
CS 237 Lab 9, 10, and 11 Fall 2012

Implementing Tepid

For the remainder of the semester, our lab work will focus on the implementation of the Tepid
architecture as a circuit diagram constructed using Logisim. Your primary source of information as
you work on this project will be the separate “Tom’s Eviscerated Processor Instruction set Design”
handout which describes Tepid. Note that the description of Tepid in that handout has been
substantially revised since the first draft of the handout was distributed before Lab 8. Several
features have been removed from the architecture described in the first draft and the descriptions
of other features have been clarified or corrected. Make sure that you have an updated version of
the Tepid handout (dated November 13th or later).

We will continue to hold labs on Tuesday afternoons to provide us a chance to guide you as you
complete your projects. In addition, as described below there will be intermediate products due at
various points to ensure that you are making progress on the project.

As mentioned in class. You are strongly encouraged to work in pairs on this project. Each
pair will only need to submit one copy of each product required during the project. Those who
don’t work in pairs will be considered anti-social. You need to commit to working as a pair (or
not) by the next lab meeting.

A Shrinking Architecture

The most important revisions to the Tepid architecture involve the removal of features. While we
have maintained enough features to make it possible to write interesting programs in Tepid, we
have done our best to remove unnecessary extras.

Go-to’s Considered Harmful?

The main feature eliminated from the original design is the branch instruction format and the two
instructions, branch and branch and link, that went with it. One of the interesting features of
Tepid is that the program counter is accessible as a general purpose register (r15 or pc). This
makes it possible to use other instructions in place of branches in many situations. For example,
the instructions

b loopStart

and

adr pc,loopStart

both cause unconditional branches to the instruction labeled loopEnd. Similarly,

ble loopEnd

and

adrle pc,loopEnd

branch to loopEnd only if the last operation that set the condition code produced a value less than
or equal to 0.

There is a major difference between using b and adr to update the program counter. The adr
instruction is encoded as a type 1 (load/store) instruction which computes the address of the second
operand using a base register (which can be the pc) and a 14 bit signed displacement. This means
an instruction like

Due: High Noon, November 13, 2012 1

CS 237 Lab 9, 10, and 11 Fall 2012

adr pc,loopStart

will only be accepted by the assembler if the address of the instruction labeled loopEnd is within
213 = 2048 words/instructions of the adr instruction. The instruction

b loopStart

on the other hand, uses a 24 bit offset, supporting a much wider range of branches. We strongly
doubt that any of you will write test programs containing more than 2048 instructions, so we do
not expect this issue to be a limitation in practice.

It is also possible to replace the single branch and link instruction

bl someFunction

with the two instruction sequence

add lr,pc,#2

adr pc,someFunction

The add instruction saves the address of the instruction after the adr instruction in the link register
(r14), then the adr instruction transfers to the first instruction of the function.

The elimination of branch and branch and link completely eliminates the need for the instruction
format that goes with them. We hope you will appreciate this simplification (even though you might
eventually realize that it might be even better if we had left the branch instructions in and taken
the program counter out of the general register set instead!).

Un-conditional

A second important simplification involves the setting of the condition code. In Warm (and our
original Tepid design), most instructions (including memory access instructions) could set the
condition code register bits. In the revised Tepid design, only type 0 instructions (arithmetic
and logical operations) can set the condition code. The obvious place to compute new condition
code values is in the ALU. This simplification makes it unnecessary to run values going to or from
memory through the ALU.

A Last Minute Deletion

In the hour between when I printed what I thought was the final, revised description of Tepid and
the printing of this handout, James convinced me to drop two more instructions. Although they
are included in the Tepid handouts I will distribute, you do not need to implement the cmp and
tst instructions. Any use of a cmp or tst can be replaced with a subs or ands (as long as you have
a free register to use as the target of the new instruction).

