Call for pricing on quantities over 500 - we carry major manufacturers.

			IC Test Clip Series				Ser				
- For			ons to DIP package components			Part No	Product No.		Description 1	10	100
20	sula	$\begin{array}{ll} \text { ig loa } \\ \text { d ol } \end{array}$	hinge provides positive contact ontacts •Color: white 22103			49648	74160	16	Decade counter with asynch. clear \$.35	\$. 29	\$. 19
Part	Product No.		tion1	10	25	49664	74161	16	Synchronous 4-bit counter 39	35	. 25
22103	JTC16		(for 8, 14 and 16-pin ICs) \$4.95	\$4.49	\$3.95	49672	74163	16	Synchronous 4-bit counter 29	22	12
22120	JTC20		(for 18 and 20-pin ICs) 6.95	6.25	5.59	49681	74164	14	8 -bit serial shift register 35	29	25
22162	JTC28		... 8.95	7.95	6.49	49699	74165	16	8 -bit serial shift register, parallel load 49	45	. 29
22189	JTC40		9.95	8.95	7.95	49779	74174	16	Hex D-type flip-flop with clear 49	45	. 35
						49795	74175	16	Quad D-type flip-flop with clear 49	45	. 35
	Sert		Dual-In-Line Pack			49824	74179	16	4-bit parallel-access shift register 13	. 11	. 09
Part No.	Product No.	Pins	Description	10	100	49832	74180	14	9 -bit odd/even parity generator/checker 25	. 23	. 21
48979	7400	14	Quad 2-input NAND gate \$. 59	\$. 49	\$. 45	49841	74181	24	Arithmetic logic unit/function generator 1.95	1.75	1.55
49007	7401	14	Quad 2-input NAND gate (O.C.) 49	. 45	. 39	49883	74189	16	64-bit RAM tri-state (DM8599N) 3.59	3.25	2.95
49015	7402	14	Quad 2-input NOR gate 59	. 49	. 45	49904	74191	16	Binary up/down counter 99	. 89	. 79
49040	7404	14	Hex inverter .. 59	. 49	. 45	49912	74192	16	Decade up/down counter with clear 3.95	3.59	3.25
49074	7405	14	Hex inverter (O.C.) .. 29	. 25	. 22	49939	74193	16	Binary up/down counter with clear 1.39	1.19	1.09
49091	7406	14	Hex inverter buffer/driver (O.C.) 45	. 39	. 35	49955	74194	16	4-bit bi-directional shift register 1.25	. 99	. 79
49120	7407	14	Hex buffer/driver (O.C.) 59	. 49	. 45	49963	74195	16	4-bit parallel-access shift register 13	. 11	. 09
49146	7408	14	Quad 2-input AND gate 59	. 49	. 45	50041	74221	16	Dual mono. multiv. Schmitt trigger 15	. 13	. 11
49189	7410	14	Triple 3-input NAND gate 25	. 22	. 15	50104	74259	16	8-bit addressable latch (9334) 15	. 13	. 12
49269	7411	14	Triple 3-input AND gate 3.95	3.59	3.25	50171	74279	16	Quad set-reset latch 39	35	. 29
49402	7413	14	Dual 4-input NAND gate Schmitt trigger 29	. 25	. 19	50286	74367	16	Hex buffer tri-state (DM8097N) 13	11	09
49437	7414	14	Hex inverter Schmitt trigger 45	. 39	. 35	88225	SDLD001A		Texas Instruments TTL Data Book 34.95	31.49	29.95
