
CS 237 Meeting 8 — 9/24/12

Announcements
1. None?

Quick Review

1. Last time, we started out by exploring the connection between electri-
cal switches and the logical operations and, or, and not.

2. We saw (vaguely) that a transistor is basically a switch that is con-
trolled electronically rather than mechanically.

3. We say how circuits for nor, not and or in which ground voltage repre-
sented 0 and some positive voltage represented 0 could be constructed
from transistors.

• We proudly abstracted away many details discussed in the text.
In particular, we pretended 0 and 1 were represented by exact
voltage levels while in reality each is represented by some range
of voltages.

4. We saw a “practical” example of how such logic gates could be used to
construct a circuit that might drive on segment of a 7-segment display.

5. We noted that many functions performed within computers can be
seen as collections of functions that map a group of input signals into
the bits of a multi-bit result.

6. We began discussing truth tables . . .

Truth Tables and Finiteness

1. In our discussions, we will use three “notations” for describing boolean
functions. You have already seen two:

• Circuits built from gates like the 7-segment display example,

• Truth tables like the ones we showed to summarize what the cir-
cuits using switches and transistors actually did.

2. Generally, when we want to describe a boolean function, we will give
variable names to its inputs.

• For example, it would be natural to call the 4 digits input to our
7-segment display example as d3, d2, d1, and d0.

3. To describe a function as a truth-table, we create one column for each
input/variable and one column for the output.

4. We want to put every possible combination of values of the input vari-
ables in the variable columns. If there are n variables, there will be 2n

combinations so our table will need 2n rows.

5. We fill the variable columns by counting from 0 to 2n in binary.

6. After we fill the variable columns, will fill in the output.

7. To illustrate this construction, consider the relational operator > as
a boolean function. That is, in any real computer > would take two
binary numbers of some fixed size n and return a single 0 or 1 indicating
whether the first number was less than the second.

8. To keep the table size down, we will work with very short binary num-
bers — two bits each.

9. How many possible different output columns are there?

22
n

10. This is important! For any given number of inputs there are only a
finite number of different boolean functions.

11. For a single input, there are 4 functions: negation, identity, constant
0, and constant 1.

12. For two inputs there are 16 functions: AND, OR, NOR, NAND, ???

• Let’s try to name them all.

– The two most familiar are and and or.

– Last time we met nand and nor.

1



– There is one other popular function: exclusive or. It outputs
one when exactly one of the inputs is 0.

– Note that or, and, nand, nor, and exclusive or can all be
naturally extended to many inputs.

– There are the constant functions that always return 0 and 1.

– There are the functions that ignore one input and simply
return the other input or its negation.

– To find the others, it helps to form a truth table and to start
filling in the four output cells by just counting from 0 to 15
in binary.

Boolean formulas

1. As an alternative to gate diagrams or truth tables, we can describe a
boolean function using a formula over the input variables using boolean
operators.

The most commonly used operators in such formulas are:

AND written as multiplication by simply putting two variables or
terms next to one another,

OR written as addition, and

NOT written by drawing a bar over a variable or term.

2. For example, while earlier we said the top segment should be off if the
1st and 3rd bits of the numbers encoding are 0, and either 2nd or 4th
bit is 0, and either 2nd or 4th bit is 1, we might now write:

(d̄1d̄3)(d̄2 + d̄4)(d2 + d4)

Disjunctive Normal (i.e. Sum of Products) Form

1. There is a simple procedure for converting any truth table into a for-
mula using only AND, OR, and NOT that describes the same boolean
function as the truth table.

2. The trick is to write a term that describes each combination of inputs
that corresponds to a 1 row in the truth table using only variables,
their negations and the and operator.

• Such a term is called a minterm (presumably because it is true for
as few combinations of the input variables as possible (just 1!)).

