
CS 237 Meeting 17 — 10/19/12

Announcements
1. Midterm: New date: Oct 29th. In class open book/notes.

Robust Function Call Conventions for MIPS

1. Last class, I discussed how MIPS programmers could use the stack to
ensure that called functions would preserve elements of the computer’s
state (mainly register values) that a calling function might depend on.

2. I commented on my surprise that the MIPS architecture did not seem
to have a widely accepted set of standards/conventions for how the
information a particular function put on the stack should be format-
ted. All of the other architectures with which I am familiar have such
conventions.

3. After class, I concluded that it would have been better to pick some
standard and treat it as universal for the purpose of explaining how the
stack is used. Basically, I fear that by exploring the flexibility provided
by MIPS lack of standards (i.e., by sometimes saved $a register values
on the stack and sometimes storing them in $s registers), I just made
things more confusing.

4. So, today I want to finish our discussion of function stack frames on
MIPS by pretending there is only one way that all functions must use
the stack!

5. The “standard” I am going to discuss is the result of merging standards
I found in various texts on on other architecture course web sites.

6. It is based on the existing standard for MIPS register usage:

Saved Registers Registers $s0 through $s7 (otherwise know as regis-
ters 16 through 23) must contain the same values when a function
returns as they did when it was called.

Temporary Registers Registers $t0 through $t9 may have their val-
ues changed during a function call. The calling function must not
depend on values left in these registers before a call.

Function Linkage Registers Registers $a0 through $a3 are used to
pass the first four arguments to a function. The called function
may change the values in these registers before it returns. Regis-
ters $v0 and $v1 are used to hold any value a function is expected
to return, so a calling function should assume that the values in
these registers may be changed during a call.

Stack Pointer Register $sp holds the address of the lowest byte used
on the function stack. This will also be the lowest byte of the
currently executing function. A called function must modify $sp
to hold the address of its own frame and then restore $sp to refer
to its caller’s frame before it returns.

Return Address Register $ra holds the current function’s return ad-
dress. A calling function must save this value before executing a
jal instruction.

7. The layout of our standard frame is described by the following diagram
(and the text that follows):

space for local 
variables

and arrays that 
cannot

be stored in $s or 
$t

registers

saved $s register
...

saved $s register
saved $ra

space for $a3
space for $a2
space for $a1
space for $a0

Space used by this function
to save the values of
parameters passed to
it by its caller (optional)

Only required for non-leaf functions

Space in which this function will
save initial values of any $s registers

that it uses.

$sp

If this function ever passes more 
than 4 parameters to a callee,

it should allocate space for 4 less 
than the most parameters it ever 

passes here and use it to pass the 
parameters that don't fit in

$a0 through $a3

Space for local variables and
arrays that don't fit in $s or

$t registers.  

arg n-1
...

arg 4
...

1



Starting from the bottom of the diagram:

• If a function passes more than 4 parameters to a callee, it is
expected to put the first four parameter values in $a0 through
$a3 and to place the remaining parameter values on the stack just
above the callee’s frame with the last parameter at the highest
address and parameter 4 (assuming we number the parameters
starting at 0) just above the callee’s frame. As a result, if a
function makes any such calls, it should allocate enough space in
its frame for the most parameters required by any call.

• If a function has so many local variables that they cannot all be
kept in registers, or it has a local variable whose address is used
(i.e., the C & (address of) operator is applied to the variable), or
has arrays declared as local variables, space for variables should
be allocated in the stack frame.

• If the function calls any other function, a word should be allocated
to save this functions return address. It should be saved in the
function’s prologue. A function that does not call other functions
is called a leaf function.

• If the function uses any $s registers, it should allocate one word
for each register used, save the values of these registers in its
prologue and restore them in its epilogue.

• If the function chooses to save the values of its parameters on the
stack, it should make room for them at the top of its frame. This
way, in the case that a method takes more than 4 parameters, the
saved values together with the values passed by the caller on the
stack will form an array containing all of the parameter values.

8. Given this guidance, we can revisit the question of how we might use
the stack while translating the functions in the quicksort program into
MIPS assembly code.

