, so the application of toString to beginning
will return

turn left onto 5th Ave toward E 68th St for 0.5 miles

The computer will next evaluate the invocation end.toString(). Within journey3, the
name end refers to journey2. This invocation is therefore equivalent to journey2.toString().
It is recursive, so its description deserves more indentation.

Within journey2, singleStep has the value false. Therefore, the computer
will again choose to execute the recursive branch of the if statement. Within
journey2, beginning is associated with stepThree and therefore applying
toString will produce the text

turn right onto Central Park S for 0.4 miles

Next, the computer applies toString to end (which refers to journey1 in
this context). This is a recursive invocation requiring even more indentation.

Within journey1, singleStep is true. Instead of executing the
second branch of the if statement again, the computer finally get to
execute the first branch

return beginning.toString() + "\n";

This does not require any recursive calls. The computer simply ap-
plies toString to stepFour, the object associated with the name
beginning within journey1. This returns

282

turn left onto 7th Ave for 0.2 miles

The computer sticks a newline on the end of this text and returns
it as the result of the recursive invocation of toString. This brings
the computer back to...

... its third attempt to execute the recursive branch of the if statement:

return beginning.toString() + "\n" + end.toString();

This instruction was being executed to determine the value that should be
produce when toString was applied to journey2. It had already determined
the value produced by beginning.toString(). Now that the value of the
recursive invocation is available it can concatenate the two Strings together
and return

turn right onto Central Park S for 0.4 miles
turn left onto 7th Ave for 0.2 miles

as its result. This result gets returned to the point where ...

... the computer was making its second attempt to execute recursive branch of the if
statement. This was within the invocation of toString on the object journey3. The
invocation of toString to beginning in this context had returned

turn left onto 5th Ave toward E 68th St for 0.5 miles

By concatenating together this line, a newline, and the two lines returned by the re-
cursive invocation of toString, the computer realizes that this invocation of toString
should return

turn left onto 5th Ave toward E 68th St for 0.5 miles
turn right onto Central Park S for 0.4 miles
turn left onto 7th Ave for 0.2 miles

to the point where ...

... the computer was making its first attempt to execute the recursive branch of the if state-
ment. This was within the original application of toString to journey4 through the name
collectedSteps. Here, the application of toString to beginning had produced

continue straight on E 69th St toward 2nd Ave for 0.5 miles

Therefore, the computer will put this line together with the three lines produced by the recursive
call and produce

continue straight on E 69th St toward 2nd Ave for 0.5 miles
turn left onto 5th Ave toward E 68th St for 0.5 miles
turn right onto Central Park S for 0.4 miles
turn left onto 7th Ave for 0.2 miles

as the final result.

283

10.4.4 Summing Up

One must see several example of a new programming technique in order to recognize important
patterns. Therefore, before moving onto another topic, we would like to present the definition of
another recursive method similar to the toString method.

Given a Journey, one piece of information that can be important is the total length of the trip.
This information is certainly displayed by sites that provide driving directions like maps.google.com
and www.mapquest.com. We would like to add the definition of a length method for our Journey
class that returns the total length of a journey in miles.

Again, the structure of the method will reflect the two categories of Journeys we construct —
multi-step Journeys and single-step Journeys. We will write an if statement with one branch for
each of these cases.

The Step class defined in Figure 10.2 includes a length method that returns the length of a
single Step. This will make the code for the base case in the length method for the Journey class
very simple. It will just return the length of the Journey’s single step.

The code for the recursive case in the length method will be based on the fact that the total
length of a journey is the length of the first step plus the length of all of the other steps. We will
use a recursive invocation to determine the length of the end of a Journey and then just add this
to the length of the first step.

Code for a length method based on these observations is shown in Figure 10.16.

public double length() {
if (singleStep) {

return beginning.length();
} else {

return beginning.length() + end.length();
}

}

Figure 10.16: Definition of a length method for the Journey class

10.5 Lovely spam! Wonderful spam!

We are now ready to move on to a new example that will allow us to explore additional aspects of
recursive definitions. In this example, we will again define a class to manage a list, but instead of
being a list of Steps, it will be a list of Strings. The features of this class will be motivated by an
annoyance we can all relate to, the proliferation of unwanted email messages known as “spam”.

Much to the annoyance of the Hormel Foods Corporation3, the term spam is now used to describe
unwanted emails offering things like stock tips you cannot trust, herbal remedies guaranteed to
enlarge body parts you may or may not have, prescription drugs you don’t have a prescription
for, and approvals for loan applications you never submitted. Many email programs now contain

3Before people starting calling unwanted email spam, the name was (and actually still is) associated with a
canned meat product produced by Hormel. If you have never had the pleasure of eating Spam, you should visit
http://www.spam.com or at least read through the text of Monty Python’s skit about the joys of eating Spam
(http://www.detritus.org/spam/skit.html).

284

Figure 10.17: Interface for a simple mail client

features to identify messages that are spam. These features make it possible to either automatically
delete spam messages or to at least hide them from the user temporarily. If your email client is
doing a very good job of recognizing spam, you might not even be aware of the vast amount of
electronic junk mail that is sent your way every day. If so, look for a way to display the “unwanted
mail” or “trash” folder on your email client. You might be surprised. We will consider aspects of
how such a spam control mechanism could be incorporated in an email client.

Commercial email clients depend on sophisticated algorithms to automatically identify messages
as spam. We will take a much simpler approach. Our program will allow its user to enter a list of
words or phrases like “enlargement”, “online pharmacy”, and “loan application” that are likely to
appear in spam messages. The program will then hide all messages containing phrases in this list
from the user.

Samples of the interface we have in mind are shown in Figures 10.17 through 10.20. The
program provides fields where the user can enter account information and buttons that can be used
to log in or out of the email server. Once the user logs into an account, the program will display
summaries of the available messages in a pop-up menu as shown in Figure 10.18. Initially, this
menu will display all messages available, probably including lots of unwanted messages as shown
in the figure.4

Below the area in which messages are displayed, there are components that allow the user to
control the program’s ability to filter spam. The user can enter a phrase that should be used to

4Alas, I did not have to “fake” the menu shown to make the spam look worse than it really is. The messages
shown are the messages I actually found on my account the morning I created these figures. In fact, the only “faking”
that occurred was to delete a few of the more objectionable messages before capturing the window snapshots.

285

Figure 10.18: Looking for a message amidst the spam

identify spam messages and then press the “Enter new spam keyword” button. The program will
then remove all messages containing the phrase from the menu of messages it displays as shown in
Figure 10.19.

The user must enter spam identification terms one at a time, but the user can enter as many
terms as desired by simply repeating this process. The program will display a list of all of the
terms that have been entered and remove messages containing any of these terms from its menu as
shown in Figure 10.20

We will not attempt to present code for this entire program here. Our goal will be to explore
the design of one class that could be used in such a program, a recursive class named BlackList
that could hold the collection of spam identification terms entered by the user. This class should
provide a method named looksLikeSpam. The looksLikeSpam method will take the text of an
email message as a parameter and return true if that text contains any of the phrases in the
BlackList. The program will use this method to decide which messages to include in the menu
used to select a message to display.

10.6 Nothing Really Matters

The first interesting aspect of the definition of the BlackList class is its base case. For the Journey
class, the base case was a list containing just a single step. If we took a similar approach here, the
base case for the BlackList class would be a list containing just a single String. Such a list could
be used to represent the list of spam identification terms shown in Figure 10.19.

286

Figure 10.19: Message list filtered using a single spam identification term

Figure 10.20: Message list filtered using a list of spam identification terms

287

For this program, however, we also need to be able to represent the list of spam identification
terms shown in Figure 10.18. If you have not found the list of terms shown in Figure 10.18, look
harder. There it is! Right under the email message displayed and to the right of the words “Spam
Identification Terms” you will find a list of 0 spam identification terms.

At first, this may seem like an odd idea. It seems perfectly reasonable to think of 10 phrases
as a “list” of phrases. On the other hand, getting to the point where we think of a single item as
a list or collection, as we did with the Journey class, is a bit of a stretch. Now, we are asking you
to think of a no phrases at all as a collection!

On the other hand, your experience with programming and mathematics should prepare you
for the fact that sometimes it is very important to be able to explicitly talk about nothing. The
number 0 is very important in mathematics. While 0 in some sense means nothing, the 0’s in the
number 100,001 convey some very important information. Getting $100,001 is very different from
getting $11. In Java, the empty String ("") is very important. The empty String enables us to
distinguish a String that contains nothing from no String at all. The latter is represented by
the value null. If the String variable s is associated with the empty String, then s.length()
produces 0. On the other hand, if no value has been associated with s or it has been explicitly set
to null, then evaluating s.length() will lead to an error, producing a NullPointerException
message.

Similarly, in many programs it is very helpful to have a class that can explicitly represent a
collection that contains nothing. In particular, in our email program, such a collection will be
the initial value associated with the variable used to keep track of our spam identification list.
Accordingly, our Java definition for the BlackList class is based on the abstract definition:

BlackList (noun)

1. A single spam identification phrase followed by a BlackList.

2. Nothing at all.

This change in our base case requires only slight changes in the basic structure of the BlackList
class compared to the Journey class. For the recursive case in the definition, we will still need two
instance variables, one to refer to a single member of the collection and the other to refer recursively
to the rest of the collection. We can also still use a boolean to distinguish the base case from the
recursive case. Naming this boolean singleStep, however, would clearly be inappropriate. We will
name it empty instead. The only other major difference is that instead of a constructor that takes
one item and constructs a collection of size one, we need a constructor that takes no parameters and
creates an empty collection or empty list. Based on these observations, the code for the instance
variable and constructor definitions for the BlackList class are shown in Figure 10.21

Now, let us consider how to write the looksLikeSpam method that will enable a program to
use a BlackList to filter spam. Recursive methods to process a collection in which the base case
is empty resemble the methods we wrote for our Journey class in many ways. The body of such
a method will typically have an if statement that distinguishes the base case from the recursive
case. For our BlackList class we will do this by checking to see if empty is true. The code for
the base case in such a method is typically very simple since there is no “first element” involved.
For example, if there are no words in the BlackList, then looksLikeSpam should return false
without even looking at the contents of the message.

The recursive case in the looksLikeSpam method will be more complex because the result
produced by looksLikeSpam depends on the contents of the collection in an interesting way. The

288

public class BlackList {

// Is this a black list with no terms in it?

private boolean empty;

// The last phrase added to the list

private String badWord;

// The rest of the phrases that belong to the list

private BlackList otherWords;

// Construct an empty black list

public BlackList() {
empty = true;

}

// Construct a black list by adding a new phrase to an existing list

public BlackList(String newWord, BlackList existingList) {
empty = false;
badWord = newWord;
otherWords = existingList;

}

. . .
}

Figure 10.21: Instance variables and constructors for the BlackList class

289

// Check whether a message contains any of the phrases in this black list

public boolean looksLikeSpam(String message) {
if (empty) {

return false;
} else {

if (message.contains(badWord)) {
return true;

} else {
return otherWords.looksLikeSpam(message);

}
}

}

Figure 10.22: A definition of looksLikeSpam emphasizing the cases and sub-cases

toString and length methods we defined for the Journey class always looked at every Step in a
Journey before producing a result. The looksLikeSpam method will not need to do this. If the very
first phrase in a BlackList appears in a message processed by looksLikeSpam, then the method
can (and should) return true without looking at any of the other phrases in the BlackList. This
means there are two sub-cases within the “recursive” case of the method. One case will deal with
situations where the first phrase appears in the message. We will want to return true immediately
in this case. Therefore, the code for this case will not actually be recursive. The other case handles
situations where the first phrase does not appear in the message. In this case, we will use a recursive
call to see if any of the other phrases in the BlackList occur in the message.

We will show two, equivalent versions of the Java code for looksLikeSpam. The first, shown
in Figure 10.22, most closely reflects the approach to the method suggested above. The body of
this method is an if statement that distinguishes between the base case and recursive case of the
BlackList class definition. Within the second branch of the if statement, a nested if is used to
determine whether or not the first phrase in the BlackList appears in the message and return the
appropriate value.