3. Then, write a formula that takes the or of all of the minterms.

4. This way of describing a function is called disjunctive normal form
(DNF) or sum-of-products form.

5. To illustrate this, we can construct a DNF formula for the comparison
function described earlier.

x̄1x0ȳ1ȳ0 + x1x̄0ȳ1ȳ0 + x1x̄0ȳ1y0 + x1x0ȳ1ȳ0 + x1x0y1ȳ0 + x1x0ȳ1y0

6. Alternately, for each combination of input values that yields 0 we can
write a term using variables, negations, and or that is true for all
other combinations of input values. Such a term is called a maxterm.
The and of all of a truth tables functions provides another way to
describe the associated boolean function. It is called a product-of-sums
or conjunctive normal form formula.

7. The formulas produced might these constructions may not be the
smallest or best, but they provide a proof that any boolean function
can be described using just and, or and not. Since we know how to
build and interconnect gates the compute and, or and not, this then
proves that we can built a digital circuit for any boolean function!

Manipulating Boolean Formulas Algebraically

1. There are a number of axioms/identities akin to the commutative law
or distributive law for arithmetic that can be used to manipulate for-
mulas over boolean variables and operators. Tables 2.1, 2.2, and 2.3 in
the text list these axioms, so I will not repeat them all here. They can
be used to simplify the description of a boolean function and thereby
ultimately simplify the circuit built to implement it.

2. We will focus on the axiom the book calls “combining”:

(BC) + (BC̄) = B

2



3. Using this rule, we can simplify the DNF formula for the comparison
operation.

x̄1x0ȳ1ȳ0 + x1x̄0ȳ1ȳ0 + x1x̄0ȳ1y0 + x1x0ȳ1ȳ0 + x1x0y1ȳ0 + x1x0ȳ1y0

• The second and third terms are identical except the last literal in
one is y0 while in the next it is ȳ0. So, we can combine these two
terms:

x̄1x0ȳ1ȳ0 + x1x̄0ȳ1 + x1x0ȳ1ȳ0 + x1x0y1ȳ0 + x1x0ȳ1y0

• Next, the middle and last term only differ between y0 and ȳ0 so
. . .

x̄1x0ȳ1ȳ0 + x1x̄0ȳ1 + x1x0ȳ1 + x1x0y1ȳ0

• The middle two terms can then be combined by eliminating x0
and x̄0

x̄1x0ȳ1ȳ0 + x1ȳ1 + x1x0y1ȳ0

Building a circuit based on this form rather than the original would
clearly save some transistors.

Another Example
To make sure all of this makes sense, I would like to work on sketching

out implementations of a few boolean functions that might be of use in a
computer.

1. First, let’s consider a 3-input “majority logic” circuit.

• The backstory/motivation for this circuit comes from the idea or
doing redundant computation for reliability.

• Imagine that you build three separate computers to determine the
answer to some important yes/no question and in the event they
disagree you want to go with the majority vote.

• That is, we want a circuit with three inputs whose output is the
same as the most common input.

2. First, we can construct a truth table for this function.

• It will have 3 columns for inputs and one for its output.

• It will have 23 = 8 rows.

3. Given this truth table we can construct a sum-of-products formula for
the majority function. We could simplify it using axioms of boolean
algebra.

4. Alternately, a little thought should make it obvious that the simpler
expression x0x1 + x0x2 + x1x2 describes the function.

5. The good news, is that we can find good formulas and build good
circuits for many tasks with such a common sense approach.

Circuits with Multiple Outputs

1. Finally, I would like to consider one circuit whose usefulness depends
on the fact that it has more than a single output.

2. The circuit I have in mind is a 1-bit adder.

• When we add two bits, we might get a 2-bit answer (if there is
a carry). This is where the two outputs come from. One will be
the “sum” of the two bits (i.e., what we would write under them
if we were doing tabular addition) and the other will be the carry.

3. The reason the carry becomes essential, is that it will also be used as
an input to a 1-bit adder.

• When we do tabular addition, each column’s carry comes from
the carry before it.

• Therefore, if we design a 1-column adder circuit to take three
input bits (two for its column and one carry from the preceding
column) we can easily interconnect multiple copies of this device
to build a useful adder!

4. We can still build truth tables for the individual outputs of this device
and use them to synthesize a circuit.

• Or, as soon as we build the truth tables we might recognize the
functions involved as exclusive or and carry and save ourselves
some time.

3