49630	7416	14	Hex inverter buffer/driver (O.C.) 25	. 19	. 10						
49728	7417	14	Hex buffer/driver (O.C. hi-voltage) 79	. 69	. 59	Part	Description		See page 62 for details	1	10
50008	7420	14	Dual 4-input NAND gate 49	. 45	. 39	849	$360 \text { pc. } 7$		cabinet kit	9.95	95
50024	7421	14	Dual 4-input AND gate 2.95	2.75	2.49		0 Se				
50083	7425	14	Dual 4-input NOR gate with strobe 1.09	. 99	. 89						
50139	7427	14	Triple 3-input NOR gate 49	. 45	. 39	Part No	Product No.	Pins	Description	1	10
50198	7428	14	Quad 2-input NOR buffer 39	. 35	. 25	44222	74000	14	Quad 2-input NAND gate	\$. 49	\$. 39
50227	7430	14	8-input NAND gate .. 25	. 22	. 12	63538	74002	14	Quad 2-input NOR gate	. 24	22
50235	7432	14	Quad 2-input OR gate 59	. 49	. 45	44231	74004	14	Hex inverter (CD4069) 39	. 35
50315	7438	14	Quad 2-input NAND buffer (O.C) 35	. 29	. 25	44257	74C14	14	Hex inverter Schmitt trigger (CD40106) 39	. 35
50358	7440	14	Dual 4-input NAND buffer 13	. 11	. 09	44441	$74 \mathrm{C7} 4$	14	Dual Dflip-flop	1.29	1.19
50374	7442	16	BCD-to-decimal decoder 89	. 79	. 69	44329	74C174	16	Hex flip-flop (CD40174/MC14174BPC)	19	15
50403	7445	16	BCD-to-decimal decoder/driver (30V) 99	. 89	. 79	44345	74C193	16	Binary up/down counter w/ clear (40193) ..	1.49	1.29
50411	7446	16	BCD-to-7 segment decoder/driver (30V) 1.29	1.19	1.09	44361	74C221	16	Dual monostable multivibrator	3.95	3.59
50420	7447	16	BCD-to-7 segment decoder/driver (15V) 1.09	. 99	. 89	13469	74C367	16	Hex buffer tri-state (80C97/CD4503) 49	. 45
50518	7470	14	Edge-triggered JK flip-flop 49	. 45	. 35	44396	74¢373	20	Octal D-type flip-flop with clear tri-state	3.95	3.59
50526	7472	14	AND gated JK master/slave flip-flop 49	. 45	. 35	44409	74C374	20	Octal D flip-flop tri-state (INS82006N)	1.49	1.25
50534	7473	14	Dual JK flip-flop with clear 99	. 89	. 79	44564	74¢922	18	16-key keyboard encoder (INS8245N)	6.95	6.25
50551	7474	14	Dual D flip-flop .. 45	. 39	. 29	44572	74C923	20	20-key keyboard encoder (INS8246N)	6.95	6.25
50577	7475	16	4-bit bi-stable latch 2.95	2.75	2.49	44581	74C925	16	4-digit CTR with MUX D segment driver ..	6.95	5.95
50593	7476	16	Dual JK flip-flop with preset and clear 1.19	1.09	. 99	44599	74C926	18	4-digit CTR with MUX D segment driver ...	7.95	6.95
50631	7483	16	4-bit binary full adder 89	. 79	. 69						
50657	7485	16	4-bit magnitude comp. 39	. 29	. 22				Dual-In-Line Pa		
50665	7486	14	Quad EXCLUSIVE-OR gate 79	. 69	. 59	Part No	Product No	Pins	Description 1	10	100