A better approach, however was suggested in Section 5.3.1. There, we explained that in many
cases, the nesting of if statements is really just a way to encode multi-way choices as a collection
of two-way choices. We suggested that in such cases, extraneous curly braces might be deleted and
indentation adjusted to more clearly suggest that a multi-way decision was being made. Applying
that advice to the code in Figure 10.22 yields the code shown in Figure 10.23. This code more
accurately reflects the structure of this method. Although the definition of the class involves only
two cases, one base case and one recursive case, the definition of this method requires three cases,
two of which are base cases and only one of which is recursive.

10.7 Recursive Removal

One useful feature we might want to add to our email client and to the BlackList class is the
ability to remove terms from the spam list. We might discover that after entering some word like

290

// Check whether a message contains any of the phrases in this black list

public boolean looksLikeSpam(String message) {
if (empty) {

return false;
} else if (message.contains(badWord)) {

return true;
} else {

return otherWords.looksLikeSpam(message);
}

}

Figure 10.23: A definition of looksLikeSpam making a 3-way choice

“little” that we had seen in many spam messages the program hid not only the spam messages but
also many real messages. In such cases, it would be nice to be able to change your mind and tell
the program to remove “little” or any other word from the list.

Figure 10.24 suggests a way the email client’s interface might be modified to provide this
functionality. Instead of displaying the spam terms the user has entered in a JTextArea, this
version of the program displays them in a menu. The user can remove a term from the list by first
selecting that term in the menu and then pressing the “Remove selected keyword” button.

Of more interest to us is how we would modify the interface of the BlackList class to provide
the ability to remove terms. We will accomplish this by adding a method named remove to the
class definition. The term to be removed will be passed to the method as a parameter. In defining
this method, we will assume that only one copy of any term will appear in a BlackList.

Naming this method remove is a little misleading. It will not actually remove terms from an
existing list. Instead, it will return a different list that is identical to the original except that the
requested term will not appear in the new list.

The structure of the remove method will be similar to the looksLikeSpam method. It will
have two base cases and one recursive case. The first base case handles empty BlackLists. If
remove is invoked on an empty list, there is no work to do. The correct value to return is just an
empty BlackList. We can do this by either creating a new, empty list or returning the original
list. The second base case occurs when the term to be removed is the first term in the original
BlackList. In this case, the method should simply return the rest of the BlackList. Finally, if
the list is not empty but the term to be removed is not the first term in the list, the method must
explicitly create and return a new BlackList composed of the original list’s first element and the
result of recursively removing the desired term from the rest of the original list. The code shown
in Figure 10.25 reflects this structure.

To understand how this method works, consider the diagrams shown in Figures 10.26 and
10.27. These diagrams assume that the BlackList used to represent the items in the menu shown
in Figure 10.24 have been associated with a variable declared as

private BlackList spamPhrases;

Figure 10.26 shows the collection of BlackList objects used to represent the collection of spam
phrases before the remove operation is performed. Note that the order of the items in the linked

291

Figure 10.24: Email client providing the ability to add or remove spam terms

// Return a list obtained by removing the requested term from this list

public BlackList remove(String word) {
if (empty) {

return this;
} else if (word.equals(badWord)) {

return otherWords;
} else {

return new BlackList(badWord, otherWords.remove(word));
}

}

Figure 10.25: A recursive remove method for the BlackList class

292

Figure 10.26: BlackList objects representing list shown in Figure 10.24

list is the opposite of the order in which we assumed the phrases were added to the list (and the
opposite of the order in which they are displayed in the menu). This is because when we “add”
an element by constructing a new BlackList, the new item appears first rather than last in the
structure created.

Figure 10.27 shows how the structure would be changed if the statement

spamPhrases = spamPhrases.remove("little");

was used to remove the phrase “little” from the list in response to a user request. In this case,
the computer would execute the final, recursive case in the definition of the remove method three
times to process the entries for “Perfect text”, “medication”, and “spam”. Each time this case in
the method is executed, it creates a new BlackList object that is a copy of the object processed.
Therefore, in Figure 10.27, we show three new objects that are copies of the first three objects in
the original list. The objects that were copies are shown in light gray in the figure below the new
copies.

Figure 10.27: Objects representing spam list after removing “little”

The next recursive invocation would execute the second branch of the if statement. This is
the branch that is executed once the item to be deleted is found. It does not make a copy of the

293

object to be deleted or of any other object. Instead, it returns the collection of objects referred
to by otherWords within the object to be deleted. Because the method returns this value to the
preceding recursive invocation, it becomes the value of otherWords in the last object that was
copied. Therefore, in the figure, the otherWords variable within the new object for “spam” refers
to the original object for “bluej”.

Once the invocation of remove is complete, the name spamPhrases will be associated with the
object it returns. Therefore, as shown in Figure 10.27, spamPhrases will now refer to the copy of
the object for “Perfect Text” rather than to the original. Following the arrows representing the
values of otherWords leads us through a list that correctly represents the reduced list of four spam
phrases. Part of this list consists of objects that were part of the original list and part of it consists
of new copies of objects from the original list.

If spamPhrases was the only variable name associated with the original BlackList, then there
will be no name associated with the original object for “Perfect Text” after the remove is complete.
This means that there will no longer be any way for the program to refer to this object or any
of the other three original objects that are not part of the new list. That is why we have shown
these objects in gray in the figure. The Java system will eventually recognize that these BlackList
objects are no longer usable and remove them from the computer’s memory.

10.8 Wrapping Up

In the preceding section, we noted that the processes of removing elements from a BlackList often
involves creating new BlackList objects rather than simply modifying existing objects. Adding
an element to a BlackList is similar. When add an element by using the BlackList constructor
to make a new, bigger BlackList rather than by modifying an existing BlackList. Adding or
removing an item from a BlackList always involves assigning a new value to some BlackList
variable. That is, if we declare

String someWord;
BlackList spamTerms;

then we can add a word to spamTerms by executing the assignment

spamTerms = new BlackList(someWord, spamTerms);

and we can remove the word by executing

spamTerms = spamTerms.remove(someWord);

Recursive structures are one of many ways to define a collection of objects. The JComboBox
class, one of the library classes we have used extensively, also provides the ability to manipulate
collections. The JComboBox handles the addition and removal of entries very differently from our
BlackList class. If we declare

JComboBox menu = new JComboBox();

then we can add an item by executing the invocation

menu.addItem(someWord);

294

public void addItem(String word) {
if (empty) {

empty = false;
badWord = word;
otherWords = new BlackList();

} else {
otherWords.addItem(word);

}
}

Figure 10.28: An addItem method for BlackLists

and remove an item using the invocation

menu.removeItem(someWord);

Neither of these are assignment statements. When we add or remove items from JComboBoxes,
we don’t create a new JComboBox or associate a new object with a variable. We simply invoke a
mutator method that changes an existing JComboBox.

The addItem and removeItem methods of the JComboBox have several advantages over the
interface our BlackList class provides for adding and removing elements. It is not uncommon to
write a program in which a single object is shared between two different classes. Suppose we want to
share a BlackList between two classes named A and B. Class A might pass a BlackList associated
with instance variable “x” as a parameter to the constructor of class B. Within its constructor, B
might associate this BlackList with the instance variable “y”. Unfortunately, if B tries to add an
item by executing the statement

y = new BlackList(..., y);

this addition will not be shared with A. On the other hand, if B could say

y.addItem(...);

as it might with a JComboBox, the change would be shared with A.
It is possible to define methods like addItem and removeItem as part of a recursively defined

linked list like the BlackList. A possible definition of addItem for the BlackList class is shown
in Figure 10.28. Such methods are more complicated than the simple approaches we used to add
and remove items earlier in this chapter, and, in the case of addItem, less efficient. The addItem
method shown adds new items at the end of a list and looks at every entry in the existing list in
the process. By contrast, the technique of creating a new list with the new item at the start only
takes a single step.

As a result, a common alternate technique used to provide functionality similar to the addItem
and removeItem methods is to “wrap” a recursive collection class definition within a simple non-
recursive class that implements methods like addItem and removeItem using the constructor and
remove method of the underlying recursive class.

The class SpamFilter shown in Figure 10.29 is such a wrapper for the BlackList class. The
SpamFilter class contains only one instance variable that is used to refer to the BlackList it

295

// A wrapper for the recursive BlackList class that provides addItem

// and removeItem methods in addition to the essential looksLikeSpam method

public class SpamFilter {

// The underlying recursive collection

private BlackList wordList;

// Create a new filter

public SpamFilter() {
wordList = new BlackList();

}

// Add a phrase to the list of terms used to filter spam

public void addItem(String newWord) {
wordList = new BlackList(newWord, wordList);

}

// Remove a phrase from the list of terms used to filter spam

public void removeItem(String word) {
wordList = wordList.remove(word);

}

// Check whether the text of a message contains any of the phrases

// in this black list

public boolean looksLikeSpam(String message) {
return wordList.looksLikeSpam(message);

}

}

Figure 10.29: SpamFilter: a non-recursive wrapper for the BlackList class

296

manages. The addItem and removeItem methods of the class provide the ability to add and
remove items from a collection using an interface similar to that provided by the JComboBox class.
Internally, however, these methods are implemented using the constructor and remove method of
the BlackList class. The goal is simply to hide the constructor and remove method from the rest
of the program. Wherever one might have declared a variable such as

BlackList badWords;

elsewhere in a program, one would now instead say

SpamFilter badWords;

More importantly, wherever one said

badWords = new BlackList(..., badWords);

one would now instead say

badWords.addItem(...);

Similarly, all statements of the form

badWords = badWords.remove(...);

could be replaced by

badWords.removeItem(...);

Finally, when defining such a wrapper class it is typically desirable to make other aspects of
the interface to the wrapper class identical or at least similar to the underlying recursive class. For
example, the SpamFilter class defines a method named looksLikeSpam that provides the same
interface as the similarly named method of the BlackList class . This method is implemented
by simply invoking the corresponding method of the underlying class. As a result, any statement
containing a condition of the form

badWords.looksLikeSpam(...)

can remain unchanged if we switch to use a SpamFilter in place of a BlackList.

10.9 Summary

In this chapter, we have explored the application of recursive definitions to manipulate collections
of objects. A definition is said to be recursive if it depends on itself. The most direct way this can
happen is if the name being defined is used within its own definition. This is the form of recursion
we have discussed in this chapter.

We have seen examples of classes which are recursive because they have instance variables whose
types are the same as the type of the class in which they are defined. We have also seen examples
of method definitions which are recursive because the include invocations that apply the method
begin defined. In this chapter, all of the recursive methods have appeared within recursive classes,
although this is not necessary in general.

297

A recursive definition must be divided into several cases. If there were only one case in the
definition and it referred to the name being defined then the definition would truly be circular and
therefore unusable. By having several cases, the definition can include some cases called base cases
that do not involve the name being defined and other cases that do refer to the name being defined.

We focused our attention on the use of recursive definitions to represent collections of objects.
In this application, the base case of a class definition is typically either the empty collection or a
collection of some small fixed size. The recursive case is then based on the fact that any collection
can be seen as one item plus another collection that is one smaller than the original.

The structure of recursive methods that manipulate collections typically reflects the base case/recursive
case used in the definition of the class to which the method belongs. Other cases in such definitions
involve the single distinguished item that is set apart from the rest of the collection.

While we have introduced many of the important principles one must understand to use recur-
sion, we have kept our exploration of recursion in this chapter narrowly focused on the manipulation
of collections viewed as lists. As you learn more about programming, you will learn that recursion
can be used in many more ways. For example, instead of using the name of a class directly in its
own definition, we can define one class in terms of a second class that is in turn defined using the
first class. Such collections of classes are said to be mutually recursive. Only when you learn to use
recursion in these more general ways will you fully appreciate the power of this technique.

298

Chapter 11

Tables of Content

Collections of information can be structured in many ways. We sometimes organize information into
lists including to-do lists, guest lists, and best-seller lists. Tables, including multiplication tables
and periodic tables, have been used to organize information since long before we had spreadsheets
to help produce them. Occasionally we organize our relatives into family trees, our friends into
phone trees, and our employees into organizational charts (which are really just trees).