Sub-goals

As mentioned above, we would like to structure this project in a way that encourages you to make
(and demonstrate) meaningful progress each week until the final deadline. With this in mind, we
propose the following schedule:

By 11/20 Dataflow paths and control states designed. THIS WILL BE HARD! Start early.

By 11/28 Subcomponent implementations complete (except control).

By 12/3 Control circuitry complete (nothing but debugging left!).

By 12/6 Complete projects due.

Due: High Noon, November 13, 2012 2

CS 237 Lab 9, 10, and 11 Fall 2012

Subcomponents

To guide you in your design and to clarify the list of subgoals given above, we will describe several
subcomponents/subcircuits you should plan on including in your project. Most of these will be
familiar from the Logisim MIPS implementation presented in the book and in class, but some are
specific to Tepid and all will need to be tailored in some way for the Tepid architecture.

Register bank This machine requires a set of 16 registers. The interface to these registers should
be identical to that used in the Logisim MIPS circuit, except the inputs used to address
registers (A1, A2, and A3) should be 4 bits wide instead of 5. There should be no special
inputs or outputs to access the program counter.

Data/Instruction Memory The memory subcomponent for Tepid should be a little simpler
than what we used for MIPS since Tepid memory is word addressable rather than byte
addressable.

ALU The ALU for Tepid will differ from that used for MIPS in two ways. It will need to compute
the N and V condition code signals (in addition to the Zero signal included in our MIPS ALU).
You may also want to add an additional operation which ignores one of the ALU inputs and
passes the second or its negation through as a result. This will be helpful for the mov and
mvn instructions.

Shifter Tepid provides flexible options for shifting data. To support this you should construct a
sub-circuit that takes one 32-bit data input and an 8-bit control input containing both the
shift operation code and the shift amount as encoded in a Tepid type 0 instruction. This
circuit should produce an appropriately shifted/rotated 32-bit result.

Instruction Decoder As we did for the MIPS implementation, you should construct a sub-circuit
that takes a 32-bit instruction as input and produces outputs corresponding to all of the
interesting sub-fields that might be present in either of the Tepid instruction formats.

Condition Checker An important subcomponent of your control circuitry will be a sub-circuit
that takes as input the current values of the condition code registers and the first three bits
of the current instruction and produces a single bit indicating whether the instruction should
or should not be executed based on its input values.

Data Path and Control State Design

Your first sub-goal will be to prepare and submit a design for the data path you will use to implement
Tepid together with a finite-state machine design that demonstrates how your data path will be
used to implement Tepid.

The data path you construct will consist of the subcomponents described in the preceding section
interconnected with one another and an appropriate collection of registers and multiplexers. By
11/20 we want you to submit a Logisim project including your data path design. To facilitate
this, we will provide you a starter Logisim project containing template sub-circuits1 for each of the
components described above. You should use this starter project to build a new sub-circuit named
“data flow” showing how you will interconnect all of the subcomponents to form your data flow
path.

1This starter does not exist as I type this handout, but the plan is to give you some sub-circuits that are complete
or nearly complete (the register bank?) and others with nothing but appropriate inputs and outputs (the shifter?).

Due: High Noon, November 13, 2012 3

CS 237 Lab 9, 10, and 11 Fall 2012

Your implementation of Tepid will have to be based on a multi-cycle control circuit. Two
aspects of the Tepid architecture require the use of such a design. First, unlike the version of
MIPS used as the basis for the single-cycle design presented in the book, Tepid uses a single
memory for data and instructions. As a result, executing a single instruction may require two
memory accesses. This would not be possible in a single-cycle implementation. In addition, the
fact that Tepid treats the program counter as a general purpose register means that the execution
of a single instruction will often require reading and writing multiple registers. As we saw in the
MIPS implementation, it is possible to support reading multiple registers in a single cycle. Writing
multiple registers in a single cycle is trickier, since conflicts may arise if both writes involve the
same target. Therefore, your register bank should only allow a singled register to be updated each
time the clock ticks. You should handle instructions that update both the program counter and
another register by performing the two updates in separate sub-cycles.