• First, consider the code for the quicksort function itself:

// Sort an array using the quicksort algorithm

void quicksort(int list[], int low, int high ) {

int mid;

if( low < high) {

// partition the list into two sublists

mid = partition( list, low, high );

// recursively sort the lesser list

quicksort(list, low, mid-1);

quicksort(list, mid+1, high);

}

}

• The function clearly never calls another function with more than
4 parameters, so we don’t need space in its frame for parameter
passing.

• The function has only one local variable and it is not an array, so
we don’t need space for local variables in the stack frame.

• The function does call other functions, so we will need a slot to
save $ra in the stack frame. This will be at displacement 0 from
$sp.

• The local variable mid needs to retain its value across calls to
other functions, so we will keep it in a saved register, $s0. We
will use the word at 4($sp) to save any value held in $s0 by the
function that called quicksort.

• We could move the $a registers to some $s registers, or we could
save them in the stack frame and restore them as needed. Since
there is no loop in the function, the number of restores required
is quite limited. Therefore, we will opt to keep these values in $a
registers and need 3 words in the frame for this.

• The overall frame will therefore look like:

saved $s0
saved $ra

space for $a2
space for $a1
space for $a0

0
4
8

12
16

2



9. The code for this function’s prologue will make room on the stack for
this frame and place the values to be saved in the appropriate slots:

quicksort:

# REGISTER USAGE STACK FRAME

# list = a0 saved at 16($sp)

# low = a1 saved at 12($sp)

# high = a2 saved at 8($sp)

# mid = s0 saved at 4($sp)

# $ra saved at 0($sp)

#

# PROLOGUE:

addiu $sp,$sp,-20

sw $a0,16($sp)

sw $a1,12($sp)

sw $a2,8($sp)

sw $s0,4($sp)

sw $ra,0($sp)

10. The code in the epilogue will not need to restore the $a registers, but
it does need to restore $s0, $ra, and $sp:

# EPILOGUE

lw $s0,4($sp)

lw $ra,0($sp)

addiu $sp,$sp,20

jr $ra

11. After any call that might change the values of the $a registers, any
necessary values must be restored from the stack:

# // partition the list into two sublists

# mid = partition( list, low, high );

jal partition

move $s0,$v0

#

# // recursively sort the lesser list

# quicksort(list, low, mid-1);

lw $a0,16($sp)

lw $a1,12($sp)

addi $a2,$s0,-1

jal quicksort

12. We would perform a similar analysis of each function to be translated.
The partition function:

// Split the array into two sections so that all

// values in the first section are less than those

// in the second

int partition( int list[], int low, int high ) {

int left, right, mid, pivot;

mid = (low + high )/2;

swap(&list[low],&list[mid]);

pivot = list[low];

left = low+1;

right = high;

while(left <= right) {

while((left <= high) && (list[left] <= pivot)) {

left++;

}

while((right >= low) && (list[right] > pivot)) {

right--;

}

if( left < right) {

swap(&list[left],&list[right]);

}

}

// swap two elements

swap(&list[low],&list[right]);

return right;

}

requires no space for extra arguments or local variables at the end of
the stack frame.

13. It does, however, need to use 3 saved registers for its local variables
(the fourth local variable does not need to be preserved over any call
so it can be kept in a temporary register).

14. In addition, since the argument values might be damaged by the call to
swap that appears in a loop, it is better to move the three arguments
into saved registers rather than to restore them each time around the
loop.

3



15. This leads to a stack frame that looks like:

saved $s3

saved $s4
saved $s5
saved $ra0

4
8

12
16

saved $s0

saved $s1
saved $s2

20
24

a prologue that both saves many values in the stack frame and moves
argument values to saved registers:

# int partition( int list[], int low, int high ) {

# int left, right, mid, pivot;

partition:

#

# REGISTER USAGE/FRAME LAYOUT:

#

# $s0 = list (from a0) saved at 24($sp)

# $s1 = low (from a1) saved at 20($sp)

# $s2 = high (from a2) saved at 16($sp)

# $s3 = left saved at 12($sp)

# $s4 = right saved at 8($sp)

# $s5 = pivot saved at 4($sp)

# $ra saved at 0($sp)

# $t0 = mid

subi $sp,$sp,28

sw $ra,0($sp)

sw $s5,4($sp)

sw $s4,8($sp)

sw $s3,12($sp)

sw $s2,16($sp)

sw $s1,20($sp)

sw $s0,24($sp)

move $s0,$a0

move $s1,$a1

move $s2,$a2

and an epilogue that restores all the saved values:

# EPILOGUE

lw $ra,0($sp)

lw $s5,4($sp)

lw $s4,8($sp)

lw $s3,12($sp)

lw $s2,16($sp)

lw $s1,20($sp)

lw $s0,24($sp)

addi $sp,$sp,28

jr $ra

Structures in C

1. Programming in an object-oriented language like Java depends heav-
ily on the definition of classes that collect a group of variables and
functions (method) that manipulate them.