Given that there are many ways of organizing the contents of a collection, Java provides several
mechanisms for representing and manipulating collections. In Chapter 10, we saw how recursive
structures could be used to manage collections. In this chapter we will introduce another feature
of the Java language that supports collections of data, the array. In particular, we will see how
arrays can be used to organize collections of data as lists and tables.

To introduce the use of arrays in a context that is both important and familiar, we will begin
by focusing on just one application of arrays in this chapter. We will explore how arrays can be
used to manipulate the information that describes a digital image. Even relatively small digital
images are composed of thousands of dots of color known as pixels. We will see that arrays provide
a very natural way to manipulate the collection of information that describes an image’s pixels.
We will learn how we can transform images by manipulating the arrays that describe them. We
will explore array algorithms to perform operations like scaling and rotation of images.

11.1 A Picture is Worth 754 Words

When an image is represented within a computer, the colors of the parts of the image are represented
numerically. This is accomplished by dividing the picture into a grid of tiny squares called pixels
and then using numbers to describe the color of each pixel. There are many schemes that can be
used to represent colors numerically. These schemes typically use several numbers to describe each
color but differ in how they interpret these numbers. In one scheme, known as RGB, the numbers
describe the amount of red, green, and blue light that should be mixed to produce a pixel’s color.
In another called HSB, three numbers are used to describe qualities of the color referred to as its
hue, saturation and brightness. Of course, there is nothing magic about the number three. There
is at least one system for describing colors that uses four values. This scheme is known as CYMK.

Things are a bit simpler for images containing only shades of gray like the photo in Figure 11.1.
Being lovers of simplicity, we will initially limit our attention to such grayscale images.

In a grayscale image, a single number can be used to describe the brightness of each pixel. Small

299

Figure 11.1: Asa Gray (1810-1888), Fisher Professor of Natural History, Harvard University

numbers are typically used to describe dark pixels and large number are used to describe brighter
pixels. Different schemes use different ranges of values for the darkest and brightest pixels. A very
common approach is to limit the range of values so that each pixel’s description fits in a single 8-bit
unit of computer memory. In this case, a black pixel is encoded using 0 and the largest number
that can be encoded in 8 bits, 255, is used to describe white pixels. Various shades of gray are
associated with the values between 0 and 255. A dark gray pixel might have a brightness value of
80 and a light gray pixel’s brightness might be 200.

The number of pixels per inch affects the quality of the image’s representation. If the number is
too small, the individual pixels will become visible producing an image that looks grainy. Computer
screens typically display images using about 75 pixels per inch. Printed images usually require more.

The image in Figure 11.1 is represented using 110 pixels per inch. In total, it is 215 pixels wide
and 300 pixels high for a total of 64,500 pixels. This makes it a bit difficult to look at every single
pixel in the image. On the other hand, we can look at the individual pixels and the values used to
represent them if we focus on just a small region within the image. For example, the image below
shows just the right eye from Figure 11.1.

This image is just 19 pixels wide and 10 pixels high. It is represented using 190 pixel values. We
can see this in Figure 11.2 which shows the same image with each pixel enlarged 16 times. If this is
not clear, just step back and look at the image from a distance. As you move away from the page
the squares of gray will blend into an image of an eye.

We can show how numeric values are used to represent the brightness values in the image of the
eye by overlaying a table of the numeric values of the pixel brightnesses with an enlarged version of
the pixels themselves as shown in Figure 11.3. In this figure, you can clearly see that values close
to 255 are used to describe the brightest pixels at the edges of the image. On the other hand, the
darkest pixel in this image is described by the numeric value 51. Of course, inside the computer’s

300

Figure 11.2: The right eye from Figure 11.1 enlarged by a factor of 16

Figure 11.3: The numbers describing pixel brightnesses for the right eye from Figure 11.1

memory, all that is really available is the collection of numeric values as shown in Figure 11.4.1

11.2 Matrices, Vectors, and Arrays

To write programs that work with images, we clearly need convenient ways to manipulate the
large collections of numbers that describe pixels. In chapter 10 we saw that it is possible to define
recursive classes to manage collections. All the collections we described using recursive classes,
however, were viewed as lists. We do not think of the collection of numbers that describes an image
as a list. As suggested by Figure 11.4, we think of these collections as tables. It would be best if
we could manipulate them as tables within Java programs.

Java and most other programming languages include a mechanism called arrays that makes it
possible to work with collections as either tables or lists. The notation used to work with arrays
is borrowed from the notations that mathematicians have used for years when discussing matrices
and vectors. If you look through a few linear algebra textbooks you will probably find a definition
that reads something like:

1The 754 in the title of this section is the number of words required to write the contents of this table out in the
form “two hundred and thirty seven, two hundred and forty, two hundred and forty one, two hundred and thirty
seven, ...” If you take the time to check this count, please let me know if it is wrong.

301

237 240 241 237 231 231 226 223 224 230 234 235 241 242 235 237 233 231 226

234 232 227 217 219 222 209 193 183 165 137 147 174 201 218 221 219 215 213

225 210 200 203 207 202 180 148 126 99 75 78 92 117 145 162 171 173 179

211 199 188 176 151 127 125 131 139 115 81 71 69 79 90 95 106 139 166

201 182 158 111 65 69 93 87 81 75 60 56 56 64 70 75 77 133 186

203 167 110 72 84 103 93 125 138 61 77 66 51 57 77 69 76 159 212

211 180 143 168 196 206 147 66 61 65 160 118 70 59 69 85 118 186 227

234 231 233 239 236 230 211 124 66 110 201 165 119 89 68 100 177 209 232

236 236 236 238 235 232 227 220 202 209 214 185 201 160 138 170 216 226 234

235 235 235 235 235 233 221 218 217 208 199 196 203 200 220 224 230 233 235

Figure 11.4: The numbers describing pixel brightnesses for the right eye from Figure 11.1

Definition 1 A rectangular collection of m× n values of the form

A =



A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n


is called an m by n matrix.

When working with such a matrix, we use the name of the matrix, A, by itself to refer to the
entire collection and we use the name together with two subscript values, such as A3,5 to refer to
a particular element of the collection.

Similarly, with Java arrays, we can use the name of an array itself, pixels for example, to refer
to the entire collection, and the name together with subscript values to select a particular entry. In
Java, however, the values that specify the position of the desired element are not actually written
as subscripts. Instead, the values are placed in square brackets after the name of the array. For
example, we could write

pixels[3][5] = 255;

to make the brightness value associated with the pixel at position 3,5 equal to the number that
represents white. Since they are not actually positioned as subscripts, we often refer to the values
in square brackets as indices rather than subscripts.

An array name followed by appropriate indices is called a subscripted or indexed variable. Note
that a subscripted variable behaves just like a simple variable. When used within an expression, it
represents the value currently associated with the specified position within an array. When placed
on the left side of an assignment statement, it tells the computer to change the value associated
with the specified position within an array. For example, the statement

pixels[3][5] = pixels[3][5] + 1;

302

might be executed if we wanted to make the pixel at position 3,5 in an image just a tiny bit brighter.
The values used to specify the indices in subscripted variables do not have to be literals. Just

as we can say Am,n as well as A3,5 in mathematical notation, we can say

pixels[m][n] = pixels[m][n] + 1;

to make the pixel at position m,n a little brighter. In fact, we can use arbitrarily complex expressions
to describe index values. Something like

pixels[m - n][2*n + 1] = pixels[(m + n)/2][2*n] + 1;

is perfectly acceptable as long as the values described by the subscript expressions fall within the
range of row and column numbers appropriate for the table named pixels.

Java’s conventions for numbering the elements of an array are slightly different from those used
by mathematicians working with matrices. Java starts counting at 0. That is, the top row is row
0 and the leftmost column is column 0. Also, when dealing with images in Java, the first index
indicates the column number and the second index indicates the row number. This corresponds to
the usual ordering mathematicians use for the x and y coordinates of a point in a graph, but is the
reverse of the usual ordering mathematicians use for row and column numbers in a matrix. Given
these differences, if we want to depict the elements of the array pixels in a manner similar to that
used for A in Definition 1 we would use the layout:

pixels =


pixels[0][0] pixels[1][0] . . . pixels[m− 1][0]
pixels[0][1] pixels[1][1] . . . pixels[m− 1][1]

...
...

. . .
...

pixels[0][n− 1] pixels[1][n− 1] . . . pixels[m− 1][n− 1]



11.3 Array Declarations

Recall that Java requires that all names used to refer to values or objects in a program be declared
as local variables, instance variables or formal parameters. Declarations are formed by placing the
name we wish to use after a description of the type of value that will be associated with the name.
Depending on the situation, we may add modifiers like private and final or assign an initial value
to a variable in its delcaration. Examples include

String response;

and

private JTextArea log = new JTextArea(WIDTH, HEIGHT);

Java provides a special notation to distinguish declarations of names that refer to arrays from
declarations of names that refer to single values. If we declared the variable pixels as

int pixels;

Java would expect us to associate the name pixels with just a single int. To declare pixels as a
name that will refer to a table of values we must instead write

303

int [] [] pixels;

This declaration illustrates the two kinds of information we must provide when declaring an array.
The word int tells Java the type of values that will make up the collection associated with the
array’s name. The square brackets between int and pixels indicate that pixels will be the name
of an array.

We place two pairs of brackets between int and pixels to indicate that two index values will
be used to identify each element of the array pixels. In Java, it is possible to declare an array
that uses more than two index values or just a single index value to identify specific elements. For
example, in mathematics it is common to describe polynomials of high degree by placing subscripts
on each term’s coefficients. That is, we might write

c0 × x0 + c1 × x1 + c2 × x2 + · · ·+ cn−1 × xn−1 + cn × xn

and talk about the sequence of coefficients

< c0, c1, c2, . . . , cn >

In Java, we would declare an array variable to hold the coefficient values using the declaration

int [] coefficients;

We say that the number of pairs of square brackets included in an array declaration determines the
dimensionality of the array. Arrays that require only one index value are called one dimensional
arrays, vectors, or sequences. Arrays that use two index values are called two dimensional arrays,
matrices, or tables. It is also possible to have three dimensional arrays, four dimensional arrays,
and so on.

Java arrays can also be used to manage collections of types other than int. For example, recall
the calculator example presented in Chapter 7. That program displayed the buttons that formed
its interface in a tabular pattern as shown in Figure 11.5. It might be useful to gather all of these
buttons into an array named keyboardButtons in such a way that each JButton in the window
could be accessed by specifying its row and column positions. That is,

keyboardButtons[2,2]

would refer to the “9” key. In this case, a declaration of the form

JButton [] [] keyboardButtons;

could be used to declare the variable keyboardButtons.

11.4 Array Constructions

Declaring a variable tells Java that we plan to use a name, but it does not tell Java what value or
object should be associated with that name. For example, if we declare

private JButton addButton;

and the first statement executed in our program that used addButton was

304

Figure 11.5: Calculator interface in which the keys are arranged in a table

contentPane.add(addButton);

the program would fail with an error because addButton has no value associated with it (or equiv-
alently, it is associated with the value null).

To avoid such an error, we must include a construction that creates a button either in an
assignment such as

addButton = new JButton("+");

or as an initial value specification in a revised declaration of the form

private JTextField addButton = new JButton("+");

Array names work in very similar ways. Declaring an array variable such as

JButton [] [] keyboardButtons;

tells the computer that we plan to use keyboardButtons to refer to an array of JButtons, but
it does not tell the computer what collection of buttons the name should refer to. It does not
even tell the computer how big the collection will be. If the name keyboardButtons is used in the
calculator program shown in Figure 11.5, then the name should be associated with a 4 by 4 table
of buttons. If it is instead used in a program with an interface resembling a standard telephone
keypad, it should be associated with a 4 by 3 table of buttons. The computer cannot guess which
sort of table we want to work with. We have to tell it. We can do this by constructing a new array
and then assigning it to the variable name.

