
CS 237 Meeting 14 — 10/12/12

Announcements
1. Midterm: Oct 26th. In class open book/notes.

2. When you implement heap sort, take advantage of the fact that the C
code only invokes swap in one place in heap

What a Memory

1. The basis for all memory circuits are devices that have more than
one stable state and a means for an external device to cause a switch
between these two stable states.

2. The canonical example of such a device is the SR latch, obtained by
connecting two NOR gates in such a way that each of the gates takes
the output from the other gate as an input.

3. The weakness of the SR latch is that it does not match our model of
what memory should do. The SR latch remembers what input line
was set to 1 most recently. When we think of memory, we think of a
device that can remember a number (or at least a binary digit) that
was available at some moment in the past.

4. The D latch accomplishes this by taking two inputs:

• The D input, as described above is a bit to be remembered, and

• The CLK input is set to 1 when we want to record each change
in D and set to 0 when we want to remember a particular value
of D and ignore future changes in D’s value (until CLK becomes
1 again).

5. There are several minor features that can be (and are) incorporated
into pre-packaged latches (and flip flops which we will discuss next)
that are handy to have when working with them.

• One feature is to include a “set” (or “reset”) input that sets the
value in the latch/flip-flop to 1 (or 0) independent of the values
on the D and CLK inputs. This is easily implemented by adding
a few gates to the circuit:

Non-political Flip Flops

1. The easiest form of clock to include in a computer is one that turns on
and off for equal amounts of time at regular intervals.

2. The “equal amounts of time” part is not optimal for latches.

• Imagine how to build a very simple circuit that acts as a counter.

– To hold the current value of the counter, we would use a
big enough register to remember all the bits of the counter’s
binary representation.

1



– To be able to increment the counter, we could flip the low
order bit on each clock cycle and include a half adder to
determine the next value for each higher order bit.

– The result of this addition would then be connected to the
input (D) bits of the register.

– All of the register’s clock signals would be connected to a
single clock.

– The intent would be that while the clock was set to 0, the
adder would be computing the updated total. The, when the
clock struck 1, the register would replace its former contents
with the updated total.

– Note, this would be a great device to hook to the program
counter register (possible adding 4 instead of 1).

– Unfortunately, if the clock was off for as long as it was on,
the adder would update many of its output bits (possibly all)
between the point where the clock goes to 1 and returns to 0.
Since the clock would still be one, the register would update
its contents.

3. The solution to this problem is the flip-flop, a device that is like a latch
except it only updates its output to reflect its input at one of the edges
of a clock pulse. Flip flops come in “leading edge” and “training edge”
varieties.

4. One simple way to build a flip flop is to take two latches, make one’s
output be the next latches input, and hook one to the clock and the
other to the clock’s negation.

• When the CLK signal is 0, the first latch remains unchanged.

• When the CLK signal becomes 1, the first latch becomes trans-
parent. Its output changes as soon as its input changes, but the
second latch remains unchanged.

• When the CLK signal falls from 1 to 0, the first latch stops chang-
ing and the second latch passes the final value of the first latch
on as its new value.

This is called a Master Slave D Flip Flop.

5. By moving the not gate between the main clock signal and the signals
to the D latches used as subcomponents, we can choose to either have
the new value set at the point the clock rises or when it falls.

A Simple Sequential Circuit

1. To really appreciate how latches and flip flops can be used (and to
appreciate why the CLK input is called CLK), we need to build a
circuit that uses these components to implement a simple algorithm
involving a loop.

2. Recall that way back when we were learning C and the basics of MIPS
assembly, we considered several ways to implement algorithms to com-
pute an integer approximation to the square root of an integer. The
dumbest version looked like:

int dumbSqrt( int v ) {

int ans=1;

while ( ans*ans <= v ) {

ans = ans + 1;

}

ans = ans - 1;

return ans;

}

2



3. This algorithm is really dumb. Not only is it linear when it could
be easily replaced with a log n algorithm based on a binary search. In
addition, with each step it requires a multiplication which is a relatively
time-consuming operation (compared to an addition).

4. There is a simple trick we can use to eliminate the need for multiplica-
tions in this algorithm. We know that for any x, (x+1)2 = x2+2x+1.
Therefore, if we keep the values of both x and x2 in variables we can
write a loop that updates them together giving access to the value of x2

without any “real” multiplications (i.e., the 2x can be done by shifting
or with addition).

5. With this trick we can rewrite the C code as

int lessDumbSqrt( int v ) {

int ans=1;

int ansSquared = 1;

while ( ansSquared <= v ) {

ansSquared = ansSquared + 2*ans + 1;

ans = ans + 1;

}

ans = ans - 1;

return ans;

}

6. We have seen that we can build a circuit to repeatedly increment the
value in a register by adding one to the output of the register and
feeding the result back in as the new input value for the register:

This circuit effectively implements the loop:

int ans=0;

while ( true ) {

ans = ans + 1;

}

7. WIth a little work we can add components to this circuit so that it
also computes the square of the simple counter, thereby executing the
loop:

int ans=0;

int ansSq = 0;

while ( true ) {

ansSq = ansSq + 2 * ans + 1;

ans = ans + 1;

}

The circuit requires an additional register to hold the square. It then
simply uses adders to combine the outputs of the registers in the ap-
propriate way.

3



8. Finally, we can add logic to disable the clock input to the registers
once the square exceeds a target value, thereby implementing the loop
condition.

4