2. C provides a lower-level facility that allows the programmer to describe
a collection of related variables called a structure. Using structures, one
can simulate much of the functionality of a class by defining appropriate
functions.

3. Consider a simple example of a Java class:

public class Point {

private double x;

private double y;

public Point( double xCoord, double yCoord ) {

x = xCoord;

y = yCoord;

}

public void move( double xDiff, double yDiff ) {

x = x + xDiff;

4



y = y + yDiff;

}

public double distanceTo( Point otherPoint ) {

double xDiff = x - otherPoint.x;

double yDiff = y - otherPoint.y;

return Math.sqrt( xDiff*xDiff + yDiff*yDiff );

}

. . .

}

4. This defines a new type of object with two components (x and y)
together with methods to manipulate these objects.

5. In C, the notation

struct point {

double x;

double y;

}

describes a new type of values composed of pairs of values of the dou-
ble type. This new type is called a struct or structure. Unlike the
Java class, a structure is just a collection of variables. There are no
functions.

6. Just as other type names like int and char can be used to declare
variables, we can define a variable using a structure type by placing
the type description before the name we wish to declare and ending
the declaration with a semicolon. this, we could declare a variable
somePoint as a structure by saying:

struct point {

double x;

double y;

} somePoint;

7. Better yet, once we have describe a struct we can use the keyword
struct followed by the name we used to define other variables:

struct point someOtherPoint;

Basically, we don’t have to repeat the components of the struct.

8. Give a variable of a struct type, we can access its components using
periods and component names. For example, we could print the coor-
dinates of a point using the statement

printf( "( %f, %f )\n" , somePoint.x, somePoint.y );

9. We can also pass struct values as parameter and return them as the
results of a function. Here are three examples of functions (two of which
mimic methods from our Java Point class) that take point parameters:

void move( struct point p, double xDiff, double yDiff ) {

p.x = p.x + xDiff;

p.y = p.y + yDiff;

}

double distanceTo( struct point p, struct point otherPoint ) {

double xDiff = p.x - otherPoint.x;

double yDiff = p.y - otherPoint.y;

return sqrt( xDiff*xDiff + yDiff*yDiff );

}

void printPoint( struct point p ) {

printf( "( %f, %f )\n" , p.x, p.y );

}

typedefs

1. Structure definitions are often used together with another C mechanism
that allows the programmer to define new type names.

2. For example, we have seen that C does not provide a boolean type.
When we want to work with boolean values, we typically include the
#defines:

#define TRUE 1

#define FALSE 0

in our code and define “bool” variables like:

int matchFound;

5



3. The declaration

typedef int bool;

tells C that we want to use bool as another name for the type int.
Therefore, if we include such a declaration we can then say

bool matchFound;

4. In general, a typedef looks like a variable declaration preceded by the
word typedef. Its effect is to associate the name that would have been
a variable with the type with which that variable would be associated
if typedef had been omitted. For example,

typedef int numberList[10];

define numberList to be a name for the type of arrays of 10 integers.
After this declaration, saying

numberList scores;

would define scores as an array.

5. As mentioned above, it is common to use a typedef to associate a
name with a structure that can be used without first saying struct.
For example, if we said:

typedef

struct point {

double x;

double y;

} point;

we could then define variables as

point somePoint;

point someOtherPoint;

and also use the new name in parameter declarations as in:

void move( point p, double xDiff, double yDiff ) {

p.x = p.x + xDiff;

p.y = p.y + yDiff;

}

double distanceTo( point p, point otherPoint ) {

double xDiff = p.x - otherPoint.x;

double yDiff = p.y - otherPoint.y;

return sqrt( xDiff*xDiff + yDiff*yDiff );

}

6