50681	7489	16	64-bit RAM P 50ns 2.95	2.75	2.49	46252	74LS00	14	Quad 2-input NAND gate \$. 25	\$. 19	\$. 15
50690	7490	14	Decade counter .. 89	. 79	. 69	46287	74LS02	14	Quad 2-input NOR gate 25	. 19	. 17
50737	7492	14	Divideby-12 counter1.19	1.09	. 89	46308	74LS03	14	Quad 2-input NAND gate (O.C.) 25	. 19	. 17
50745	7493	14	4-bit binary counter 1.29	1.19	1.09	46316	74LS04	14	Hex inverter .. 29	. 25	. 19
50770	7495	14	4-bit parallel-access shift register (K155N) 69	. 59	. 39	46341	74LS05	14	Hex inverter (O.C.) .. 29	. 25	. 19
50788	7496	16	5-bit parallel-in, parallel-out shift register 49	. 39	. 29	46359	74LS06	14	Hex inverter buffer/driver (O.C) 49	. 45	. 39
50796	7497	16	Synch. 6-bit binary rate multipliers 3.49	3.29	2.95	46367	74LS07	14	Hex buffer/driver (O.C. hi-voltage) 89	. 79	. 69
49234	74107	14	Dual JK flip-flop with clear 39	. 35	. 25	46375	74LS08	14	Quad 2-input AND gate 29	. 25	. 19
49251	74109	16	Dual positive edge triggered JK flip-flop 37	. 34	. 31	46391	74LS09	14	Quad 2-input AND gate (O.C.) 25	. 19	. 15
49293	74116	24	Dual 4-bit latches with clear 99	. 89	. 79	46404	74LS10	14	Triple 3-input NAND gate 29	. 25	. 19
49322	74121	14	Monostable multivibrator 99	. 89	. 79	46439	74LS11	14	Triple 3-input AND gate 29	. 25	. 19
49349	74122	14	Retriggerable mono. multivibrator with clear 69	. 59	. 45	46640	74LS14	14	Hex inverter Schmitt trigger 25	. 19	. 17
49357	74123	16	Dual retriggerable mono. multivibrator 89	. 79	. 69	47095	74LS20	14	Dual 4-input NAND gate 25	. 19	. 17
49373	74125	14	Quad bus buffer tri-state (DM8093N) 99	. 89	. 79	47108	74LS21	14	Dual 4-input AND gate 25	. 19	. 17
49381	74126	14	Quad bus buffer tri-state (DM8094N) 79	. 69	. 59	47378	74LS27	14	Triple 3-input NOR gate 25	. 19	. 17
49411	74132	14	Quad 2-input NAND Schmitt trigger 69	. 59	. 35	47458	74LS30	14	8-input NAND gate 25	. 19	. 17
49496	74148	16	8 to 3 line octal priority encoder 89	. 79	. 69	47466	74LS32	14	Quad 2-input OR gate 25	. 19	. 17
49509	74150	24	16 to 1 line multiplexer 1.95	1.75	1.55	47597	74LS37	14	Quad 2-input NAND buffer 39	. 35	. 29
49525	74151	16	8-input multiplexer 29	. 25	. 15	47693	74LS38	14	Quad 2-input NAND buffer (O.C.) 29	. 25	. 15
49550	74153	16	Dual 4/1 data selector/multiplexer 25	. 22	. 15	47773	74LS42	16	BCD-to-decimal decoder 69	. 59	. 49
49568	74154	24	4 to16 line decoder/demultiplexer 2.25	1.95	1.75	47790	74LS47	16	BCD to 7-seg. decoder/driver (O.C.) 89	. 79	. 69
49605	74157	16	Quad 2/1 data selector 39	. 35	. 29	47811	74LS48	16	BCD to 7-seg. decoder/driver 4.95	4.49	3.95

