
CS 237 Meeting 24 — 11/5/12

Announcements
1. TA applications.

Assembly Language Programming with Pointers and Structures (conclusion)

1. Last class, we talked about how one might implement programs using
pointers and structures in assembly language.

2. As an example, I suggested we look at the tree sort program I showed
in C a week or so ago. That program depended on a struct type:

typedef struct intTree {

int value;

struct intTree *left;

struct intTree *right;

}

3. I suggested that variables of this struct type would be allocated enough
contiguous memory to hold all of the components and that the com-
ponents would be held at fixed offsets from the lowest address in the
memory used:

left
value

right

0
4
8

left
right

value

8
4
0

or

4. I explained that MARS provides a syscall that replaces C’s malloc
method:

• The syscall number is 9 (i.e. you place 9 in $v0).

• It expects the number of bytes you need in $a0.

• It returns the address of the first byte of the requested memory
in $v0.

5. Using this, I sketched out code for the newTree function from the
intTree program:

// Make a new, one-node tree containing a give value

intTree newTree(int value) { value in $t0

newTree:

move $t0,$a0

intTree result =

(intTree) malloc(sizeof(struct intTree));

li $v0,9

li $a0,12

syscall

returns pointer to new space in $v0

result->value = value;

sw $t0,0($v0)

result->left = result->right = NULL;

sw $0,4($v0)

sw $0,8($v0)

#

return result;

jr $ra

}

6. At the end of last class, I asked you all to spend a little time thinking
about how to code one of the other two functions essential to the
intTree type: insert and preOrder. Their C code is listed below:

// Visit and print the values of all of the nodes in root

void preOrder(intTree root) {

if (root != NULL) {

preOrder(root->left);

printf("%d ", root->value);

preOrder(root->right);

}

}

1

// Insert a node for the number value in the

// appropriate place in a tree

void insert(intTree *rootPtr, int value) {

if (*rootPtr == NULL) {

*rootPtr = newTree(value);

} else if (value <= (*rootPtr)->value) {

insert(&(*rootPtr)->left, value);

} else {

insert(&(*rootPtr)->right, value);

}

}

7. Once you have had time to think about it, we will work together on
the board/computer to complete assembly language implementations
of these functions.

8. Since class is over by now, here are versions of what the code should
look like:

// Visit and print the values of all of the nodes in root

void preOrder(intTree root) {

root = s0 saved at 4(sp)

return address saved at 0(sp)

preOrder:

if (root != NULL)

beq $a0,$0,skipPreOrder

addi $sp,$sp,-8

sw $ra,0($sp)

sw $s0,4($sp)

move $s0,$a0

preOrder(root->left);

lw $a0,4($s0)

jal preOrder

printf("%d ", root->value);

li $v0,1

lw $a0,0($s0)

syscall

li $v0,4

la $a0,blankSpace

syscall

preOrder(root->right);

lw $a0,8($s0)

jal preOrder

lw $ra,0($sp)

lw $s0,4($sp)

addi $sp,$sp,8

}

skipPreOrder:

jr $ra

}

and

// Insert a node for the number value in the

// appropriate place in a tree

void insert(intTree *rootPtr, int value) {

return address saved at 0($sp)

rootPtr in $s0 saved at 4($s0)

value in $a1

insert:

addi $sp,$sp,-8

sw $ra,0($sp)

sw $s0,4($sp)

move $s0,$a0

if (*rootPtr == NULL) {

2

lw $t0,0($a0)

bne $t0,$0,if1Skip

*rootPtr = newTree(value);

move $a0,$a1

jal newTree

sw $v0,0($s0)

b returnFromInsert

if1Skip:

} else if (value <= (*rootPtr)->value) {

lw $t0,0($s0)

lw $t0,0($t0)

slt $t0,$t0,$a1,

bne $t0,$0,if2Skip

insert(&(*rootPtr)->left, value);

lw $a0,0($s0)

addi $a0,$a0,4

jal insert

b returnFromInsert

} else {

if2Skip:

insert(&(*rootPtr)->right, value);

lw $a0,0($s0)

addi $a0,$a0,8

jal insert

}

returnFromInsert:

lw $ra, 0($sp)

lw $s0,4($sp)

addi $sp,$sp,8

jr $ra

}

A Whole New Assembly Language

1. Our final project this semester will involve designing a digital circuit to
implement a hypothetical machine language in the same way that the
circuits presented recently in class and described in our text implement
a subset of the MIPS machine language.

2. The machine language we will implement is a small subset of a hypo-
thetical architecture Duane Bailey designed for 237 a few years ago. It
is based on a real architecture known as ARM (which once stood for
Acorn RISC Machine but now stands for Advanced RISC Machine).

3. Today, I will give you a brief introduction to the architecture we will be
implementing. Duane named his machine “WARM” for Williams Aca-
demic RISC Machine. I was thinking of calling our subset of WARM
LukeWARM, but Duane suggested TEPID. Out of respect for Duane
(and because I could think of a corny interpretation for TEPID but
not for LukeWARM), we will call our machine TEPID.

4. ARM1, WARM, and TEPID all have a lot in common with MIPS.

• They all are 32 bit machines. To simplify implementation, WARM
and TEPID make the 32-bit word the fundamental unit of mem-
ory. Their memories are word addressable so that the first word is
word 0 and the second is word 1 (rather than word 4 as in MIPS).

• They are all RISC architectures. WARM and TEPID are in some
sense extreme examples since they were stripped down to make
for tractable final projects.

• They are all load/store architectures. The arithmetic instructions
of all of these machines can only read and write values in regis-
ters. Separate load and store instructions are used to move data
between memory and registers.

5. So how do they differ? First there are a few simple differences.

1To tell you the truth, I don’t really know the ARM architecture very well at this
point. With a little luck, I will learn more and we will discuss it in more detail later in
the semester.

3

• WARM and TEPID have a 24-bit limitation on memory addresses
and therefore a 16 megabyte limit on the size of the memories
they can access (Surprise! Logisim has a 16 megabyte limit on
the memories it will simulate.)

• WARM and ARM only have 16 registers instead of 32.

– They are named r0 through r15 (no dollar signs required).

– r0 is not equal to 0. Instead, it is typically used for function
return values.

– r0 or r1 through r3 are typically used for function parameters.

– r4 through r10 are typically used for local variables.

– r13 is usually used as the stack pointer.

– r14 is the link register (equivalent to $ra in MIPS).

– r15 holds the program counter. This is very different from
MIPS! Any instruction (including loads or adds) that sets
r15 has the effect of taking a branch.

6. There are also several more interesting differences:

7. Conditional execution in WARM/TEPID depends on a set of bits know
as condition codes or condition code registers. They record summary
information about a recent ALU output:

Z ZERO - The ALU output was zero.

N NEGATIVE - The ALU output was negative (the high order bit
was 1).

C CARRY - There was a carry out of the high order digit as part of
the last ALU operation.

V OVERFLOW - The last operation involved an overflow (the carry
out was different from the high order bit).

8. Every TEPID/WARM instruction begins with a 4 bit field that deter-
mines:

(a) Whether the instruction should be executed based on the current
values of the condition code bits.

(b) Whether if the instruction executes, the condition code bits should
be updated to reflect the result produced by the ALU during its
execution.

4

