
CS 237 Meeting 20 — 10/26/12

Announcements
1. Midterm: New date: Oct 29th. In class open book/notes.

2. Try to complete the linear feedback shift register lab in one sitting
(and please put all the equipment away when you are done so it will
not get in the way of others who need to use the Macs in that lab).

Synchronous Sequential Circuits

1. Consider the following attempt to solve the GCD circuit construction
exercise included in last week’s lab:

2. This circuit does not work as desired. It is an example of a sequential
circuit with a bad synchronization problem.

• The problems with the circuit are a result of the fact that the
clock inputs to the two registers are not tied directly to the clock,
but instead are connected to the output of gates whose inputs
involve both the clock and circuit elements involving the outputs
of the registers.

• The intent of the circuits design is that the clock signal received
by a register will only be 1 if the main clock has been set to 1
and the value in that register is currently greater than the value
in the other register.

• Assuming this is true when the clock first become 1, one register
will see a rising clock pulse and load a new value.

• This new value will quickly become the registers new output.

• It will be smaller than the old output.

• It will feed into the comparator used to determine which register
should change.

• If the decrease in value of the register that changed makes it less
than the value in the other register, the output of the comparator
will change.

• The clock signal for the other register is the and of the output of
the comparator that had been 0 and the main clock.

• If the comparator changes it output while the main clock is still
1, the second register will see a rising clock pulse and load a new
value.

• TWO REGISTER UPDATES HAVE OCCURRED AT DIFFER-
ENT TIMES AS A RESULT OF A SINGLE CLOCK PULSE.

• This was probably not the intent of the designer of the circuit.

3. Things can get even worse. (In fact they were already). The updated
comparator output may arrive before the updated output from the
combination of the subtraction circuit and multiplexer that determines
the input to the registers. In this case, the second register may actually
load the wrong (a negative) value.

4. There is a simple design practice for avoiding such race conditions. In
a synchronous sequential circuit, all registers have their clock inputs
connected to the same signal. It won’t arrive at all registers at precisely
the same time because of differences in wire lengths, but it will be quite
close.

5. This necessitates another way to arrange for some registers to change
on a clock pulse when others stay the same.
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• This could be accomplished by placing a multiplexer in front of
every register that would choose between a new value and the
register’s current value.

• Better yet, real registers (and register in Logisim) usually include
an enable input. The register only changes on a clock pulse if this
input is 1.

6. A version of the GCD circuit that uses this approach is shown below:

A Mini-MIPS Microarchitecture

1. Now, we are ready to pull two of the strands running through this
course together. We will explore the relationship between your intro-
duction to machine language and digital logic by seeing how to build a
digital circuit that interprets a significant (in functionality if not size)
subset of the MIPS machine language.

2. The subset we will work with includes lw (load word), sw (store word),
beq (branch if equal), five of the register to register R-type instructions
(add, sub, and, or, sly (set less than)).

3. The circuit we build will involve several major components that are
also essential parts of the abstract description of the MIPS machine
language:

A bank of 32 registers A single instruction in the machine lan-
guage can access the values of up to two registers and modify
one register. Therefore, the sub circuit that implements the reg-
ister bank must have three address inputs, two data outputs, and
one data input. In addition, it will have a clock input and a write
enable input that together determine when updates occur. Note
that even though this memory is byte addressed, it only provides
access at the word level. Good thing load byte is not in our list
of things to implement.

A single 32-bit program counter register

A 32-bit data memory With one input bus, one output bus and
clock and write enable inputs.

A separate 32-bit instruction memory This is a cheat that the
book only weekly justifies. It is impractical to build a large mem-
ory that can output two locations simultaneously. Since the first,
simple version of this machine implementation will update every-
thing every clock cycle, separate instruction and data memories
are essential.

4. One other significant component of our circuit will be an arithmetic
and logical unit (ALU) that takes two inputs and performs one of a list
of operations on these inputs (add, subtract, and, or, etc.) depending
on several control inputs.
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• Note that since the inputs and output of this sub-circuit represent
32-bit busses, the and, or and not gates represent collections of
32 bit, parallel gates.

• On the other hand, the NOR gate at the bottom of the diagram
represents a nest of NOR gates combining the 32 output bits into
a single bit output that indicates whether all 32-bits of its input
are zero.

• The ALU sub-circuit contains a 32-bit adder, and 32-bit parallel
and and or gates.

• A multiplexer controlled by two control inputs determines which
of these devices output becomes the output of the ALU.

• There is also the option of running one of the inputs through a
32-bit parallel not gate.

• By negating one of the inputs and setting 1 instead of 0 on the
carry in to the adder the adder can be used as a subtractor (recall
that to negate a number in two’s complement, we flip the bits and
add 1).

5. In our illustrations, these components will be represented by the fol-
lowing symbols:

6. For most of the other digital circuits we have designed, we have started
with an algorithm in pseudo-code (or C!). We can take the same
approach here. The algorithm the mini-MIPS processor must execute
is basically:

while ( 1 ) {

IR = MEM[PC];

PC = PC + 4;

OPCODE = IR{31:26};

if ( OPCODE == SW ) {

RT = IR{20:16}; // base

RS = IR{25:21} // source

OFFSET = sign-extend( IR{15:0} );

ADDR = OFFSET + REGS[ RT ];

MEM[ ADDR ] = REGS[ RS ];

} else if ( OPCODE == LW ) {

RT = IR{20:16}; // base

RS = IR{25:21} // destination

OFFSET = sign-extend( IR{15:0} );

ADDR = OFFSET + REGS[ RT ];

REGS[ RS ] = MEM[ ADDR ];

} else if ( OPCODE == 0 ) { // R-type

FUNCT = IR{ 5:0 };

RS = IR{25:21} // operand 1

RT = IR{20:16}; // operand 2

RD = IR{15:11}; // destination

if ( FUNCT == ADD ) {

REGS[ RD ] = REGS[ RS ] + REGS[ RT ];

} else if ( FUNCT == SUM ) {

REGS[ RD ] = REGS[ RS ] - REGS[ RT ];

} else
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}

} else if ( OPCODE = BEQ ) {

RS = IR{25:21} // operand 1

RT = IR{20:16}; // operand 2

if ( REGS[ RS ] == REGS[ RT ] ) {

OFFSET = 4 * sign-extend( IR{15:0} );

PC = OFFSET + PC

}

} else if ...

7. A lot of the “pseudoness” of this code involves the fact that the ma-
chine’s operation is determined by the various sub-fields of the various
MIPS instruction formats. The two formats we need to remember are:

I-Type Used for LW, SW, and BEQ (along with many MIPS instruc-
tions not in mini-MIPS):

R-Type Used for ADD, SUB, SLT, AND, and OR:

8. To avoid having the details of these instruction formats clutter up all
of our circuits, we will use the following circuit as a sub-circuit in our
Logsim implementation of this machine. It is a great illustration of

Duane’s claim that a wire can be a powerful computer! It pulls the
instructions apart into various sub-fields doing sign-extension in the
cases where that is needed:
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