Array constructions looks like other constructions except that the parenthesized parameter list
that is included in other constructions is replaced by a series of one or more integer values placed
in square brackets. For example, to construct an array to hold the calculator buttons, we might
use an array construction of the form

new JButton[4][4]

It is common to include array constructions as initial value specifications in array variable declara-
tions such as

JButton [] [] keyboardButtons = new JButton[4][4];

305

Note that an array construction creates an array and nothing else. In particular, the construc-
tion

new JButton[4][4]

does not create any buttons. We have to create the desired buttons separately and associate them
with the appropriate elements of the array.2 This can be done using assignments like

keyboardButtons[0][1] = new JButton("4");

and

keyboardButtons[3][3] = new JButton("+");

The numbers placed in the square brackets in an array construction determine the range of pos-
sible index values that can be used to select specific elements of an array. Each number determines
the number of distinct values that can be used for one of the index values required. For example, the
declaration shown above would associate keyboardButtons with an array whose elements would
be selected using two index values each falling between 0 and 3. Thus, there are four possible index
values: 0, 1, 2 and 3. The number 4, however, would not be acceptable as an index value.

A declaration of the form

JButton [] [] keyboardButtons = new JButton[3][4];

would associate keyboardButtons with an array more appropriate for holding the buttons of a
telephone keypad than a calculator. With this construction, the first index value used to select
an element of the array would have to be 0, 1, or 2 while the second could range from 0 to 3. If
keyboardButtons referred to the array created by this construction, the assignment

keyboardButtons[3][0] = new JButton("3"); // Warning: Incorrect code!

would cause a program error identified as an “array index out of bounds exception”. The correct
assignment to place the “3” key in the upper right corner of the table would be

keyboardButtons[2][0] = new JButton("3");

In general, if we construct a matrix by saying

new SomeType[WIDTH][HEIGHT]

2In associating index values with buttons in the calculator and telephone keypad examples, we are using the
same conventions we used for the table of pixel values. The first value in a pair of index values indicates horizontal
placement while the second determines vertical position. There is nothing in the Java language that forces us to use
this convention. We could equally well have switched the order of the index values.

According to standard mathematical conventions, when working with matrices the number indicating a value’s
vertical position comes first and the number for its horizontal position comes second. On the other hand, when
using Cartesian coordinates, mathematicians place the number indicating horizontal placement first and the vertical
position second. Java’s scheme for identifying the positions of pixel values in an image is based on the conventions
associated with Cartesian coordinates. Given the inconsistent conventions used in mathematical notation, we could
certainly justify using the matrix-like convention for our keyboard tables. It is our hope, however, that by consistently
specifying the horizontal position first and the vertical position second in all examples, we will minimize confusion.

306

the first index values used with the array will range from 0 to WIDTH - 1, and the second index
values will range from 0 to HEIGHT - 1. The total number of entries in the matrix will be WIDTH
× HEIGHT.

We have seen that one distinction between primitive types like int and boolean and classes
like JButton is that we cannot construct values of primitive types. That is, we cannot say

new int(...)

We can, however, construct arrays whose elements will be associated with values of primitive types.
For example, if our program includes the declaration

int [] [] pixels;

we could execute the assignment

pixels = new int[19][10];

to associate pixels with a table of int values just the right size to hold the pixel values shown in
Figure 11.4.

When we create an array of JButtons, Java does not create new JButtons to use as the elements
of the array. We have to write separate instructions to create buttons and associate them with the
array elements. Similarly, we have to write separate instructions to associate the correct int values
with the elements of an array like pixels. Initially, the computer will simply associate the value 0
with all elements of the array. Therefore, the values found in the array pixels after it is initially
constructed would describe the image

rather than

11.5 SImages and JLabels

While we know that a matrix full of zeroes can be interpreted as the description of a black rectangle,
an array like pixels is not an image. It is a collection of numbers, not a collection of colored dots
on the screen. We need some way to turn an array of numbers into an image we can see on a
computer screen. This ability is provided through a Java class namedSImage.3

There are several ways to construct an SImage. The constructor we present here is designed for
creating grayscale images. If pixels is a two dimensional table of ints, then a construction of the
form

new SImage(pixels)

3I bet you are wondering whether the “S” in SImage stands for “Sharper” or “Self”. Actually, it stands for Squint.
Like NetConnection, SImage is a part of the Squint library designed for use with this text. Within the standard
Java libraries, the functionality provided by SImage is supported through a class named BufferedImage. SImage is
designed to make the features of the BufferedImage class a bit more accessible.

307

will create a grayscale image whose pixels’ brightnesses correspond to the values in the elements
of the array. As explained above, the values in the array used in such a construction should fall
between 0 and 255, but the SImage class is forgiving. Any value in the array that is less than 0
will be treated as if it was replaced with its absolute value, and any value greater than 255 will be
treated as 255.

Constructing an SImage creates a new representation of the image in the computer’s memory,
but it does not immediately make the image appear on the computer’s screen. In this way, SImages
are a bit like GUI components. For example, evaluating the construction

new JButton("Click Me")

immediately creates an object that represents a button in the computer’s memory, but we have to
do more to make the button appear on the screen. In the case of a GUI component, we have to
add the component to the contentPane to make it appear.

SImages are not GUI components. We cannot add them to the contentPane. Instead, displaying
an SImage is more like displaying a String. We cannot add a String to the contentPane, but
we can use the setText method to tell a JButton or JLabel to display the String as its contents.
In addition to the setText method, the JLabel and JButton classes provide a method named
setIcon. If we pass an SImage as a parameter in an invocation of this method, the JLabel or
JButton on which the method is invoked will display the image represented by the SImage.

Figure 11.6 shows a very simple program that uses this feature to display our 19 by 10 rectangle
of black pixels. The figure also includes a picture of the display the program would produce. The
program creates a JLabel named imageDisplay and adds it to the contentPane. It then creates
an SImage from a 19 by 10 table of ints. Finally, it uses the setIcon method to place this SImage
in the JLabel.

Of course, the little black rectangle displayed in Figure 11.6 is not the most interesting image
around. We could produce a slightly more interesting image by changing some of the pixel brightness
values from 0 to larger numbers. For example, if we add the instructions

pixels[7][4] = 150;
pixels[8][5] = 200;
pixels[9][4] = 255;
pixels[9][5] = 255;
pixels[10][4] = 200;
pixels[11][5] = 150;

to our program, the image displayed will look like:

(OK! I admit it is a bit hard to see, but with just a bit of imagination, you will realize that this
image looks just like a spiral galaxy floating in the blackness of space.) What we would really like
to do, however, is take a picture from an image file created using a digital camera or scanner and
access its pixel values within a Java program.

11.6 Image Files

The data in an image file can be converted into an SImage using a second form of constructor
associated with the class. To use this constructor, the programmer passes a String containing the

308

import javax.swing.*;
import squint.*;

public class RectangleViewer extends GUIManager {
private final int WINDOW_WIDTH = 100, WINDOW_HEIGHT = 100;

private JLabel imageDisplay = new JLabel();

public ImageViewer() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(imageDisplay);

int [][] pixels = new int[19][10];
SImage blackBox = new SImage(pixels);
imageDisplay.setIcon(blackBox);

}
}

Figure 11.6: A very simple program that displays an SImage

name of the image file as a parameter. For example, if the picture shown in Figure 11.1 is stored
in the file asaGray.jpg, then the construction

new SImage("asaGray.jpg")

will produce an Simage representing this photograph. Then, this SImage can be used as the icon
of a JLabel to make the picture appear on the screen.

Using this form of the SImage constructor, it is possible to write a program that can load an
image and then modify its pixel values in various ways such as resizing, cropping, or brightening.
That is, we can construct image processing software. When writing such a program, however, we
would not want to specify the file to use by typing a literal like "asaGray.jpg" into the program’s
code. Instead, we would like to make it possible for the program’s user to select the file to use
through a mechanism like the dialog box shown in Figure 11.7. To make this easy, the Java Swing
library contains a class called JFileChooser.

A JFileChooser is a GUI component, but unlike the components we have seen previously, a
JFileChooser does not become part of the existing program window. Instead, it pops up a new
window like the one shown in Figure 11.7.

The first step in using a JFileChooser is to construct one. The constructor is usually included
in a local variable declaration or an instance variable declaration of the form:

private JFileChooser chooser = new JFileChooser(... starting-directory ...);

The “starting-directory” determines the folder on your disk whose contents will appear in the
dialog box when it is first displayed. The user can navigate to other folders using the controls in
the dialog, but it is convenient to start somewhere reasonable. If no starting directory is specified,
the dialogue will start in the user’s home directory. Using the expression

309

Figure 11.7: The JFileChooser “Open File” dialog box

new File(System.getProperty("user.dir"))

will cause the dialog to start in the directory containing the program being executed.
The File class is a part of the standard java libraries used to represent file path names.

The construction shown here creates a new File object from the String returned by asking the
System.getProperty method to look up "user.dir", a request to find the users’ home directory.
To use the File class, you will have to include an import for "java.io.*" in your .java file.

To display the dialog associated with a JFileChooser, a program must execute an invocation
of the form

chooser.showOpenDialog(this)

Invoking showOpenDialog displays the dialog box and suspends the program’s execution until
the user clicks “Open” or “Cancel”. The invocation returns a value indicating whether the user
clicked “Open” or “Cancel”. The value returned if “Open” is clicked is associated with the name
JFileChooser.APPROVE OPTION. Therefore, programs that use this method typically include the
invocation in an if statement of the form

if (chooser.showOpenDialog(this) == JFileChooser.APPROVE OPTION) {
... code to access and process the selected file ...

}
Finally, a String containing the name of the file selected by the user can be extracted from the

JFileChooser using an invocation of the form

chooser.getSelectedFile().getAbsolutePath()

The getSelectedFile method asks the JFileChooser to return a File object describing the file
chosen by the user. The getAbsolutePath method asks this File object to produce a String
encoding the file’s path name.

A program that uses a JFileChooser and an SImage constructor to load and display an image is
shown in Figure 11.8. A picture of the interface produced by this program is shown in Figure 11.9.

310

import javax.swing.*;
import squint.*;
import java.awt.*;
import java.io.*;

// An image viewer that allows a user to select an image file and

// then displays the contents of the file on the screen

public class ImageAndLikeness extends GUIManager {
// The dimensions of the program’s window

private final int WINDOW_WIDTH = 400, WINDOW_HEIGHT = 500;

// Component used to display images

private JLabel imageDisplay = new JLabel();

// Dialog box through which user can select an image file

private JFileChooser chooser =
new JFileChooser(new File(System.getProperty("user.dir")));

// Place the image display label and a button in the window

public ImageAndLikeness() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

contentPane.add(imageDisplay);
contentPane.add(new JButton("Choose an image file"));

}

// When the button is clicked, display image selected by user

public void buttonClicked() {
if (chooser.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {

String imageFileName = chooser.getSelectedFile().getAbsolutePath();

SImage pic = new SImage(imageFileName);
imageDisplay.setIcon(pic);

}
}

}

Figure 11.8: A simple image viewer

311

Figure 11.9: A picture of the Maguires displayed by the program in Figure 11.8

11.7 Think Negative

We have seen that we can use a constructor to turn an array of brightness values into an SImage.
It is also possible to turn an SImage into an array containing the brightness values of its pixels
using a method named getPixelArray. This method is the final tool we need to write programs
that process images. We can now create an SImage from a file on our disk, get an array containing
its brightness values, change the values in this array to brighten, rotate, scale, crop, or otherwise
modify the image, and then create a new SImage from the modified array of values.

Perhaps the simplest type of image manipulation we can perform using these tools is a trans-
formation in which each pixel’s brightness value is replaced by a new value that is a function, f, of
the original value. That is, for each position in our array, we set

pixels[x][y] = f(pixels[x][y])

As an example of such a transformation, we will show how to convert an image into its own negative.
Long, long ago, before there were computers, MP3 players, and digital cameras, people took

pictures using primitive cameras and light sensitive film like the examples shown in Figure 11.10.
In fact, some photographers still use such strange devices.

The film used in non-digital cameras contains chemicals that react to light in such a way that,
after being “developed” with other chemicals, the parts of the film that were not exposed to light
become transparent while the areas that had been exposed to light remain opaque. As a result,
after the film is developed, the image that is seen is bright where the actual scene was dark and dark
where the scene was bright. These images are called negatives. Figure 11.11 shows an image of what
the negative of the picture in Figure 11.1 might look like. As an example of image manipulation, we
will write a program to modify the brightness values of an image’s pixel so that the resulting values
describe the negative of the original image. A sample of the interface our program will provide is
shown in Figure 11.12.