FEATURES

- Turn off time less than 2 as
- Maximum operating frequency greater than 500 kHz
- Tlming from microgeconds to houps
- Operates lin both astable and monostable modes
- High output current
- Adjugtabie duly cycie
- TJL compat|bie
- Ternperalure slability of 0.005% per ${ }^{\circ} \mathrm{C}$
- SEE55 MII std g be3A,B,C avallable M38510 (JAN) approued, M3asi0 processing avallable.

PIN CONFIGURATIONS

APPLICATIONS

- Pracision timing
- Pulge generation
- Sequential tlming
- Time delay generation
- Pulse widih modulation
- Pulse position modulaton
- Milssing pulse detector

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Supply voltage		
SE555	+18	v
NE555, SE555C, SA555	+ 76	V
Power disgipation	600	miw
Oparaling temperature range		
NE555	0 to 170	${ }^{\circ} \mathrm{C}$
SA556	-40 to +85	${ }^{\circ} \mathrm{C}$
SE555, SE555C	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage temberaiure range	-65 to +150	${ }^{\circ} \mathrm{C}$
Load lemperature Isoldering. $\begin{aligned} & \text { insec }\end{aligned}$	300	${ }^{\circ} \mathrm{C}$

EQUIVALENT SCHEMATIC

BLOCK DIAGAAM

DC ELECTRICAL CHARACTERISTFCS $T_{A}-25^{\circ} \mathrm{C}, ~ \mathrm{VCC}=+5 \mathrm{~V}$ to +15 unless otherwise specifed.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{TEST CONDITIONS} \& \multicolumn{3}{|c|}{SE555} \& \multicolumn{3}{|l|}{NE556/SE555C/SA555} \& \multirow{2}{*}{UNIT} \\
\hline \& \& **| \& Typ \& Max \& Min \& Typ \& Max \& \\
\hline Supply voltage \& \& 4.5 \& \& 18 \& d. 5 \& \& 16 \& \\
\hline Supoly current !ow stater \& \[
\begin{aligned}
\& V_{C C}=5 V R_{L}=\infty \\
\& V_{C C}=15 V A_{L}=m
\end{aligned}
\] \& \& \[
\begin{gathered}
3 \\
10
\end{gathered}
\] \& \[
\begin{gathered}
\hline 5 \\
12
\end{gathered}
\] \& \& \[
\begin{gathered}
3 \\
10 \\
10
\end{gathered}
\] \& \[
\begin{aligned}
\& 6 \\
\& \hline 15
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{mA} \\
\& \mathrm{~mA}
\end{aligned}
\] \\
\hline Timing error imonostable) Initial accuracy? Drift with temperature Drift with suppry voltage \& \[
\begin{gathered}
\mathrm{A}_{\mathrm{A}}=2 \mathrm{Kglta} 100 \mathrm{~K} \Omega \\
\mathrm{C}=0.1 \mu \mathrm{~F}
\end{gathered}
\] \& \& \[
\begin{gathered}
0.5 \\
30 \\
0.05
\end{gathered}
\] \& \[
\begin{aligned}
\& 2.0 \\
\& 100 \\
\& 0.2
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 1.0 \\
\& 50 \\
\& 0.1
\end{aligned}
\] \& 3.0
0.5 \& \[
\begin{gathered}
\% \\
\mathrm{ppm} / /^{\circ} \mathrm{C} \\
\% / \mathrm{V} \\
\hline
\end{gathered}
\] \\
