
CS 237 Meeting 10 — 9/28/12

Announcements
1. None?

Buffer Overrun Bugs

1. If you had never seen a bug like the problems that occurred when we
typed in more than 10 arguments to the member program I showed in
the last class, you should know that bugs of that sort in (mainly) C
programs are one of the major sources of security flaws in computer
systems.

Just Google “buffer overrun bug” or “buffer overflow bug” and you will
be amazed at just how common and significant such bugs are.

2. Buffer overrun bugs lead to security errors because they make it pos-
sible to put binary data at inappropriate places in a running program.
We will see shortly, that one type of data that often ends up stored in
memory is the return address that is put in $ra. If one puts some other
data in the memory locations used to save $ra, eventually the function
that saved it will load it and branch to the replacement value. This
means you can make a program execute code that is different from
what it was supposed to be executing.

Pointer Arithmetic and Arrays (reviewed)

• Last time, we looked at a simple implementation of bubble sort shown
in Figure ??.

• This code uses the swap function shown in Figure ?? in an interesting
way. It always passes it a pair of consecutive elements of the values
array.

• In C, it is legal to subtract one pointer value from another or to add
integer values to pointer values.

• When C does arithmetic with pointers, it assumes the programmer
wants to think abstractly about the things the pointers point to rather

int outOfOrder = TRUE;

while (outOfOrder) {

outOfOrder = FALSE;

for (p = 0; p < valc - 1; p++) {

if (values[p] > values[p+1]) {

outOfOrder = TRUE;

swap(&values[p], &values[p+1]);

}

}

}

Figure 1: bubbleSort

// A swap that works!

void swap(int * x, int * y) {

int temp;

temp = *x;

*x = *y;

*y = temp;

}

Figure 2: Swap using pointers

1

// A swap that works!

void swap(int * x, int y[]) {

int temp;

temp = *x;

x[0] = *y;

y[0] = temp;

}

Figure 3: Swap using pointers

than about memory addresses. Therefore, if two pointers refer to items
in consecutive locations in an array, their difference should be 1 even
if the actual addresses for the array elements differ by 4.

• To pull this off:

– The difference between two pointer values (that point to the same
type) will always be the difference of the memory addresses in-
volved divided by the number of bytes required to store a value
of the type begin pointed to.

– When we add/subtract an int constant from a pointer, the con-
stant is first multiplied by the size of the item the pointer refers
to.

Pointers and Array indexing

• In C, an array name by itself produces the address of the 0th element
of the array.

• As a result of this, and the rules explained above, if a is an array and x
is an int, then a + x is the address of array element a[x] and therefore
*(a+x) is equivalent to a[x]. An array’s name is really viewed as a
pointer to the element type of the array.

• This means we can do some really weird things:

– We can rewrite our swap function as shown in Figure ??.

– Worse yet, given that when bubble sort calls swap y always refers
to the number right after x, we could also say

x[0] = x[1]

instead of

x[0] = *y

Strings in C

1. You have already seen one glimpse of how C deals with strings. In the
declaration of main, we declare argv as “char *argv[]” and you know
that argv is an array of strings so “char *” must somehow be the type
C uses for strings.

2. Now that you know that pointers and array are somewhat interchange-
able, this should actually make sense. A “char *” and a “char[]” are
pretty much the same in C and a char is just a single character. Think-
ing of a string as an array of characters may make sense (at least more
sense than thinking of it as a pointer to a single character).

3. We have seen that arrays in C don’t know how long they are. For the
arrays of characters, C deals with the by sticking an extra array element
equal to 0 after the array elements that hold the actual characters for
the string. So, to process a string, you tend to write loops that run
down the array elements until you find a 0.

4. The program writeDown, which expects one argument and prints the
characters in this argument vertically on the screen, gives a simple
example of such processing. It is shown in Figure ??.

• The program uses a new printf specifier, %c, to output a single
character.

• It also illustrates a C idiom that takes advantage of the fact that
anything that is not 0 is true to skip checking whether arg[p] !=
0.

Multi-dimensional Arrays

2

#include <stdio.h>

// Print a string one character per line

void printDown(char arg[]) {

int p;

for (p = 0; arg[p]; p++) {

printf("%c\n", arg[p]);

}

}

// This program takes a single argument and prints its text

// in a vertical column on the screen

int main(int argc, char * argv[]) {

printDown(argv[1]);

}

Figure 4: writeDown.c

1. C also supports multidimensional arrays and arrays of pointer to ar-
rays. Beyond mentioning this, we will not really discuss them at this
time.

Accessing Memory in MIPS Assembly Language

1. When we first discussed MIPS assembly language, we explained that
in addition to the 32 registers in the machine, it is possible to store
and access additional data stored in a much larger memory.

2. We briefly discussed the existence of two instructions name Load Word
(lw) and Store Word (sw). Now it is time to examine the details of
these instructions and several related instructions.

• Both of these instructions are encoded in the I-Type format used
for instructions with immediate operands like addi.

• Each instructions encoding includes one register number for the
register to/from data should be moved and a register/16-bit im-
mediate operand pair that determines the address of the word in
memory from/to which data is moved.

• The memory address is determined by adding the immediate
operand and the value of the associated register. It must be di-
visible by 4.

• There are variants of the load and store instructions for shorter
data transfers:

lb, lbu and sb are used to transfer a single byte of data between
a register and memory location. For lb, the byte is placed in
the lowest 8 bits of the register and the sign bit is extended
into the remaining bits. For lbu, the high order bits are set
to 0. For sb, the lowest 8 bits of the register are stored in
memory.

lh, lhu, and sh are used to transfer two bytes of data between
a register and memory location. The memory address must
be divisible by 2. the lowest 16 bits of the register are used
for the data.

3

3. In addition to learning about these instructions, we need to know a
few things about support the assembler provides for memory access.
These features and the use of lw and sw are illustrated by the (almost
complete) assembly language version of the C program we used to show
how swap could be written in C in our last class. The code for this is
shown in Figure ??.

• Before the main method, we associate the labels a and b with
words in memory using the .word directive. This makes it easy
to access them directly. When we want to print their values, we
just use their names in lw instructions.

4. This program also shows how to reference a memory location through
a pointer rather than a simple name.

• In the main method, we pass pointers to a and b to swap using
the la (load address) instruction.

• In swap, we have to load these addresses into register and then
combine the value in the register with an immediate offset of 0.
The notation “($a0)” in the load and store instruction in swap
indicate that the address of the memory work to be accessed is in
$a0.

.text

j main

#void swap(int *x, int *y) { x in $a0, y in $a1

int temp; temp in $t0

swap:

temp = *x;

lw $t0,($a0)

* x = * y;

lw $t1,($a1)

sw $t1,($a0)

y = * temp;

sw $t0,($a1)

#}

jr $ra

#

#int main(int argc, char * argv[]) { argc in $a0, argv in $a1

#

.data

int a = 10;

a: .word 10

int b = 100;

b: .word 100

.text

swap(a, b);

main: la $a0,a

la $a1,b

jal swap

#

printf("a = %d, b = %d\n", a, b);

li $v0,4

la $a0,aMess

syscall

li $v0,1

lw $a0,a

syscall

SOME RELATIVELY BORING CODE IS MISSING HERE

.data

aMess: .asciiz "a = "

bMess: .asciiz " b = "

newLine: .asciiz "\n"

#}

Figure 5: Swap translated from C to MIPS

4

