
CS 237 Meeting 25 — 11/7/12

Announcements
1. TA applications.

A Whole New Assembly Language

1. Our final project this semester will involve designing a digital circuit to
implement a hypothetical machine language in the same way that the
circuits presented recently in class and described in our text implement
a subset of the MIPS machine language.

2. The machine language we will implement is a small subset of a hypo-
thetical architecture Duane Bailey designed for 237 a few years ago. It
is based on a real architecture known as ARM (which once stood for
Acorn RISC Machine but now stands for Advanced RISC Machine).

3. Today, I will give you a brief introduction to the architecture we will be
implementing. Duane named his machine “WARM” for Williams Aca-
demic RISC Machine. I was thinking of calling our subset of WARM
LukeWARM, but Duane suggested TEPID. Out of respect for Duane
(and because I could think of a corny interpretation for TEPID but
not for LukeWARM), we will call our machine TEPID.

4. ARM1, WARM, and TEPID all have a lot in common with MIPS.

• They all are 32 bit machines. To simplify implementation, WARM
and TEPID make the 32-bit word the fundamental unit of mem-
ory. Their memories are word addressable so that the first word is
word 0 and the second is word 1 (rather than word 4 as in MIPS).

• They are all RISC architectures. WARM and TEPID are in some
sense extreme examples since they were stripped down to make
for tractable final projects.

1To tell you the truth, I don’t really know the ARM architecture very well at this
point. With a little luck, I will learn more and we will discuss it in more detail later in
the semester.

• They are all load/store architectures. The arithmetic instructions
of all of these machines can only read and write values in regis-
ters. Separate load and store instructions are used to move data
between memory and registers.

5. So how do they differ? First there are a few simple differences.

• WARM and TEPID have a 24-bit limitation on memory addresses
and therefore a 16 megabyte limit on the size of the memories
they can access (Surprise! Logisim has a 16 megabyte limit on
the memories it will simulate.)

• WARM and ARM only have 16 registers instead of 32.

– They are named r0 through r15 (no dollar signs required).

– r0 is not equal to 0. Instead, it is typically used for function
return values.

– r0 or r1 through r3 are typically used for function parameters.

– r4 through r10 are typically used for local variables.

– r13 is usually used as the stack pointer.

– r14 is the link register (equivalent to $ra in MIPS).

– r15 holds the program counter. This is very different from
MIPS! Any instruction (including loads or adds) that sets
r15 has the effect of taking a branch.

6. There are also several more interesting differences:

7. Conditional execution in WARM/TEPID depends on a set of bits know
as condition codes or condition code registers. They record summary
information about a recent ALU output:

Z ZERO - The ALU output was zero.

N NEGATIVE - The ALU output was negative (the high order bit
was 1).

C CARRY - There was a carry out of the high order digit as part of
the last ALU operation.

V OVERFLOW - The last operation involved an overflow (the carry
out was different from the high order bit).

1

8. Every TEPID/WARM instruction begins with a 4 bit field that deter-
mines:

(a) Whether the instruction should be executed based on the current
values of the condition code bits.

(b) Whether if the instruction executes, the condition code bits should
be updated to reflect the result produced by the ALU during its
execution.

Condition
31 30 29 28 Ending Meaning

0 0 0 – – always

0 0 1 – nv never

0 1 0 – eq equal (Z= 1)

0 1 1 – ne not equal (Z= 0)

1 0 0 – lt less than (N6=V)

1 0 1 – le less or equal ((Z= 1) or (N6=V))

1 1 0 – ge greater or equal (N=V)

1 1 1 – gt greater than ((Z= 0) and (N=V))

– – – 0 – don’t set the condition codes

– – – 1 s set condition codes

9. When applied to the branch instruction (b), this works as one might
expect:

beq only branches if the previous arithmetic operation with
an s suffix (which is assumed for the cmp (compare) instruc-
tion produced 0.

10. It can, however, be applied to any instruction

addeq only adds if the previous instruction that set the con-
dition code set Z = 0.

11. TEPID has two instructions named LDR (load register) and STR
(store register) that act quite a bit like the lw and sw instructions
in the MIPS ILA.

condition 1 0 opcode dest reg base reg 0 signed offset from base

31 28 27 26 25 24 23 22 19 18 15 14 13 12 11 10 9 8 6 5 4 3 0

12. There is also a ADR instruction that uses the same format but put the
address of the memory argument into the destination register instead
of the contents.

13. TEPID has 3-operand arithmetic instructions including add, sub, and,
and orr. The destination and the first source operands must be speci-
fied as 4-bit register numbers. There are two (or three) options for the
other source operand.

• An immediate operand can be provided. This is stored in the
last 14 bits of the instruction, but it is not a simple 14 bit signed
number. Instead, the first 5 bits are treated as a base 2 exponent
and the last 9 bits as a constant.

• The second source operand can also be specified as the shifted
value of a third register. 4 bits are used for the register number, 5
bits for the shift amount, and 2 bits for the shift operation (shift
left, logical or arithmetic shift right, rotate).

14. Since there is no $0, there is a mov instruction that ignores its first
source operand.

15. To deal with the limitations of the immediate mode, there is also a
mvn which moves the complement of its operand.

16. There are also cmp and tst instructions to set the condition code with-
out changing any register.

17. Consider the following version of GCD:

int gcd(int a, int b)

// pre: 0 <= a <= b

// post: return greatest common divisor of both a and b

{

if (a == 0) return b; // b divides 0 and b

if (a > b) return gcd(b,a); // swap to meet pre-condition

2

return gcd(b-a,a); // b%a is < b

}

18. Here is a TEPID program that implements this function:

main: swi #2

mov r1,r0

swi #2

mov r2,r0

bl gcd

swi #4

swi #0

gcd: sub sp,sp,#1

str lr, [sp, #0]

cmp r1,#0

bne else1

mov r0,r2

b return

else1: cmp r1,r2

ble else2

mov r0,r2

mov r2,r1

mov r1,r0

bl gcd

b return

else2: sub r2,r2,r1

bl gcd

return: add sp,sp,#1

ldr pc,[sp, #0]

3

