
CS 237 Meeting 13 — 10/10/12

Announcements
1. Lecture examples are being added to class web page.

Take a Little Time

1. The structure of a circuit determines the speed with which it can “com-
pute” the output of the function it implements.

• When the voltage on a transistor’s gate changes, it takes some
finite amount of time for the transistor to turn on or off.

• The time from when a new set of input values arrives at a gate
and it is safe to assume that the output value(s) have changed
and are stable is called the gate delay (it varies from one type of
gate to another).

• A device’s overall delay is determined by the path from some input
to some output with the highest combined gate delay.

2. Last time we saw that an n-bit adder built by chaining together 1-
column full adders requires roughly 2n gate delays from when new
input values are presented until the final carry output becomes stable
and correct.

3. We know we can do better than this! Each output bit can be expressed
in sum-of-products form where the maximal path will be three gates
long (one not, one and, and one or).

Unfortunately, the number of gates in such a circuit will be enormous!
The “average” min-term for the higher order bit of the sum of a two
input n-bit adder would require n not gates and an 2n input and gate.
There could be as many as 22n min-terms.

4. There are options between the simple carry ripple adder and the sum-
of-products term.

5. In a carry-lookahead adder, we break the inputs into m-bit chunks.

• For each m-bit chunk we add circuitry to compute two boolean
values:

– Propagate - whether these m-bits would propagate a carry if
there was one from the bits to the right. This is basically the
and of the or of each pair of inputs (i.e. every column must
have at least one 1 input).

– Generate - whether these m-bits generate a carry regardless
of the carry in. This is a bit recursive. It is the and of the
high order bits ored with the the “Propagate” (or) of the
high order bits and the “generate” of the low order bits.

• These two bits will be computed by the high order chunks while
the carry is propagating through lower chunks.

• Once a carry reaches a chunk, we just and it with the propagate
bit and or it with generate to determine the carry out of the
chunk.

Thus, instead of having two gate delays per column, we have two
gate delays per chunk of columns.

Other Combinational Circuits

1. There are a number of combinational circuits that are covered in the
text which we will not discuss in class. In particular, the book discusses
how to build circuits to preform other standard mathematical opera-
tions (subtraction, multiplication, and division) and not-so-standard
operations that are common in programming languages (shifts).

2. You should be familiar with the basics of how these circuits operate
since we will assume their existence when we examine the overall struc-
ture of a computer’s components.

What a Memory

1. Combinational circuits are wonderful, but to build a computer we need
circuits that can remember things.

2. The basis for all memory circuits are devices that have more than
one stable state and a means for an external device to cause a switch
between these two stable states.

1



3. The canonical example of such a device is the SR latch, obtained by
connecting two NOR gates in such a way that each of the gates takes
the output from the other gate as an input.

• The circuit has two possible outputs. In most cases, one will be
the inverse of the other, so it is traditional to label one Q and the
other Q̄

• It is also traditional to label the external input to the NOR gate
that produces Q with R (for reset) and the other input with S
(for set).

• If we try to build the truth table for Q given this circuit, things
are fine as long as we only consider rows where one of the inputs
is 1 since that 1 ensures that the output of the NOR gate that
receives it will be 0:

Set Reset Q

0 0 ??

0 1 0

1 0 1

1 1 0

• If both input are set to 0, then the output of each gate depends
on the output of the other gate. If Q is 1, then Q̄ must be 0. If
Q is 0, then Q̄ must be 1. Either way, the circuit will be happy.

This is the bistable behavior we need. When both inputs to an
SR latch are 0, it is happy to set forever in one of these two stable
states.

• How does the circuit decide between its two stable states. Luckily,
the answer is history. As long as the circuit is in a state where Q

and Q̄ are complements before both inputs become 0, it will stay
in that state after it becomes 0.

• Setting S to 1 and R to 0 makes Q 1 and Q̄ 0. Setting R to 1
and S to 0 makes Q 0 and Q̄ 1. Therefore, Q will be 1 while both
inputs are 0 if and only if the last input set to 1 while the other
input was 0 is S.

4. This circuit is called an SR latch. In its raw form, it is not that useful,
but we will see that it makes a great building block.

More Flexible 1 Bit Memories

• The weakness of the SR latch is that it does not match our model of
what memory should do. The SR latch remembers what input line was
set to 1 most recently. When we think of memory, we think of a device
that can remember a number, not something involving the relationship
between two input lines.

• Numbers in computers are just sequences of bits. Therefore, if we want
to start simple the first step is to recognize that a device that could
remember a bit would give us the ability to remember a number (we
just use as many of the devices as there are bits in the number).

• The first trick to building such a device is to recognize that the SR
latch really provides this ability. If we want to remember a 1, we just
set the S line. If we want to remember a 0, we set a 1 on the R line.
This naturally leads to a very silly circuit in which we tie a one bit
data input (usually named D) to the S line and its negation (D̄) to the
R line.

2



This circuit is silly because its output (Q) will always just equal D.

• The point in discussing this silly circuit is to make it clear that we
don’t just want to remember the value on a particular wire in a circuit.
Instead, we want to remember that value at some particular time at
the past. To be useful, a memory has to provide controls that let us
both send it the value we want to remember and tell it at what point
in time to remember the value.

• The D latch accomplishes this by taking two inputs:

– The D input, as described above is a bit to be remembered, and

– The CLK input is set to 1 when we want to record each change
in D and set to 0 when we want to remember a particular value
of D and ignore future changes in D’s value (until CLK becomes
1 again).

Building Multibit Memories

1. Given devices like the SR and D latches, it should not be hard to
imagine how to build devices that function somewhat like the registers
in the MIPS machine. For one register you could

• Layout 32 D-latches.

• Connect their D input to 32 distinct input lines used to send the
value to be stored in the register.

• Hook all of their outputs to some sort of multiplexer that can be
used to select this register’s values from those of its piers.

• Connect all of the CLK lines to a single wire.

2. Even drawing a picture of a 32 bit register seems daunting, but here
is a drawing of a 4-bit register.

3