312

Figure 11.10: Some antiques: A film camera and rolls of 120 and 35mm film

Figure 11.11: A negative image

Figure 11.12: Interface for a program that creates negative images

313

The function that describes how pixel values should be changed to produce a negative is simple.
The value 0 should become 255, the value 255 should become 0, and everything in between should
be scaled linearly. The appropriate function is therefore

f(x) = 255− x

It is easy to apply this function to any single pixel. The statement

pixels[x][y] = 255 - pixels[x][y];

will do the job. All we need to do is use loops to execute this statement for every pair of possible
x and y values.

To execute a statement for every possible value of x and y, we need some way to easily determine
the correct range of index values for an image’s table of pixels. The SImage class provides two
methods that help. The methods getWidth and getHeight will return the number of columns and
rows of pixels in an image repectively. Thus, we can use a loop of the form:

int x = 0;
while (x < pixels.getWidth()) {

// Do something to all the pixels in column x

...
x++;

}

to execute some statements for each possible x value. To execute some code for every possible
combination of x and y values, we simply put a similar loop that steps through the y values inside
of this loop. The result will look like:

int x = 0;
while (x < pixels.getWidth()) {

int y = 0;
while (y < pixels.getHeight()) {

// Do something to pixels[x][y]

...
y++;

}

x++;
}

This is an example of a type of nested loop that is frequently used when processing two dimensional
arrays.

The complete program to display negative images is shown in Figure 11.13. The nested loops are
placed in the buttonClicked method between an instruction that uses getPixelArray to access
the brightness values of the original image and a statement that uses an SImage construction to
create a new image from the modified array of pixel values.

314

// A program that can display an image and its negative in a window

public class NegativeImpact extends GUIManager {
private final int WINDOW_WIDTH = 450, WINDOW_HEIGHT = 360;

// The largest brightness value used for a pixel

private final int BRIGHTEST_PIXEL = 255;

// Used to display the original image and the modified version

private JLabel original = new JLabel(), modified = new JLabel();

// Dialog box through which user can select an image file

private JFileChooser chooser = new JFileChooser();

// Place two empty labels and a button in the window initially

public NegativeImpact() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);
contentPane.add(original);
contentPane.add(modified);
contentPane.add(new JButton("Show Images"));

}

// Let the user pick an image, then display the image and its negative

public void buttonClicked() {
if (chooser.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {

String imageFileName = chooser.getSelectedFile().getAbsolutePath();
SImage pic = new SImage(imageFileName);
original.setIcon(pic);

// Replace every pixel’s value by its negative equivalent

int [][] pixels = pic.getPixelArray();
int x = 0;
while (x < pic.getWidth()) {

int y = 0;
while (y < pic.getHeight()) {

pixels[x][y] = 255 - pixels[x][y];
y++;

}
x++;

}

modified.setIcon(new SImage(pixels));
}

}
}

Figure 11.13: A program to display images and their negatives

315

11.8 for by for

Each of the nested loops used in Figure 11.13 has the general form:

int variable = initial value;
while (termination condition) {

... statement(s) to do some interesting work ...
...

statement to change the value of variable;
}

Loops following this pattern are so common, that Java provides a shorthand notation for writing
them. In Java, a statement of the form

for (α; β; γ) {
σ

}

where α and γ are statements or local variable declarations,4 β is any boolean expression, and σ is
any sequence of 0 or more statements and declarations, is defined to be equivalent to the statements

α;
while (β) {

σ;
γ

}

A statement using this abbreviated form is called a for loop. In particular, the for loop

for (int x = 0; x < pixels.getWidth(); x++) {
... statement(s) to process column x

}

is equivalent to the while loop

int x = 0;
whilte (x < pixels.getWidth()) {

... statement(s) to process column x

x++;
}

To illustrate this, a version of the buttonClicked method from Figure 11.13 that has been revised
to use for loops in place of its nested while loops is shown in Figure 11.14

We will be writing loops like this frequently enough that the bit of typing saved by using the
for loop will be appreciated. More importantly, as you become familiar with this notation, the for
loop has the advantage of placing three key components of the loop right at the beginning where
they are easy to identify. These include:

4In all of our examples, α and γ will each be a single declaration or statement, but in general Java allows one to
use lists of statements and declarations separated by commas where we have written α and γ.

316

// Let the user pick an image, then display the image and its negative

public void buttonClicked() {
if (chooser.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {

String imageFileName = chooser.getSelectedFile().getAbsolutePath();
SImage pic = new SImage(imageFileName);
original.setIcon(pic);

// Replace every pixel’s value by its negative equivalent

int [][] pixels = pic.getPixelArray();
for (int x = 0; x < pic.getWidth(); x++) {

for (int y = 0; y < pic.getHeight(); y++) {
pixels[x][y] = 255 - pixels[x][y];

}
}

modified.setIcon(new SImage(pixels));
}

}

Figure 11.14: Code from Figure 11.13 revised to use for loops

• the initial value,

• the termination condition, and

• the way the loop moves from one step to the next

There is, by the way, no requirement that all the components of a for loop’s header fit on one
line. If the components of the header become complicated, is it good style to format the header so
that they appear on separate lines as in:

for (int x = 0;
x < pixels.getWidth();
x++) {

... statement(s) to process column x

}

11.9 Moving Experiences

An alternative to changing the brightness values of an image’s pixels is to simply move the pixels
around. For example, most image processing programs provide the ability to rotate images or to
flip an image vertically or horizontally. We can perform these operations by moving values from
one position in a pixel array to another.

To start, consider how to write a program that can tip an image on its side by rotating the
picture 90◦ counterclockwise. We will structure the program and its interface very much like the

317

Figure 11.15: Window of a program that can rotate an image counterclockwise

program to display an image and its negative shown in Figure 11.13. When the user clicks the
button in this new program’s window, it will allow the user to select an image file, then it will
display the original image and a rotated version of the image side by side in its window. A sample
of this interface is shown if Figure 11.15. The only differences between the program that displayed
negative images and this program will be found in the code that manipulates pixel values in the
buttonClicked method.

If the original image loaded by this program is m pixels wide and n pixels high, then the rotated
image will be n pixels wide and m pixels high. As a result, we cannot create the new image by just
moving pixel values around in the array containing the original image’s brightness values. We have
to create a new array that has n columns and m rows. Assuming the original image is named pic,
the needed array can be constructed in a local variable declaration:

int [][] result = new int[pic.getHeight()][pic.getWidth()];

Then, we can use a pair of nested loops to copy every value found in pixels into a new position
within result.

At first glance, it might seem that we can move the pixels as desired by repeatedly executing
the instruction

result[y][x] = pixels[x][y]; // WARNING: This is not correct!

Unfortunately, if we use this statement, the image that results when our program is applied to
the cow picture in Figure 11.15 will look like what we see in Figure 11.16. To understand why
this would happen and how to rotate an image correctly, we need to do a little bit of analytic cow
geometry.

Figure 11.17 shows an image of a cow and a correctly rotated version of the same image. Both
are accompanied by x and y axes corresponding to the scheme used to number pixel values in an
array describing the image. Let’s chase the cow’s tail as its pixels move from the original image on
the left to the rotated image on the right.

In the original image, the y coordinates of the pixels that make up the tail fall between 20
and 30. If you look at the image on the right, it is clear that the x coordintes of the tail’s new

318

Figure 11.16: A cow after completing a double flip

Figure 11.17: Geometry of pixel coordinate changes while rotating an image

position fall in the same range, 20-30. It seems as if y-coordinates from the original image become
x-coordinates in the rotated image.

On the other hand, in the original image, the x coordinates of the pixels that make up the tail
fall between 200 and 210. The y coordinates of the same pixels in the rotated version fall in a very
different range, 0 to 10! Similarly, if you look at the x-coordinate of the edge of the cow’s right
ear in the original image it is about 10. In the rotated image, the edge of the same ear has an
x coordinate of 200. It appears that small x coordinates become large y coordinates and large x
coordinates become small y coordinates.

What is happening to the x coordinates is similar to what happened to brightness values when
we made negative images. To convert the brightness value of a pixel into its negative value, we
subtracted the original value from the maximum possible brightness value, 255. Similarly, to convert
an x coordinate to a y coordinate in the rotated image, we need to subtract the x coordinate from
the maximum possible x coordinate in the original image. The maximum x coordinate in our cow
image is 210. Using this value, the x coordinate of the tip of the tail, 207, become 210− 207 = 3,
a very small value as expected. Similarly, the x coordinate of the ear, 10, becomes 210− 10 = 200.

Therefore, the statement we should use to move pixel values to their new locations is

result[y][(pic.getWidth() - 1) - x] = pixels[x][y];

319

The expression used to describe the maximum x coordinte is

(pic.getWidth() - 1)

rather than pic.getWidth() since indices start at 0 rather than 1.
The key details for a program that uses this approach to rotate images are shown in Figure 11.18.

As noted in the figure, this program is very similar to the code shown for generating a negative
version of an image that we showed in Figure 11.13. In this example, however, we have placed the
image manipulation code in a separate, private method. This is a matter of good programming
style. It separates the details of image processing from the GUI interface, making both the new
rotate method and the buttonClicked methods short and very simple.

Our explanation of why we use the expression

(picture.getWidth() - 1) - x

in the statement

result[y][(picture.getWidth() - 1) - x] = pixels[x][y];

suggests that it is possible to use a similar technique if we want to simply flip the pixels of an image
horizontally or vertically. In fact, only two changes are required to convert the program shown in
Figure 11.18 into a program that will flip an image horizontally. We would replace the statement
in the body of the nested loops:

result[y][(picture.getWidth() - 1) - x] = pixels[x][y];

with:

result[(picture.getWidth() - 1) - x][y] = pixels[x][y];

In addition, the result array would now have to have exactly the same dimensions as the pixels
array. Therefore, we would replace the declaration of result with

int [][] result = new int[picture.getWidth()][picture.getHeight()];

Finally, although not required, it would be good form to change the name of the method from
rotate to horizontalFlip. The code for the new horizontalFlip method is shown in Fig-
ure 11.19. A sample of what the resulting program’s display might look like is shown in Figure 11.20.

In the rotate method, it is clear that the result matrix needs to be separate from the pixels
matrix because they have different dimensions. In the horizontalFlip method, the two arrays
have the same dimensions. It is no longer clear that we need a separate result array. In the
program to produce negative images, we made all of our changes directly in the pixels array. It
might be possible to use the same approach in horizontalFlip. To try this we would remove the
declaration of the result array and replace all references to result with the name pixels.

The revised horizontalFlip method is shown in Figure 11.21. Unfortunately, the program
will not behave as desired. Instead, a sample of how it will modify the image selected by its user
is shown in Figure 11.22.

To understand why this program does not behave as we might have hoped, think about what
happens each time the outer loop is executed. The first time this loop is executed, x will be
0, so (picture.getWidth() - 1) - x will describe the index of the rightmost column of pixels.

320

// An program that allows a user to select an image file and displays

// the original and a verion rotated 90 degrees counterclockwise

public class BigTipper extends GUIManager {
private final int WINDOW_WIDTH = 450, WINDOW_HEIGHT = 360;

...

// Variable declarations and the constructor have been omitted to save space

// They would be nearly identical to the declarations found in Figure 11.13

...

// Rotate an image 90 degrees counterclockwise

private SImage rotate(SImage picture) {
int [][] pixels = picture.getPixelArray();
int [][] result = new int[picture.getHeight()][picture.getWidth()];

for (int x = 0; x < picture.getWidth(); x++) {
for (int y = 0; y < picture.getHeight(); y++) {

result[y][(picture.getWidth() - 1) - x] = pixels[x][y];
}

}

return new SImage(result);
}

// Display image selected by user and a copy that is rotated 90 degrees

public void buttonClicked() {
if (chooser.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {

String imageFileName = chooser.getSelectedFile().getAbsolutePath();

SImage pic = new SImage(imageFileName);
original.setIcon(pic);
modified.setIcon(rotate(pic));

}
}

}

Figure 11.18: The buttonClicked method for a program to rotate images

321

// Flip an image horizontally

private SImage horizontalFlip(SImage picture) {
int [][] pixels = picture.getPixelArray();
int [][] result = new int[picture.getWidth()][picture.getHeight()];

for (int x = 0; x < picture.getWidth(); x++) {
for (int y = 0; y < picture.getHeight(); y++) {

result[(picture.getWidth() - 1) - x][y] = pixels[x][y];
}

}

return new SImage(result);
}

Figure 11.19: A method to flip an image horizontally

Figure 11.20: Asa Gray meets Asa Gray

322

// WARNING: THIS METHOD IS INCORRECT!

private SImage horizontalFlip(SImage picture) {
int [][] pixels = picture.getPixelArray();

for (int x = 0; x < picture.getWidth(); x++) {
for (int y = 0; y < picture.getHeight(); y++) {

pixels[(picture.getWidth() - 1) - x][y] = pixels[x][y];
}

}

return new SImage(pixels);
}

Figure 11.21: A failed attempt to flip an image horizontally without a separate result array

Figure 11.22: A Siamese twin?

