
CS 237 Meeting 11 — 10/1/12

Announcements
1. None?

Accessing Memory in MIPS Assembly Language

1. At the end of the last class, we examined a simple program showing
how the swap method previously shown in C, could be implemented in
assembly language. The code for the example is shown in Figure ??.

This program illustrates many things you need to know to access mem-
ory in a MIPS assembly program.

• While a program is running, MIPS memory is divided into several
segments:

text This is where the program’s code resides. It is pretty big.

data This is where global variables and string and other con-
stants reside. It is pretty small.

Dynamic data This is where the function call stack and heap
(the place Java puts things when you say “new”) live. It is
huge.

• We have previously only used the .data and .text directives at
the beginning and end of our programs. Now, we will use them
whenever we need to switch between telling the assembler we are
describing code or variables/constants that should be stored in
the data segment.

For example, since we want the variable’s x and y declared in this
program’s main function to appear in the data segment rather
than on the stack (although local variable’s usually would be on
the stack), we have to switch back and forth between the text and
data segments.

• This example also illustrates the use of the .word directive which
enables us to allocate and initialize a word of memory. We will see
there is another directive used to allocate large blocks of memory
(as for an array).

.text

j main

#void swap(int *x, int *y) { x in $a0, y in $a1

int temp; temp in $t0

swap:

temp = *x;

lw $t0,($a0)

* x = * y;

lw $t1,($a1)

sw $t1,($a0)

y = * temp;

sw $t0,($a1)

#}

jr $ra

#

#int main(int argc, char * argv[]) { argc in $a0, argv in $a1

#

.data

int a = 10;

a: .word 10

int b = 100;

b: .word 100

.text

swap(a, b);

main: la $a0,a

la $a1,b

jal swap

#

printf("a = %d, b = %d\n", a, b);

li $v0,4

la $a0,aMess

syscall

li $v0,1

lw $a0,a

syscall

SOME RELATIVELY BORING CODE IS MISSING HERE

.data

aMess: .asciiz "a = "

bMess: .asciiz " b = "

newLine: .asciiz "\n"

#}

Figure 1: Swap translated from C to MIPS

1

• Before the main method, we associate the labels a and b with these
variables. This makes it easy to access them directly. When we
want to print their values, we just use their names in lw instruc-
tions.

2. This program also shows how to reference a memory location through
a pointer rather than a simple name.

• In the main method, we pass pointers to a and b to swap using
the la (load address) instruction.

• In swap, we have to load these addresses into register and then
combine the value in the register with an immediate offset of 0.
The notation “($a0)” in the load and store instruction in swap
indicate that the address of the memory work to be accessed is in
$a0.

Using Arrays in MIPS Assembly Language

1. The load and store instructions are particularly important for array
access.

2. As a simple example of this, the program shown in Figure ?? shows how
to step through the elements of an array of chars (a string), printing
one character per line of output.

• The address of the string to print is found in the 0th element of
the array of pointers to strings passed as argv.

• Since each character takes one byte, we can access the ith char-
acter by adding i to the address of the start of the string.

• Since we are working with characters, we use lb.

• The loop ends when it hits a 0 in the array.

3. Things get a bit more interesting when the elements of an array take
more than a single byte of memory. In this case, to find an element’s
address in memory we need to multiply the index value by the element
size and then add it to the address of the 0th element.

.text

#// Print a string one character per line

#void printDown(char arg[]) { &arg in $a0 must be moved to $t0

printDown:

move $t0,$a0

int p; use $t1 for p

for (p = 0; arg[p]; p++) {

li $t1,0

printLoopStart:

add $a0,$t1,$t0 #use a0 to prep for printf

lb $a0,($a0)

beq $a0,$0,printLoopEnd

printf("%c\n", arg[p]);

li $v0,11

syscall

li $v0,4

la $a0,newLine

syscall

addi $t1,$t1,1

j printLoopStart

printLoopEnd:

jr $ra

}

#}

#// This program takes a single argument and prints its text

#// in a vertical column on the screen

#int main(int argc, char * argv[]) { argv in $a1

main:

printDown(argv[0]); # print 0th arg for MARS

lw $a0,($a1)

jal printDown

#}

li $v0,10

syscall

.data

newLine: .asciiz "\n"

Figure 2: A MIPS program that prints its argument vertically

2

• We can often use the shift left logical instruction to do the mul-
tiplication since elements sizes are often powers of 2.

• The code for the function used to search for a value in an array of
integers in the member.c program from last class provides a nice
example of such accesses. Its code is shown in Figure ??.

4. The code for address calculation for array accesses gets time consuming
enough that as programmers it is worth looking for simple shortcuts
when producing such code. For example, in the loop from bubble sort
that makes a pass through all the elements, it would be silly to calculate
the addresses of the two elements being compared separately since we
know they will be 4 apart. A way to avoid this is shown in Figure ??.

Useful Combinational Circuits

1. All of the digital circuits we have seen in class and in lab are examples
of combinational circuits — circuits whose output only depend on the
current state of the circuit’s input.

2. There are a few such circuits that serve as building blocks in many
more complicated digital circuits. Our goal today is to talk about a
few examples.

Decoders

1. A decode takes an n-bit input and has 2n outputs. Each output is
numbered going from 0 to 2n−1. All of the output are zero except the
one whose number equals the binary number encoded by the 1s and 0s
on the n input lines.

2. If you think about each of a decoder’s output lines separately you will
realize that the truth tables for all the lines share an important prop-
erty. The functions associated with these output lines are 1 for exactly
one combination of input values. That is, in sum-of-products form,
each output is described by a single product of inputs and their nega-
tions. Better yet, for every possible mix of inputs and their negations
there is one output of the decoder that corresponds to that combina-
tion.

#// Determine whether the parameter value can be found in values

#int inList(int val) { val in $a0

inList:

int p; use $t0 for p

#

for (p = 0; p < valc; p++) {

li $t0,0

inListLoopStart:

slt $t1,$t0,$s0

beq $t1,$0,inListLoopEnd

if (values[p] == val) {

move $t1,$t0

sll $t1,$t1,2

la $t2,values

add $t2,$t1,$t2

lw $t1,($t2)

bne $t1,$a0,inListIfSkip

return TRUE;

li $v0,1

jr $ra

}

inListIfSkip:

}

addi $t0,$t0,1

j inListLoopStart

inListLoopEnd:

return FALSE;

li $v0,0

jr $ra

#}

Figure 3: An array search function

3

// BUBBLE SORT SWEEP!

#

int outOfOrder; Keep in $s3

outOfOrder = FALSE;

li $s3,0

for (p = 0; p < valc - 1; p++) {

li $s2,0

sweepLoopStart:

add $t0,$s0,-1

slt $t0,$s2,$t0

beq $t0,$0,sweepLoopEnd

if (values[p] > values[p+1]) {

move $t0,$s2

sll $t0,$t0,2

la $t1,values

add $t1,$t1,$t0

lw $t0,($t1)

lw $t2,4($t1)

slt $t0,$t2,$t0

beq $t0,$0,sweepIfJoin

outOfOrder = TRUE;

li $s3,1

swap(&values[p], &values[p+1]);

move $a0,$t1

addi $a1,$t1,4

jal swap

}

sweepIfJoin:

addi $s2,$s2,1

j sweepLoopStart

sweepLoopEnd:

Figure 4: Main loop of bubble sort
4