\hline Timing error lastablel initsal accuracy \({ }^{2}\) Drift with temperature Drift with supply voltage \& \[
\begin{gathered}
\mathrm{A}_{\mathrm{A} .} \mathrm{AB}_{\mathrm{B}}=1 \mathrm{kf} \text { to } 100 \mathrm{k} \Omega \\
C=0.1 \mu \mathrm{~F} \\
\mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}
\end{gathered}
\] \& \& \[
\begin{gathered}
1.5 \\
90 \\
0.15 \\
\hline
\end{gathered}
\] \& \& \& \[
\begin{array}{r}
2.25 \\
150 \\
0.3 \\
\hline
\end{array}
\] \& \& \[
\underset{\substack{\% \\ p p m \\ \hline}}{\circ} \mathrm{C}
\]
\[
\% / N
\] \\
\hline Control valtaga level \& \[
\begin{aligned}
\& V_{C C}=15 \mathrm{~V} \\
\& V_{C C}=5 \mathrm{~V}
\end{aligned}
\] \& 9.6
2.9 \& 10.0
3.33 \& \begin{tabular}{c}
10.4 \\
1 3.8 \\
\hline
\end{tabular} \& 9.0
2.6 \& 10.0
3.33 \& \[
\begin{gathered}
110 \\
4.0
\end{gathered}
\] \& \[
\begin{aligned}
\& v \\
\& v
\end{aligned}
\] \\
\hline Therestoold voltags \& \[
\begin{aligned}
\& V_{C C}=15 \mathrm{~V} \\
\& V_{C C}=5 \mathrm{~V}
\end{aligned}
\] \& \& \& \& \& \& \& \\
\hline Threshold current3 \& \& \& 0.1 \& 0.25 \& \& 0.1 \& 0.25 \& \({ }_{\mu}{ }^{\text {A }}\) \\
\hline Trigger vollage \& \[
\begin{aligned}
\& V_{C C}=15 V \\
\& v_{C C}=5 V
\end{aligned}
\] \& \[
\begin{aligned}
\& 4.8 \\
\& 1.45
\end{aligned}
\] \& \[
\begin{gathered}
5.0 \\
1.67
\end{gathered}
\] \& 5.2
1.9 \& \& 5.0
1.67 \& \[
\begin{aligned}
\& 5.6 \\
\& 2.2
\end{aligned}
\] \& \[
y
\] \\
\hline Trigger current \& \(V\) TRIG \(=0 \mathrm{~V}\) \& \& 0.5 \& 0.9 \& \& 0.5 \& 2.0 \& \(\mu \mathrm{A}\) \\
\hline Heser voltage \({ }^{4}\) \& \& 0.4 \& 0.7 \& 1.0 \& 0.4 \& 0.7 \& 1.0 \& V \\
\hline Reset curren 1 Resel current \& \(V_{\text {reset }}=\mathrm{DV}\) \& \& 0.7
0.4 \& \(\begin{array}{r}10.4 \\ \hline 1.0\end{array}\) \& \& 0.1 \& \& \[
\begin{aligned}
\& \mathrm{mA} \\
\& \mathrm{~mA}
\end{aligned}
\] \\
\hline Output voltage lowt \& \& \& \[
\begin{gathered}
0.1 \\
0.4 \\
2.0 \\
2.5 \\
\\
0.1 \\
0.05
\end{gathered}
\] \& \[
\begin{array}{|c}
0.15 \\
0.5 \\
2.2 \\
\\
\\
\\
0.25 \\
0.2 \\
\hline
\end{array}
\] \& \& \[
\begin{aligned}
\& 0.1 \\
\& 0.4 \\
\& 2.0 \\
\& 2.5 \\
\& \\
\& 0.3 \\
\& 0.25 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
0.25 \\
0.75 \\
2.5 \\
\\
0.4 \\
0.35 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& v \\
\& v
\end{aligned}
\] \\
\hline Outpul voltage (high! \& \[
\begin{aligned}
\& V_{C C}=15 \mathrm{~V} \\
\& I_{\text {SOURCE }}=200 \mathrm{~mA} \\
\& I_{S O U R C E}=100 \mathrm{~mA} \\
\& V_{C C}=5 \mathrm{~V} \\
\& I_{\text {SOUCE }}-100 \mathrm{~mA}
\end{aligned}
\] \& 13.0
30 \& 12.5
13.3