323

Executing the inner loop will therefore copy all of the entries in the leftmost column of the image
to the rightmost column. Next, when x is 1, the second column from the left will be copied to
the second column from the right. As we progress to larger x values, columns from the right will
appear on the left in reverse order. This sounds like exactly what we wanted.

If we started with the image shown in Figure 11.1, however, by the time the value of x reaches
the mid point of the image, the numbers in the pixels array would describe the picture shown on
the right in Figure 11.22. The left side of the original image has been correctly flipped and copied
to the right side. In the process, however, the original contents of the right half of the image have
been lost. Therefore, as the loop continues and copies columns from the right half of the image to
the left, it will be copying columns it had earlier copied from the left half of the image rather than
copying columns from the right half of the original image. In fact, it will copy these copies right
back to where they came from! As a result, the remaining iterations of the loop will not appear to
change anything. When the loop is complete, the image will look the same as it did when only half
of the iterations had been executed.

This is a common problem when one writes code to interchange values within a single array.
In many cases, the only solution is to use a second array like result to preserve all of the original
values in the array while they are reorganized. In this case, however, is is possible to move the
pixels as desired without an additional array. We just need an int variable to hold one original
value while it is being interchanged with another.

To see how this is done, consider how the pixel values in the upper left and upper right corners
of an image should be interchanged during the process of flipping an image horizontally. The upper
left corner should move to the upper right corner, and the upper right should move to the upper
left. If we try to do this using a pair of assignments like

pixels[picture.getWidth() - 1][0] = pixels[0][0];
pixels[0][0] = pixels[picture.getWidth() - 1][0];

we will end up with two copies of the value originally found in pixels[0][0] because the first
assignment replaces the only copy of the original value of pixels[picture.getWidth() - 1][0]
before it can be moved to the upper left corner. On the other hand, if we use an additional variable
to save this value as in

int savePixel = pixels[picture.getWidth() - 1][0];
pixels[picture.getWidth() - 1][0] = pixels[0][0];
pixels[0][0] = savePixel;

the interchange will work correctly. If we perform such an interchange for every pair of pixels, the
entire image can be flipped without using an additional array.

The code for a correct horizontalFlip method based on this idea is shown in Figure 11.23.
Note that the termination condition for the outer for loop in this program is

x < picture.getWidth()/2

rather than

x < picture.getWidth()

Since each execution of the body of the loop interchanges two columns, we only need to execute the
inner loop half as many times as the total number of columns. Can you predict what the program
would do if we did not divide the width by 2 in this termination condition?

324

// Flip an image horizontally

private SImage horizontalFlip(SImage picture) {
int [][] pixels = picture.getPixelArray();

for (int x = 0; x < picture.getWidth()/2; x++) {
for (int y = 0; y < picture.getHeight(); y++) {

int savePixel = pixels[(picture.getWidth() - 1) - x][y];
pixels[(picture.getWidth() - 1) - x][y] = pixels[x][y];
pixels[x][y] = savePixel;

}
}

return(new SImage(pixels));
}

Figure 11.23: A method to flip a pixel array horizontally without creating a secondary array

11.10 Arrays of Arrays

Despite the fact that we have been showing programs that use two dimensional arrays, the Java
language does not really include two dimensional arrays. The trick here is that technically Java
only provides one dimensional arrays, but it is possible to define a one dimensional array of any
type. We can have a one dimensional array of JButtons, a one dimensional array of ints, or even
a one dimensional array of one dimensional arrays of ints. This is how we can write programs
that appear to use two dimensional arrays. In Java’s view, a two dimensional array is just a one
dimensional array of one dimensional arrays.

A picture does a better job of explaining this than words. In Figure 11.4 we showed how the
pixel values that describe the right eye from the photograph from Figure 11.1 could be visualized as
a table. In most of the examples in this chapter, we have assumed that such a table was associated
with a “two dimensional” array variable declared as

int [][] pixels;

Figure 11.24 shows how the values describing the eye would actually be organized when stored in
the pixels array. The array pixels shown in this figure is a one dimensional array containing 19
elements. Its elements are not ints. Instead, each of its elements is itself a one dimensional array
containing 10 ints.

This is not just a way we can think about tables in Java, it is the way tables are represented
using Java arrays. As a result, in addition to being able to access the ints that describe individual
pixels in such an array, we can access the arrays that represent entire columns of pixels. For
example, a statement like

int somePixel = pixels[x][y];

can be broken up into the two statements

int [] selectedColumn = pixels[x];
int somePixel = selectedColumn[y];

325

Figure 11.24: A two dimensional structure represented as an array of arrays

The expression pixels[x] extracts a single element from the array pixels. This element is the
array that describes the entire xth column. The second line then extracts the yth element from the
array that was extracted from pixels.

This fact about Java arrays has several consequences. We will discuss one that is quite simple
but practical and one that is more subtle and a bit esoteric.

First, Java provides a way for a program to determine the number of elements in any array. If
x is the name of an array, then x.length describes the number of elements in the array.5 We did
not introduce this feature earlier, because it is difficult to understand how to use this feature with
a two dimensional array before understanding that two dimensional arrays are really just arrays
of arrays. Suppose you think of pixels as a table like the one shown in Figure 11.4. What value
would you expect pixels.length to produce? You might reasonably answer 19, 10, or even 190.
The problem is that tables don’t have lengths. Tables have widths and heights. On the other hand,
if you realize that pixels is the name of an array of arrays as shown in Figure 11.24, then it is clear
that pixels.length should produce 19. In general, if x is a two dimensional array, then x.length
describes the width of the table.

It should also be clear how to use length to determine the height of a table. The height of
an array of arrays is the length of any of the arrays that hold the columns. Thus, for our pixels
array,

pixels[0].length

will produce the height of the table, 10. In general, if x is the name of an array representing a
table, x[0].length gives the height of the table. Of course, for the pixels array, we could also
use

5Unfortunately, while the designers of Java used the name length for both the mechanism used to determine the
number of letters in a String and the size of an array, they made the syntax just a bit different. When used with a
String, the name length must be followed by a pair of parentheses as in word.length(). When used with arrays,
no parentheses are allowed.

326

// Flip an image horizontally

private SImage horizontalFlip(SImage picture) {
int [][] pixels = picture.getPixelArray();

for (int x = 0; x < pixels.length/2; x++) {
for (int y = 0; y < pixels[0].length; y++) {

int savePixel = pixels[(pixels.length - 1) - x][y];
pixels[(pixels.length - 1) - x][y] = pixels[x][y];
pixels[x][y] = savePixel;

}
}

return(new SImage(pixels));
}

}

Figure 11.25: Using .length to control a loop

pixels[1].length

or

pixels[15].length

to describe the height of the table. We could not, however, use

pixels[25].length

as the index value 25 is out of range for the pixels array. In general, since using the index value
0 is more likely to be in range than any other value, it is a convention to say

x[0].length

to determine the height of a table.
The termination conditions in loops that process arrays often use .length. For example,

Figure 11.25 shows the code of the horizontalFlip method revised to use .length rather than
the SImage methods getWidth and getHeight.

The second consequence of the fact that two dimensional arrays are really arrays of arrays is
that a program can build a two dimensional array piece by piece rather than all at once. This
makes it possible to build arrays of arrays that cannot be viewed as simple, rectangular tables.

We know that the construction in the declaration

int [][] boxy = new int [5][7];

will produce an array with the structure shown in Figure 11.26. In Java, a construction of the form

new SomeType[size][]

creates an array with size elements each of which can refer to another array whose elements belong
to SomeType without actually creating any arrays of SomeType. As a result, the declaration

327

Figure 11.26: A small, rectangular array of arrays

int [][] boxy = new int[5][];

would create the five element array that runs across the top of Figure 11.26 but not create the five
arrays containing zeroes that appear as the columns in that figure. The columns could then be
created and associated with the elements of boxy by a loop of the form

for (int x = 0; x < boxy.length; x++) {

boxy[x] = new int[7];

}

Simple variations in the code of this loop can be used to produce two dimensional arrays that
are not rectangular. For example, if we followed the declaration

int [][] trapezoid = new int[5][];

with a loop of the form

for (int x = 0; x < trapezoid.length; x++) {

trapezoid[x] = new int[3 + x];

}

the structure created would look like the diagram in Figure 11.27. Each of the columns in this
array is of a different length than the others. If we put the columns together to form a table we
would end up with the collection shown in Figure 11.28.

There are other ways to associate element values with the entries of a two dimensional array
that lead to even stranger structures. Consider the code

int [][] sharing = new int[5][];

for (int x = 0; x < sharing.length - 1; x++) {
sharing[x] = new int[7];

328

Figure 11.27: An array of arrays that is not rectangular

Figure 11.28: A non-rectangular table

}

sharing[4] = sharing[3];

This creates the structure shown in Figure 11.29. Here, two of the entries in the array of arrays
are actually the same array.

In all of these diagrams we have shown the elements of int arrays filled with zeroes as they
would be initialized by the computer. As a result, immediately after executing the code shown
above, the elements sharing[4][4] and sharing[3][4] would both have the value 0. If we then
executed the assignment

sharing[3][4] = 255;

the value associated with sharing[3][4] would be changed as expected. In addition, however, after
this assignment, sharing[4][4], would also have the value 255. Such behavior can make it very
difficult to understand how a program works or why it doesn’t. Therefore, we would discourage you
from deliberately constructing such arrays. It is nevertheless important to understand that such
structures are possible when debugging a program since they are sometimes created accidentally.

11.11 Summing Up

In the preceding sections we have examined examples of a variety of algorithms that process values
in an array independently. There are many other algorithms that instead collect information about

329

Figure 11.29: An array of arrays in which one element value is associated with two positions

all of the elements in an array or about some particular subgroup of elements. For example, when
working with an array of pixel values we might want to find the brightest pixel value, the number
of pixels brighter than 200, or the brightness value that appears most frequently in the top half of
an image. As a simple example of such an algorithm, we will look at how to calculate the average
brightness value of a specified square of pixels in an image.

This particular calculation has a nice application. Suppose we want to shrink an image by an
integer factor. That is, we want to reduce the size of an image by 1/2, or 1/5, or in general 1/n.
We can do this by computing the average brightness of non-overlapping, n by n squares of pixels
in the original image and using the averages as the brightness values for pixels in an image whose
width and height are 1/n th the width and height of the original.

Figure 11.30 illustrates the process we have in mind. At the top of the figure, we show a version
of the familiar eye we have used in earlier examples. The image is enlarged so that individual pixels
are visible. In addition, we have outlined 3 by 3 blocks of pixels. Because the image dimensions are
not divisible by 3, pixels in the last row and column do not fall within any of these 3 by 3 blocks.

The bottom of the figure shows a version of the eye reduced to 1/3rd of its original size (but
still enlarged so that individual pixels are visible). Each pixel in this smaller version corresponds to
one of the 3 by 3 blocks of the original. The arrows in the figure connect the pixels in the leftmost
3 by 3 blocks of the original to the corresponding pixels in the reduced image. The brightness of
each pixel in the reduced image was determined by averaging the values of the nine pixels in the
corresponding block of the original image.

This is not the ideal way to reduce an image. As this example illustrates, it completely ignores
the pixels that don’t fall in any of the square blocks. It does, however, produce visually reasonable
results. For example, Figure 11.31 show the results of applying this technique to produce reduced
versions of another image we have seen before ranging from half size to 1/12.

