CS 237 Lab 7 Fall 2012

Using Pointers and malloc in C.

Want to write another sort? Too bad! We want you to anyway.

For this week’s lab, we want you to implement a sort that blends elements of the heap sort you
implemented for Lab 4 and the tree sort that was presented as an example in class.

The heap sort we had you translate into MIPS assembly language did not use dynamic memory
allocation. This is typical given the way that heap sort is traditionally implemented. The heap is a
tree-like data structure, but the heap in heap sort is stored in a pre-allocated one-dimensional array
rather than with dynamically allocated structures that point to their subtrees. Unfortunately, this
means that the array must be preallocated so there is a fixed, maximum number of input elements
that we can sort.

Our tree sort, on the other hand, was presented to illustrate dynamic memory allocation. The
tree sort had no pre-specified limit on how many input values it could handle. As long as malloc
continued giving it memory, the program could read and sort larger and larger input files.

Heap sort, however, can guarantee better performance. If the input values presented to our tree
sort are already in order, it will build a tree that looks more like a linked list than a tree. Each
insertion will take linear time in the current size of the tree rather than logarithmic time, so the
sort will take quadratic time. Heap sort runs in logarithmic time regardless of the ordering of its
input.

You have probably seen techniques that keep binary search trees balanced. Such techniques
could be used to design a version of tree sort that always runs in logarithmic time, but they are
complicated.

It is easier to keep a heap balanced than a search tree because there are fewer constraints on
the structure of a heap. Within a heap, the value stored at the root of a subtree must simply be
smaller than all the other values stored in the subtree. There are no constraints on whether values
in the left subtree are less than or greater than those in the right subtree as there are in search
trees. Recognizing this, we want you to implement a version of heap sort that uses a dynamically
allocated and balanced heap rather than a heap stored in an array.

Each element of your heap will be stored in a separate struct allocated using malloc. Each
struct will have components to store a value that will serve as the sort key (an int), pointers to left
and right subtrees, and a count of the total number of values stored in the subtree for which the
struct is the root.

When asked to add an element to a subtree, first check to see if the subtree is empty. If so, create
a new tree consisting of one node holding the new value. If the subtree is not empty, compare the
new element to what is stored in the root of the subtree. Whichever of these two values is smaller
should become the value stored in the root and the other value should be added recursively to the
smaller of the subtrees of the root.

There is a trick that can make coding this a bit easier. Make your trees left-handed. That
is, when you add a value to a tree, always make sure that when you are done the left subtree
contains at least as many values as the right subtree. If necessary, this can be accomplished by
simply swapping the left and right subtrees after an insertion (or removal). If you do this, then
when performing an insert you can ensure the heap remains balanced by performing any recursive
inserts on the right subtree since it will never be larger than the left subtree.

You will need and use a remove function that removes the smallest value from a heap. Your
main program will insert each element read from its input file. When the input ends, it will then
repeatedly remove (and print) the smallest value from the heap until the heap is empty. The
remove function you write should preserve the left-handedness of the tree and use the free function
appropriately.

Due: High Noon, November 6, 2012 1



CS 237 Lab 7 Fall 2012

This should be a very short program. My version took about one hundred lines. Despite how
small the program is, I would like you to break it up into two .c files named balancedHeapSort.c
and balancedHeap.c and a .h file named balancedHeap.h. You should also create and use a makefile
to control the compilation of your program. Your makefile should resemble the one used for the
tree sort example in class.

Submitting Your Work

Within a terminal window, use the cd command to make the directory containing your .c and .h
files your current working directory. Then type the command:

tar -cf balancedHeap.tar balancedHeapSort.c balancedHeap.c balancedHeap.h makefile
Next type the command:
turnin -c 237 balancedHeap.tar

Respond to the prompts appropriately and your work should be submitted.

Due: High Noon, November 6, 2012 2