3.3 \& i \& 12.75

2.75 \& $$
\begin{aligned}
& 12.5 \\
& 13.3 \\
& 3.3 \\
& \hline
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& v \\
& v \\
& v
\end{aligned}
$$
\]

\hline Turn off times \& $V_{\text {feSET }}-\mathrm{VCC}$ \& \& 0.5 \& 2.0 \& \& 0.5 \& \& $\mu \mathrm{s}$

\hline Riso fime of outpat Fali time of output Discharge leakage current \& \& \& $$
\begin{aligned}
& 100 \\
& 100 \\
& 20
\end{aligned}
$$ \& 206

200
100 \& \& 100
100

20 \& $$
\begin{aligned}
& 300 \\
& 300 \\
& 100
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
$$
\]

\hline
\end{tabular}

NO-Es

- Sl.piply current 'n'han outpu1 high tysicaly 1 mR le9s

Tustud al vec - 5% and yec -160

4 Specifind with Ifigger ir bal high

MINIMUA PULSE WIDTH
REOUIRED FOR TRIGGERING

LOW OUTPUT VOLTAGE ve OUTPUT SINK CURRENT

HIGH OLTPUT VOLTAGE OROP vs OUTPUT SOURCE CURRENT

SUPPRLY CURRENT vs SUPPLY VOLTAGE

EUPPLY VOLTAEE

LOW OUTPUT YOLTAGE 4s OUTPUT SINK CURRENT

DELAY TIME ys SUPPLY VOLTAGE

DELAY TIMAE vS TEMPERATURE

LOW OUTPUT VOLTAGE vs OUTPUT SINK CURAENT

PROPAGATION DELAY vs VOLTAGE LEVEL of trigger pulse

Functional Description

Twa pins controt the aperation of the hum2114, Chip Sofact \{CSI вmables writa and read operations and controls TAI-STATING of the datan Dutput buffar. Whrite Enable (WE) chooses between READ and WRITE miotes and also tontrols output ERI.STATING. The trath table detanls the \boldsymbol{z} atates produced by combinations of the CS and $\overline{W E}$ controls.

READ-cycle slminy is thown in the section an Switching Time Wavelorms. WE is kept hlah. Indopendent of $\overline{\mathrm{CS}}$, ary change in address code epused now data to be fatchad and brought to the ourput buffer, $\overline{\mathrm{CS}}$ must be low, however, ror the output baffer to be ernabled ands transfer the data to the output pin.

Address access time, ta, is the time requirad for an address change to produce new data at the output pin, ssisuming CS has errataled the output buffer prior to data

required for $\overline{\mathrm{CS}}$ to enabie the outpar buffer and transfer praviously fetchad data to the output pin. Operation with $\overline{C S}$ continuously held low is pormissible.

Whiresercle timing is shown in the section on Switheng Tlrne Wavetorms. Writing occurs only during the time boin CS and W度 are law. Minimum wrive pulse widih, tWP, refars to dhis slmultaricous low region. Data bet-up and hodd times are measused with respect to whichever control first rises. Successive write oper ations may but pertormad with $\overline{\mathrm{CS}}$ costinuously hekt law. $\overline{\mathrm{VE}}$ then is used to terminate WhiTE between address changes, Altarnatively, WE miy be held low far shearessive WRITES and $\overline{C S}$ usod for WRITE interruption between address change.

In any event, either $\overline{W E}$ or $\overline{C 5}$ \{or both\} must be high during addrese tramsitians to provent erroncous WhiTE.

Block Diagram

Absolute MaxImum Ratings

Operating Conditions

，庶．	MIN	MAX	UNTTE
Supply 4 otiopg（Voc）	4.77	5.28	v
Ambiant	0	－70	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics $T_{A}=0^{\circ} \mathrm{C}+0+70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{EV} \pm 5 \%$

fymadi	PARAMETER	CONDITIONS			MM2114．6 MM2114．2L MK211＊．25L M1）2114．3L		LNIT ${ }^{\text {a }}$
			Hidit．	MAK	Mad	MAX	
$V_{\text {IH }}$	Lagral＂1＂Input Valigge		20.	VCC	20	VCC	4
$V_{4} \mathrm{~L}$			40.6	18	05	$0 . \mathrm{E}$	\checkmark
VOH	Lorasal＂1＂Obtrut Valcage	$10 \mathrm{H}^{2-10} \mathrm{~m}^{2}$	24.		\cdots		4
VOL	Laycal＂0＂Otplpu Volrieg	$1 \mathrm{OL}=7.1 \mathrm{mb}$	！	04		04	$\sqrt{ }$
ILI	Irpui Laad Curreni	V IN $=0155.25 \mathrm{~V}$	－10	10	14	：0	－
IL0	Oupau Laikagt Cutterar		－10	10	16	11	un
lect	Pawer Suppuy Current	All Inpuats－ $5.26 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}-25 \mathrm{C}$		95		顶	$\mathrm{n}^{\prime} \mathrm{H}$
1002	Powne 50apuy Cufrent			108		7 b	ma

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $770^{\circ} \mathrm{C}$ ． $\mathrm{VCC}_{\mathrm{C}}=$ EV $\mathrm{tEF} \mathrm{\%}$ ，［Note 21