A key step in implementing such a scaling algorithm is writing code to compute the average of
a specified block of pixels. The block can be specified by giving the indices of its upper left corner
and its size. To add up the values in such a block, we will use a pair of doubly nested loops to
iterate over all pairs of x and y coordinates that fall within the block. These loops will look very
much like the nested loops we have seen in early examples except that they will not start at 0 and
they must stop when they reach the edges of the block rather than the edges of the entire pixel
array. Once we have the sum of all pixel values, we can compute the average by simply dividing

330

Figure 11.30: Scaling an image by averaging blocks of pixel brightnesses

Figure 11.31: Scaling an image repeatedly

331

// Determine average brightness of a block of size by size pixels

// at position (left, top)

private int average(int [][] pixels, int left, int top, int size) {
int sum = 0;

for (int x = left; x < left + size; x++) {
for (int y = top; y < top + size; y++) {

sum = sum + pixels[x][y];
}

}
return sum/(size*size);

}

Figure 11.32: A method to calculate the average brightness of a block of pixels

// Create a copy of an image reduced to 1/s of its original size

private SImage scale(SImage original, int s) {
int [][] pixels = original.getPixelArray();
int [][] result = new int[pixels.length/s][pixels[0].length/s];

for (int x = 0; x < result.length; x++) {
for (int y = 0; y < result[0].length; y++) {

result[x][y] = average(pixels, s*x, s*y, s);
}

}
return new SImage(result);

}

Figure 11.33: A method to scale an image to 1/s its original size

the sum by the number of pixels in the block.
The code for a method to compute block averages in this way is shown in Figure 11.32. The

location of the block to be averaged is provided through the parameters left and top that specify
the coordinates of the left and top edges of the block. The parameter size determines how wide
and high the block should be. As a result, the expressions left + size and top + size describe
the coordinates of the right and bottom edges of the block. These expressions are used in the
termination conditions of the loops in the method body.

Given the average method, it is easy to write a method to scale an entire image. The code
for such a method is shown in Figure 11.33. The second parameter, s, specifies the desired scaling
factor. Therefore, the width and height of the resulting image can be determined by dividing the
width and height of the original by s. The method begins by creating an array result using the
reduced width and height. The body of the loop then fills the entries of this result array by
repeatedly invoking average on the appropriate block of original pixel values.

The complete code of the program that produced the image shown in Figure 11.31 is shown in

332

Figure 11.34. It repeatedly applies the scale method for scaling factors ranging from 1 to 1/12th
and displays each scaled image within a separate JLabel in its window.

11.12 Purple Cows?

Some of you may have already recognized that something is missing in the image shown in Fig-
ure 11.31. The cows are not purple! If not, consider the image of lego robots processed by our
image scaling program shown in Figure 11.35. If you are reading a printed/copied version of this
text, then the robots will all appear to be constructed out of gray Legos. It is possible to get gray
Legos. In fact, a few of the pieces of the robot pictured in the figure actually are gray. Most of the
pieces, however, are more typical Lego colors: bright reds, blues and greens.

Although we have focused on how to manipulate grayscale images, the SImage class does provide
the ability to handle color images. In this section, we will show you how to write programs designed
to handle color images.

First, when you load the contents of image file that describes a color picture using a construction
like the one in the following variable declaration

SImage pic = new SImage("colorfulRobot.jpg");

the SImage you create retains the color information. If imageLabel is the name of a JLabel in
your program’s window and you display the SImage by executing

original.setIcon(pic);

it will appear in color on your screen.
The colors vanish when you access the information about individual pixels by invoking the

getPixelArray method. This method returns an array of values that only describe the brightnesses
of the pixels, not their colors. Fortunately, SImage provides several ways to get information about
pixel colors.

As mentioned early in this chapter, one common scheme for describing the colors in a digital
image is to describe how a color can be mixed by combining red, green and blue light. This is
typically done by describing the brightness of each color component using a number between 0 and
255 much as we have been using such values to describe overall brightness. This is known as the
RGB color scheme.

SImage provides three methods that can be used to access the brightness values for image pixels
corresponding to each of these three primary colors. In particular, an invocation of the form

int [][] redBrightnesses = pic.getRedPixelArray();

will return an array of values describing the “redness” of the pixels in an image. Similar methods
named getGreenPixelArray and getBluePixelArray can be used to access the “greenness” and
“blueness” values.

The SImage class also provides a constructor designed for programs that want to modify the
values describing the redness, greenness and blueness of an image’s pixels. This constructor takes
three tables of pixel values as parameters. All three tables must have the same dimensions. The
first table is interpreted as the redness values for a new image’s pixels. The second and third are
interpreted as the greenness and blueness values respectively. Therefore, if we declare

333

// A program that allows a user to select an image file and displays

// the original and a series of copies ranging from 1/2 to 1/12 the original

public class CheaperByTheDozen extends GUIManager {
// The dimensions of the program’s window

private final int WINDOW_WIDTH = 870, WINDOW_HEIGHT = 380;

// Dialog box through which user can select an image file

private JFileChooser chooser =
new JFileChooser(new File(System.getProperty("user.dir")));

// Place the image display labels and a button in the window

public CheaperByTheDozen() {
this.createWindow(WINDOW_WIDTH, WINDOW_HEIGHT);

JButton but = new JButton("Choose an image file");
contentPane.add(but);

}

// Determine average brightness of a block of size by size pixels

// at position (left, top)

private int average(int [][] pixels, int left, int top, int size) {
// See Figure 11.32 for method’s body

}

// Create a copy of an image reduced to 1/s of its original size

private SImage scale(SImage original, int s) {
// See Figure 11.33 for method’s body

}

// Display image selected by user and copies of reduced sizes

public void buttonClicked() {
if (chooser.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {

SImage pic = new SImage(chooser.getSelectedFile().getAbsolutePath());

for (int s = 1; s < 12; s++) {
JLabel modified = new JLabel();
modified.setIcon(scale(pic, s));
contentPane.add(modified);

}
}

}
}

Figure 11.34: A program to display a series of scaled copies of an image

334

Figure 11.35: Red is grey and yellow white, but we decide which is right...

// Create a copy of a color image reduced to 1/s of its original size

private int [][] scaleBrighnesses(int [][] pixels, int s) {
int [][] result = new int[pixels.length/s][pixels[0].length/s];

for (int x = 0; x < result.length; x++) {
for (int y = 0; y < result[0].length; y++) {

result[x][y] = average(pixels, s*x, s*y, s);
}

}
return result;

}

Figure 11.36: A method to scale a table of pixel brightness values

int [][] rednesses, greennesses, bluenesses;

as the names of two dimensional arrays and associate these names with appropriate arrays of ints,
the construction

new SImage(rednesses, greennesses, bluenesses)

can be used to create an image described by the contents of the arrays.
To illustrate how these mechanisms can be used, consider how we can revise our code for scaling

images to work for color images instead of just grayscale images. The basic idea is to break the
grayscale image scaling code found in Figure 11.33 into two parts. The first statement in the
method is specific to processing the gray levels of an image. The for loops that form the remainder
of the method correctly describe how to scale an array of brightness values whether they describe
pixel graynesses, rednesses, greennesses, or bluenesses. Therefore, the first step is to move these
for loops into a separate method designed to process an array of brightness values independent of
its source. This method, named scaleBrighnesses is shown if Figure 11.36. Most of its code is

335

// Create a copy of an image reduced to 1/s of its original size

private SImage scale(SImage picture, int s) {
int [][] rednesses = picture.getRedPixelArray();
int [][] greennesses = picture.getGreenPixelArray();
int [][] bluenesses = picture.getBluePixelArray();

rednesses = scaleBrighnesses(rednesses, s);
greennesses = scaleBrighnesses(greennesses, s);
bluenesses = scaleBrighnesses(bluenesses, s);

return new SImage(rednesses, greennesses, bluenesses);
}

Figure 11.37: A colorful image scaling method

identical to the scale method from Figure 11.33. The big changes are that it takes and returns two
dimensional arrays of ints rather than SImages. Note in particular, that this method continues to
use the unmodified average method. As originally written, the average method did not depend
on the fact that the array it was processing contained grayness values.

Given the scaleBrighnesses method, it is easy to write a scale method that handles colored
images. We simply get the arrays that describe the image’s redness, greenness, and blueness, process
each of them using scaleBrightnesses, and finally construct a new image with the results. The
code to do this is shown in Figure 11.37.

For those who want to replace the somewhat repetitive code in Figure 11.37 with some loops,
the SImage class provides an alternate method of working with the three arrays describing the
colors that compose an image. First, the SImage class provides names for the three colors that
make up an image, SImage.RED, SImage.GREEN, and SImage.BLUE. In addition, SImage provides
a method named getPixelArrays that returns a three dimensional array of ints. That is, it can
be invoked in a statement of the form

int [][][] brightnesses = picture.getPixelArrays();

If brightnesses is declared in this way, then

brightnesses[SImage.RED]

will be the array that would have been obtained by invoking

picture.getRedPixelArray()

The expressions brightnesses[SImage.GREEN] and brightnesses[SImage.BLUE] would similarly
produce two dimensional arrays describing the greenness and blueness of image pixels. Finally, there
is an SImage constructor that accepts a three dimensional array like brightnesses as a parameter.

The names SImage.RED, SImage.GREEN, and SImage.BLUE actually refer to consecutive int
values. As a result, they can be used to write loops to process the three pixel arrays that describe
an image. Figure 11.38 shows an alternate version of the scale method that uses such a loop.

336

private SImage scale(SImage picture, int s) {
int [][][] pixels = picture.getPixelArrays();
for (int c = SImage.RED; c <= SImage.BLUE; c++) {

pixels[c] = scaleBrighnesses(pixels[c], s);
}
return new SImage(pixels);

}

Figure 11.38: Scaling with a three dimensional array and a loop

11.13 Summary

In this chapter, we have introduced the basic mechanisms required to work with arrays in Java.
While our focus has been on arrays that represent digital images, the techniques we have explored
are applicable to arrays of any kind. We have seen how to declare array variables, construct arrays,
and access individual elements of arrays. We have also provided examples to illustrate several of
the most important patterns used when writing code to manipulate data within an array. We have
seen how to apply a transformation independently to each element of an array, how to reorganize
an array by rearranging its elements, and how to collect summary information about a subset of an
array’s elements. These techniques are fundamental when working with arrays of many types, not
just with pixel arrays. We will return to examine more sophisticated array processing techniques
in a later chapter.

In addition to the material on arrays, we introduced mechanisms for working with files in general
and with image files in particular. We introduced the JFileChooser which makes it easy to provide
a flexible interface through which a program’s user can select a file for processing. We also saw
how image files could be accessed using SImage constructors. Finally, we saw how JLabels can be
used to display images within a program’s GUI interface.