Given that a multi-cycle approach is unavoidable, we encourage you to mimic the multi-cycle
design presented in the text by inserting extra registers that limit the maximum gate delay required
for any sub-cycle. In particular, like the text, you should probably insert A and B registers, though
you may find it better to think of them as holding the ALU inputs rather than the memory bank
outputs. You certainly will want an instruction register. We also had a register to temporarily hold
the updated program counter value in our design.

The viability of the data paths you design can only be judged by also designing a set of control
states that use the existing data paths to execute all of the instructions included in the Tepid
architecture. The text presents its control design using circles representing states and arrows
representing possible transitions. Each circle contains text describing control signal settings.

We believe a more appropriate way for you to design your control system is to draw a diagram
of circle and arrows where the circles contain pseudo-code describing the actions that will occur as
the machine passes through the state. An example of such a diagram for the control system used
in the text’s multi-cycle MIPS implementation is shown in Figure 1. In the diagram, it is assumed
that there is an implicit arrow/transition from each of the nodes without any explicit outgoing
arrow to the node at the top.

We expect you to prepare and submit such a state diagram with the Logisim project containing
your data path design on 11/20. Your diagram should be as neat and readable as the on in Fig. 1.
If you can accomplish this by hand, that is acceptable. Otherwise, copies of the program we used
to create our diagram, Omnigraffle, are available for use on the Macs in the back room of TCL 312.

Developing your data path and control diagrams will be an iterative and likely a frustrating
process. You will sketch out the data path and then discover as you try to sketch out the state
machine that some instruction requires a data path that you left out or takes extra cycles because
some path is absent. You will then revise the data path and rework the state machine only to
discover some new obstacle. This will repeat until you devise a data flow diagram and control
system that are consistent and can implement all Tepid instructions.

Sub-circuit Construction

Your second deadline for this project is to submit a copy of your Logisim project including what
you believe to be complete implementations of the components described in the “Subcomponents”
section above. This should just involve completing the templates we provided in the starter project.
While we do not expect you to have completely debugged these sub-circuits, you should perform
as much “unit testing” as possible.

Due: High Noon, November 13, 2012 4

CS 237 Lab 9, 10, and 11 Fall 2012

IR:= Memory[PC]
PC:= PC+4

A:= Reg[IR[25:21]]
B:= Reg[IR[20:16]]
ALUout :=
 PC + sign-extend(IR[15:0]]

ALUout:= A + IR[15:0] if A=B then
 PC := ALUout

ALUout:= A op B

 Memory[ALUout]:= B MDR:= Memory[ALUout] Reg[IR[15:11]]:= ALUout

Reg[[20:16]]:= MDR

sw or lw
beq R-Type

sw lw

Figure 1: State diagram for multi-cycle MIPS control

Testing the Completed Circuit

Once you believe you have completed the data path, the control circuitry, and all of the sub-circuits,
you will want to test your work by using the circuit to interpret Tepid programs. We have provided
a few sample programs including an implementation of heap sort, but these are not appropriate
for initial testing of your circuit. You should instead construct some very simple programs that
contain just a few instructions and make sure these work correctly before trying a program that
executes hundreds or thousands of instructions.

Since Tepid is a subset of Warm, you can develop test programs for your circuit using the tools
Duane Bailey developed for Warm — waa and wai. That is, you should start by creating a text file
containing your sample program. Then, you should assemble your program with waa to produce a
.o file and run the program under wai to verify that it behaves as expected. If a program does not
behave as expected when interpreted by your circuit, you want to be certain that the mistake is in
your circuit rather than in the program. Testing the program with wai is therefore essential.

As you construct test programs, remember that Tepid is a strict subset of Warm. You will
need to be careful not to use branch instructions or other features not included in Tepid as you
write sample programs.