SYARBOL	PARAMETEA	$\begin{aligned} & \text { M\&N2114-3 } \\ & \text { MaN21TA-2L } \end{aligned}$				HW2J14．2 		MH2114		UN1TS
		MiN	Max	M14	MAXX \therefore	WN	MAX	Pisw	Madx	

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{f}=1 \mathrm{MHz}$ ，（Nate 3）

SYMBEL	PRARAMETEA	COtuprolows	Man2114 9×12146 （1） 		Mw21 18．6 MM2114．2L MB21f4．2DL KMY114－3L		UNITS
			MIN	MAX	Mis	MAX	
$\mathrm{CIN}_{\mathrm{N}}$	In土ul Cioun larca	All Inpuns Vin		5		5	－F
¢0uT	Outpu1 Cupazitanca			10		10	dF

Noif 1：Typitas ralues at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{F}$ ，

DM74LS00

Quad 2－Input NAND Gates

General Description

This device contains four independent gates each of which performs the logic NAND function．

Features

－Alternate Military／Aerospace device（54LS00）is available．Contact a Fairchild Semiconductor Sales Office／Distributor for specifications．

Connection Diagram

Order Number 54LS00DMQB，54LS00FMQB，54LS00LMQB，DM54LS00J，DM54LS00W，DM74LS00M or DM74LS00N See Package Number E20A，J14A，M14A，N14A or W14B
Function Table
$\mathbf{Y}=\overline{\mathbf{A B}}$

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High Logic Level L＝Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS00			DM74LS00			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.8	1.6	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$			2.4	4.4	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS00FMQB or DM54LS00W

Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specification

FAIRCHILD

SEMICONDUCTOR ${ }_{\text {tM }}$

DM74LS02

Quad 2-Input NOR Gates

General Description

This device contains four independent gates each of which performs the logic NOR function.

Features

- Alternate Military/Aerospace device (54LS02) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications

Connection Diagram

Order Number 54LS02DMQB, 54LS02FMQB, 54LS02LMQB, DM54LS02J, DM54LS02W, DM74LS02M or DM74LS02N
See Package Number E20A, J14A, M14A, N14A or W14B
Function Table
$Y=\overline{A+B}$

Inputs		Output
A	B	Y
L	L	H
L	H	L
H	L	L
H	H	L

$\mathrm{H}=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS and 54 LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be op erated at these limits. The parametric values defined in the "Electrical Char acteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS02			DM74LS02			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.40	mA
los	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.6	3.2	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2.8	5.4	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		13		18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		10		15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS02FMQB or DM54LS02W

Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor		Fairchild Semiconductor

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	7 V

Operating Free Air Temperature Range

DM54LS and 54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS03			DM74LS03			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 2) \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.8	1.6	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2.4	4.4	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=\mathbf{2} \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	6	20	20	45	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	15	4	20	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W)
Order Number 54LS03FMQB or DM54LS03W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) $180-5308586$	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 193-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS04

Hex Inverting Gates

General Description

This device contains six independent gates each of which performs the logic INVERT function．

Features

－Alternate Military／Aerospace device（54LS04）is available．Contact a Fairchild Semiconductor Sales Office／Distributor for specifications．

Connection Diagram

Order Number 54LS04DMQB，54LS04FMQB，54LS04LMQB，DM54LS04J，DM54LS04W，DM74LS04M or DM74LS04N See Package Number E20A，J14A，M14A，N14A or W14B
Function Table
$\mathbf{Y}=\overline{\mathbf{A}}$

Input	Output
A	\mathbf{Y}
L	H
H	L

H＝High Logic Level
L＝Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS04			DM74LS04			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.2	2.4	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$			3.6	6.6	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W)
Order Number 54LS04FMQB or DM54LS04W
Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specification

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	7 V

Operating Free Air Temperature Range

DM54LS and 54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS05			DM74LS05			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 2) \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.2	2.4	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			3.6	6.6	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	6	20	20	45	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	15	4	20	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Physical Dimensions inches (millimeters) unless otherwise noted