337

Index

!, 185
"", see String: empty string
%, 188
*, 56, 175
+, 46, 56, 175

as addition, 46, 114
as concatenation, 47, 114

++, 233
-, 56, 175
--, 233
/, 56, 175
/* . . . */, 47
//, 47
<, 125, 177
<=, 125, 177
=, 35
==, 117, 177
>, 125, 177
>=, 125, 177
\", 65
&&, 183
\\, 67
\n, 65, 99
||, 183
{ . . . }, 11, 120–122, 127

Abstract Windowing Toolkit, 38(in footnote)
accessor method, 51–53, 156–158

definition, 157
accumulating loops, see loops, accumulating
accumulator, 246
actual parameters, 13, 73

correspondence with formals, 142–144
add, 13, 72
addItem, 53, 71
addItemAt, 71
addition, 175
addMessageListener, 104, 107

address
IP, 88–89

algorithm, 3
American Standard Code for Information

Interchange, see ASCII
and, logical, 183
append, 64, 70
application protocol, 87
arguments, 13
arrays, 299–337

.length, 326
constructions, 305–307
declarations, 303–304
dimensionality, 304
indices, 302

range of, 306–307
of arrays, 325–329

non-rectangular, 328–329
subscripts, see arrays, indices

ASCII, 90
assignment statement, 34–37

right hand side, 46
AWT, see Abstract Windowing Toolkit

back slash, 65
base 2, 124
base case, 268
binary, 124
block, 121
BlueJ, 15–18
boolean, 179, 192–194

as conditions, 194, 226
buttonClicked, 14, 74
byte code, 16

char, 214–216
class, 10, 135–168

as types, 182

338

body, 11
constructor, see constructor
header, 10
instance, 12

client/server paradigm, 83
clients, 83–84
close, 100, 107
code, 16
Color, 38, 68

selection dialog, see JColorChooser
comments, 47–49
compiler, 6
compound statement, 117, 121

as body of while loop, 226
concatenation, 47, 113
condition, 117
connection, 87, see TCPConnection and

NetConnection
connectionClosed, 104
constant names, 45
constructions, 20

for arrays, 305–307
constructor, 12

body, 12
header, 12

parameter declarations, see formal
parameters

overloading, 271
contains, 208, 217
contentPane, 13, 39
counting loops, see loops, counting
createWindow, 13, 140
curly braces, 11, 120–122, 127

dataAvailable, 103
declaration, 34

multiple, 45
dimensions of an array, 304
division, 175

with doubles, 189
with ints, 188, 189

domain name, 88
Domain Name System, 88
double, 185–192
Double.parseDouble, 193

Eclipse, 15–18
else, 117
empty list, 288
endsWith, 209, 217
equal sign, 35
equals, 204–208, 217
error

logic, 28
syntax, 27

escape sequence, 65
event, 7
event-driven programming, 7
event-handling methods, 14, 74, 156

buttonClicked, 14, 74
connectionClosed, 104
dataAvailable, 103
focusGained, 152
menuItemSelected, 23, 58, 74
textEntered, 23, 74, 140

exponent, 186
expression, 55–56

type of, 114
syntactic categories

constructions, 20, 55
formulas, 55
invocation, see method: invocation
literal, 55
type cast, 162
variable reference, 55

expressions
type of, 179

false, 32, 179
File, 310

construction, 310
methods
getAbsolutePath, 310

file path name, 201
final, 45
float, 192
FlowLayout, 25, see GUI Components
focus, 67, 69, 152
focusGained, 152
for loops, 316–317
foreground color, 68
formal parameters, 73, 147

339

correspondence with actuals, 142–144
declaration, 74

in constructors, 139–142
formulas, 55

getAbsolutePath, 310
getBluePixelArray, 333
getCaretPosition, 67, 70
getGreenPixelArray, 333
getHeight, 314
getHostName, 99
getItemAt, 59, 71
getItemCount, 59, 71
getPixelArrays, 336
getRedPixelArray, 333
getSelectedFile, 310
getSelectedIndex, 59, 71
getSelectedItem, 57, 71
getSelectedText, 67, 70
getText, 52, 63, 69
getWidth, 314
Graphical User Interface Components, see GUI

Components
grayscale image, 299–301
GUI Components, 11, 18–27, 56–72

buttons, see JButton
combo boxes, see JComboBox
common methods
requestFocus, 68, 69
setBackground, 38, 57, 68
setEnabled, 32, 57, 69
setForeground, 38, 57, 68

focus, 67, 69
labels, see JLabel
layout managers, 25
FlowLayout, 25

menus, see JComboBox
panels, see JPanel
scroll panes, see JScrollPane
text areas, see JTextArea
text fields, see JTextField

GUIManager, 11
methods
createWindow, 13, 140
getHostName, 99

hasNextLine, 237
HSB color scheme, 299
HTTP (Hypertext Transfer Protocol), 83
Hypertext Transfer Protocol, see HTTP

IDE, see integrated development environment
identifier, 33
if statements, 116–125

else part, 117
grammatical structure, 121, 124
multi-way choices, 123
nesting, 118
without else, 124–125

images
color, 333–336
flipping, 320–324
grayscale, 299–301
negatives of, 312
rotation, 317–320
scaling, 330–333

IMAP (Internet Message Access Protocol), 83,
85, 241–243

commands, 241
SELECT, 241
FETCH, 241
LOGIN, 241
LOGOUT, 241

request identifiers, 241
server responses, 241

import, 11
indexed variable, 302–303
indexOf, 201–204, 218
indices, see arrays, indices
infinite loop, see loops, infinite
initializer, 43, 163
input loops, see loops, input
instance variable, 33–34
int, 45–47, 125, 185

converting to String, 116
range, 125

integer, see int
Integer.parseInt, 115, 124
integrated development environment, 15
Internet Address, 88–89
Internet Message Access Protocol, see IMAP
invocation, see method: invocation

340

IP address, 88–89

Java, 7
online documentation, 209–211

Java virtual machine code, 16
javax.swing, 11, 56
JButton, 10, 20

construction, 20
methods
getText, 69
setEnabled, 32
setText, 58, 69

JColorChooser, 144
methods
showDialog, 145

JComboBox, 22, 57–60
construction, 22, 53
methods
addItem, 53, 71
addItemAt, 71
getItemAt, 59, 71
getItemCount, 59, 71
getSelectedIndex, 59, 71
getSelectedItem, 57, 71
removeAllItems, 60, 72
removeItem, 60, 72
removeItemAt, 72
setSelectedIndex, 59, 71
setSelectedItem, 60, 72

using non-String items, 162
JFileChooser, 309–310

construction, 309
methods
getSelectedFile, 310

JLabel, 20, 60
construction, 20
methods
setIcon, 308
getText, 69
setText, 32, 69

JPanel, 39–41
construction, 40
methods
add, 13, 72
remove, 72

JScrollPane, 63

construction, 63
JTextArea, 60–67

construction, 61
methods
append, 64, 70
getCaretPosition, 67, 70
getSelectedText, 67, 70
getText, 63, 69
select, 67, 70
selectAll, 67, 70
setCaretPosition, 70
setEditable, 64, 69
setText, 64, 69

text insertion point, 67
JTextField, 21, 60

construction, 21
methods
getCaretPosition, 67, 70
getSelectedText, 67, 70
getText, 52, 69
select, 67, 70
selectAll, 67, 70
setCaretPosition, 70
setEditable, 64, 69
setHorizontalAlignment, 171
setText, 57, 69

text insertion point, 67

keyword, 33

language
programming, 6

layout managers, see GUI Components: layout
managers

length
of a String, 199
of an array, 326

linked list, 266
empty list, 288
removing an element, 290–294

literal, see expressions: literal
local variable, 37–38
logical operators

and (&&), 183
negation (!), 185
or (||), 183

341

long, 192
loops, 221–258

accumulating loops, 245–248
counting loops, 227–233
efficiency, 252
for loops, 316–317
infinite loops, 251
inner loop, 235
input loops, 236–245
nested loops, 233–236

processing two dimensional arrays, 314
outer loop, 235
priming, 245, 252
sentinels, 243
String processing loops, 248–257
while loops, 224–258

loop body, 226
loop header, 226

matrices, 301, 304
as arrays of arrays, 325–326

menuItemSelected, 23, 58, 74
menus, see JComboBox
method

accessor, 51–53, 156–158
body, 13
definition, 12, 13, 147–149
header, 13, 147, 157
invocation, 13, 53, 58

actual parameters, see actual parameters
arguments, 13

mutator, 51, 53, 156
modulus (mod) operator (%), 188
multi-way choices, 123
multiplication, 175
mutator method, 51–53, 156

negation, logical, 185
negatives, 312
nested if statements, see if statements,

nesting
nested loops, see loops, nested
NetConnection, 92–107

construction, 96–97, 106
.in, 97, 106
.hasNextLine, see hasNextLine

.nextLine, see nextLine

.nextInt, see nextInt

.next, see next
methods
addMessageListener, 104, 107
close, 100, 107

.out, 97, 106
.println, see println

network event handling, 103
new, 20
next, 100, 104, 106
nextInt, 102
nextLine, 97–104, 106
not, logical, 185
NullPointerException, 77
NumberFormatException, 124
numeric types, 192, see double, float, int,

long, short
automatic conversion, 190
ranges, 192

object, 182
object types, 182

using equals vs. ==, 207
online Java documentation, 209–211
Open System for CommunicAtion in Realtime,

see OSCAR
operators, 56

++, 233
--, 233
arithmetic, 56, 175
logical, 183–185
precedence rules, 189
relational, 125, 177–179

or, logical, 183
OSCAR (Open System for CommunicAtion in

Realtime), 83
overloading, 271

parameters
actual, see actual parameters
formal, see formal parameters

path name, 201
pixel, 299
POP (Post Office Protocol), 83, 85
port number, 88

342

Post Office Protocol, see POP
precedence rules, 189
primitive type, 182
primitive types, 179–182

boolean, see boolean
char, see char
numeric, see double, float, int, long,

short
primitive value, 182
print, 99, 107
println, 97–100, 106
private, 34, 166
private method, 166
program, 1, 6
programming, 7, 30
protocols, 82

application, 87
chat, see OSCAR
mail, see SMTP, IMAP, and POP
transport, 87, see TCP
web, see HTTP

public, 34

quotient, 188

recursion, 259–298
base case, 268
recursive case, 268
recursive class definition, 264–274
recursive methods, 275–284

reference, 36
relational operators, 125
remainder, 188
remove, 72
removeAllItems, 60, 72
removeItem, 60, 72
removeItemAt, 72
repetition, see loops
Request for Comment, see RFC
requestFocus, 68, 69
reserved word, 33
return statement, 157
return type, 157
RFC, 89
RFC 2822, 89
RGB color scheme, 299, 333

scientific notation, 186
scope, 34, 127–132

declartions within if statements, 204
scroll bars, 63
select, 67, 70
selectAll, 67, 70
sentinels, see loops, sentinels
servers, 83–84

mail, 84
web, 84

setBackground, 38, 57, 68
setCaretPosition, 70
setEditable, 64, 69
setEnabled, 32, 57, 69
setForeground, 38, 57, 68
setHorizontalAlignment, 171
setIcon, 308
setSelectedIndex, 59, 71
setSelectedItem, 60, 72
setText, 32, 57, 58, 64, 69
short, 192
showDialog, 145
SImage, 307

constants
SImage.BLUE, 336
SImage.GREEN, 336
SImage.RED, 336

construction of
from 3-D RGB value array, 336
from grayscale array, 307
from image file, 308
from RGB value arrays, 333

methods
getBluePixelArray, 333
getGreenPixelArray, 333
getHeight, 314
getPixelArray, 312
getPixelArrays, 336
getRedPixelArray, 333
getWidth, 314

Simple Mail Transfer Protocol, see SMTP
SMTP (Simple Mail Transfer Protocol), 83, 85,

89–92, 254
commands, 91

DATA, 92

343

HELO, 91
MAIL, 91
QUIT, 92
RCPT, 92

error codes, 90
Squint, 11
startsWith, 209, 218
statements, 53

assignment, see assignment statement
block, 121
if, see if statements
invocation, 53, see method: invocation
return, 157

streams, 97
String, 46–47, 197–219

+, 47, 113
concatenation, 47, 113, 197
converting to int, see Integer.parseInt
determining the length of, 199
empty string, 116
extracting a substring, 198–200
methods, 217
charAt, 214
contains, 208, 217
endsWith, 209, 217
equals, 204–208, 217
indexOf, 201–204, 218
length, 199, 218
startsWith, 209, 218
substring, 198–200, 218
toLowerCase, 209, 219
toUpperCase, 209, 219

searching for a substring, 201–204
upper vs. lower case, 209
use of \, 65

String processing loops, see loops, String
processing

subscripted variable, see indexed variable
subscripts, see arrays, indices
substring, 198–200
subtraction, 175
Sun Microsystems, 209
Swing, 11, 56

online documentation, 209–211
System.getProperty, 310

TCP (Transmission Control Protocol), 86–89
TCPConnection, 92
textEntered, 23, 74, 140
this, 13
this, 149–156
token, 101
toLowerCase, 209, 219
toString, 58, 163
toUpperCase, 209, 219
Transmission Control Protocol, see TCP
transport protocol, 87
true, 32, 179
type, 34
type cast, 162

Uniform Resource Locator (URL), 201
URL or URI, see Uniform Resource Locator

variable
indexed, 302–303
instance, 33–34
local, 37–38

vectors, 304

while loops, 224–258
window, 11

title bar, 139
wrapper class, 295

344