One particularly important feature of Warm that is missing in Tepid is the set of software
interrupts (swi) that are used to do input/output and to terminate a program. When your circuit
runs a Tepid program, it will not produce any output or consume any input.

In place of input, you may use immediate data values in instructions (indicated by the # symbol)
or pre-initialized variables and arrays in memory (created using the assembler .data directive).

When debugging a test program that is eventually intended for your circuit with wai, it may
be helpful to actually use swi to perform output at the beginning. Once the program appears to
work, however, you should remove the code to produce output and verify that you can identify the
desired results in the registers or memory of the machine using the debugger interface provided by

Due: High Noon, November 13, 2012 5

CS 237 Lab 9, 10, and 11 Fall 2012

wai. When you switch to running the program with your circuit, you will used Logisim’s interface
to examine the same registers and memory locations to verify that your program was executed
correctly.

Finally, where you would have used swi to halt your program, you should include an adr
instruction that branches to itself:

adr pc, pc,#0

This creates a tight loop. It should be fairly easy to recognize when your circuit reaches this loop.
Once you are ready to test a program with your circuit, you need to convert the .o file produced

by waa into a file in the format accepted by Logisim as a memory image. We have provided a script
to do this conversion. If you have a file named test.o produced by was in your directory, then the
command

tepidMem test.o > test.mem

will create a file named test.mem that can be loaded into Logisim2.
As you saw in Lab 8, you can load such a file by

• Opening your data path circuit within your Logisim project.

• Click on the “data memory” component of the circuit. It should become highlighted and a
magnifying glass icon should appear in the middle of its icon.

• Double click on the magnifying glass to see the details of the instruction memory.

• Control click on the ROM icon within the instruction memory sub-circuit.

• Select “Edit contents” from the menu that appears.

• Click on the “Open” button at the bottom of the window showing the memory values.

• Navigate to and open the .mem file you created using tepidMem.

• Make sure your code is now displayed at the beginning of memory.

• Close the memory contents window.

Submitting Your Work

When you are finished working on your Tepid implementation, you should use the turnin program
to submit the following items for grading:

• A Logisim .circ file named tepid.circ containing all of the subcircuits used in your implemen-
tation.3

• A postscript file containing drawings of your subcircuits created by directing the output of a
Logisim printout of all of your subcircuits to a file named tepid.ps. To produce this file:

– Select the “Print” item from the Logisim File menu. A dialog box should appear.

2Assuming you have previously executed a source command to use the 237 Linux environment.
3Please make sure that you delete any subcircuits you might have created that are not required by your final

implementation before you submit this file or print drawing of your circuits!

Due: High Noon, November 13, 2012 6

CS 237 Lab 9, 10, and 11 Fall 2012

– Shift click or drag to select the names of all of your circuits in the list in this window.

– Edit the “Header” field in the window by adding your name(s). Click OK. A new dialog
box should appear. Make sure the Print to File check box is selected. Then click Print.

– Use the next dialog box to navigate into the folder where your .circ file is saved and save
the file containing drawings of your circuits as tepid.ps in this folder.

• At least one .s file and an accompanying .mem file containing a test program you created to
verify the correctness of your implementation (i.e., not heap sorts).

• A README-tepid file containing:

– Your name(s)!

– Brief descriptions of the test program(s) you submitted including a short description of
how to run them and verify that they behaved as expected.

– A summary of your assessment of the correctness of your implementation. That is,
briefly describe the range of test program that your implementation has run correctly
and also describe any programs that do not run correctly (including any theory you
might have about what is wrong).

Finally, you should also submit a diagram describe the finite state machine implemented by
your control circuitry. This diagram can be created with a drawing program or hand drawn but it
must be clear and legible. Please use the style illustrated in Figure 1 (where each bubble contains
pseudo-code) rather than the text’s style (where each bubble contains control line settings). You
can either submit this drawing using turnin under the name tepid-control.pdf or you can just turn
it in on paper by class on Friday

Due: High Noon, November 13, 2012 7

