
CS 237 Meeting 22 — 10/31/12

Announcements

1. Preregistration Pizza at 9 on Thursday.

A Mini-MIPS Microarchitecture

1. Last time, we began to consider how one could build a circuit to inter-
pret programs written in a language like MIPS machine code.

2. The subset we will work with includes lw (load word), sw (store word),
beq (branch if equal), five of the register to register R-type instructions
(add, sub, and, or, sly (set less than)).

3. The circuit we build will involve several major components that are
also essential parts of the abstract description of the MIPS machine
language:

A bank of 32 registers

A single 32-bit program counter register

A 32-bit data memory

A separate 32-bit instruction memory

4. One other significant component of our circuit will be an arithmetic
and logical unit (ALU) that takes two inputs and performs one of a list
of operations on these inputs (add, subtract, and, or, etc.) depending
on several control inputs.

5. In our illustrations, these components will be represented by the fol-
lowing symbols:

6. The actions our circuits perform are dictated by instructions encoded
according to the conventions of the MIPS architecture. Given the
reduced set of instructions we will consider, we only need to deal with
two of the machine’s formats.

I-Type Used for LW, SW, and BEQ (along with many MIPS instruc-
tions not in mini-MIPS):

1



R-Type Used for ADD, SUB, SLT, AND, and OR:

7. To avoid having the details of these instruction formats clutter up all
of our circuits, we will use the following circuit as a sub-circuit in our
Logsim implementation of this machine. It is a great illustration of
Duane’s claim that a wire can be a powerful computer! It pulls the
instructions apart into various sub-fields doing sign-extension in the
cases where that is needed:

8. We can see how all these pieces fit together if we sketch out the data
flow connections that would be required if all we wanted to do was
implement the store word instruction. That is, we will focus on the
pseudo-code:

while ( 1 ) {

IR = MEM[PC];

PC = PC + 4;

OPCODE = IR{31:26};

if ( OPCODE == SW ) {

RT = IR{20:16}; // base

RS = IR{25:21} // source

OFFSET = sign-extend( IR{15:0} );

ADDR = OFFSET + REGS[ RT ];

MEM[ ADDR ] = REGS[ RS ];

}

9. The components and connections need for this instruction are shown
below:

• The loop on the left includes the program counter register. It
implements the first two statements of our pseudo-code by sending
the value of the PC to the instruction memory to fetch the current
instruction and incrementing the register by 4 to move on to the
next instruction.

• We use three outputs of the decode instruction circuit to access
the source register, the base register and the offset of the memory
location.

• The two register numbers from the instruction are sent to the
register file/bank. The base register’s value is sent to the ALU
so that it can be added to the offset. The value of the register to
store is sent to the memory.

2



• Finally, the sign-extended offset is sent as the second operand to
the ALU.

10. We can continue in this way considering the data path connections
needed for each instruction or type of instruction in isolation. For the
load word instruction, the following connections would be used:

• There are only two differences between this circuit and the one
for SW:

– The target register number goes to the register bank’s write
address input instead of its second read input.

– The output of the memory is fed back to the register bank.

• The actions of the devices at the ends of the connections that differ
between these two circuits are controlled by additional logic that
depends on the bits in each instructions encoding. Therefore, we
can combine them to build one circuit that could execute either
instruction:

11. The connections required for the R-Type instructions (add, sub, etc.)
are also similar to the load and store circuits.

• This time, the data memory is not connected at all. Instead, the
output of the ALU goes back to the register bank since R-Type
instructions work strictly with registers.

• There are also new connections to the register address inputs since
three inputs are needed.

• Importantly, the input to the register file’s write address comes
from a different output of the instruction decoder. This means we
cannot just merge this data flow diagram with the load or store
diagram as we were able to merge load with store. If we did, we
would end up with one input connected to two different sources.

• A similar conflict exists on the write data input to the register
bank. For R-type instructions, this comes from the ALU. For lw,
it comes from memory.

• Finally, the lower input to the ALU for R-type instructions comes
from the register bank rather than from the sign extended imme-
diate field.

• Shortly, we will see how to resolve all these conflicting input needs
using multiplexers.

12. To complete the process of looking at how to build dataflow paths for
individual instruction types, we need to consider the beq instruction.

• This instruction depends on “Z” control output of the ALU that
tells whether the current ALU output is equal to 0.

• The instruction is executed by telling the ALU to subtract the
values of the two registers being compared and then testing the
Z control output.

• Since the next value of the PC can now either be determined
by the IMM field of the beq instruction or by adding 4 to the

3



preceding PC value, a multiplexer is inserted before the input to
the PC, making it possible to choose the next value by sending a
control signal to the multiplexer.

13. The multiplexer used in the data flow for beq is a nice simple example of
how we can build a circuit in which control signals send to a multiplexer
select between several possible inputs to a sub-circuit. We can use
this technique to merge the circuits we have considered for all of the
instruction types we want to execute. We will just insert multiplexers
and control inputs anywhere merging circuits require two inputs to a
sub-circuit.

4