> 14-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS05DMQB or DM54LS05J
> Package Number J14A

14-Lead Small Outline Molded Package (M)
Order Number DM74LS05M
Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

FAIRCHILD
 SEMICロNロபロTロロ
 DM7406

Hex Inverting Buffers with High Voltage Open－Collector Outputs

General Description

This device contains six independent buffers each of which performs the logic INVERT function．The open－collector out－ puts require external pull－up resistors for proper logical op－ eration．

Pull－Up Resistor Equations

$$
\begin{aligned}
& R_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{O}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{~N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{IH}}\right)} \\
& \mathrm{R}_{\mathrm{MIN}}=\frac{\mathrm{V}_{\mathrm{O}}(\mathrm{Max})-\mathrm{V}_{\mathrm{OL}}}{I_{\mathrm{OL}}-N_{3}\left(\mathrm{I}_{\mathrm{L}}\right)}
\end{aligned}
$$

Where： $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull－up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{IH}}\right)$＝total maximum input high current for all inputs tied to pull－up resistor
$\mathrm{N}_{3}\left(\mathrm{I}_{\mathrm{L}}\right)=$ total maximum input low current for all in－ puts tied to pull－up resistor

Order Number DM5406J，DM5406W，DM7406M or DM7406N See Package Number J14A，M14A，N14A or W14B
Function Table

$$
Y=\bar{A}
$$

Input	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

$\mathrm{H}=$ High Logic Level
L＝Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	30 V

Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM5406			DM7406			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			30			30	V
I_{OL}	Low Level Output Current			30			40	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			250	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.7	V
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		30	48	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		27	51	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Time Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=110 \Omega$		15	ns
				23	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM5406J
Package Number J14A

14-Lead Small Outline Molded Package (M)
Order Number DM7406M
Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Molded Dual-In-Line Package (N) Order Number DM7406N
Package Number N14A

14-Lead Ceramic Flat Package (W)
Order Number DM5406W
Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	30 V

Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM5407			DM7407			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			30			30	V
I_{OL}	Low Level Output Current			30			40	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			250	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \hline \end{aligned}$			0.7	V
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		29	41	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		21	30	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Time				
	Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			
$\mathrm{R}_{\mathrm{L}}=110 \Omega$					

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM5407J
Package Number J14A

14-Lead Small Outline Molded Package (M)
Order Number DM7407M
Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS08

Quad 2-Input AND Gates

General Description

This device contains four independent gates each of which performs the logic AND function.

Features

- Alternate Military/Aerospace device (54LS08) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Dual-In-Line Package

Order Number 54LS08DMQB, 54LS08FMQB, 54LS08LMQB, DM54LS08J, DM54LS08W, DM74LS08M or DM74LS08N See NS Package Number E20A, J14A, M14A, N14A or W14B
Function Table
$Y=A B$

Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

H = High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS08			DM74LS08			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\text { Max }, \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2.4	4.8	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$			4.4	8.8	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	4	13	6	18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	11	5	18	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Leadless Chip Carrier Package (E) Order Number 54LS08LMQB

Package Number E20A

14-Lead Ceramic Dual-In-Line Package (J)
Order Number 54LS08DMQB or DM54LS08J
Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS08FMQB or DM54LS08W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor		Fairchild Semiconductor

Order Number 54LS09DMQB, 54LS09FMQB, DM54LS09J, DM54LS09W, DM74LS09M or DM74LS09N See Package Number E20A, J14A, M14A, N14A or W14B
Function Table
$Y=A B$

Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

H = High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	7 V

Operating Free Air Temperature Range

DM54LS and 54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS09			DM74LS09			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 2) \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$				100	$\mu \mathrm{A}$
V OL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current With Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2.4	4.8	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current With Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			4.4	8.8	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	5	20	8	45	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	4	15	6	27	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W)
Order Number 54LS09FMQB or DM54LS09W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center Tel: 1-888-522-5372	Fairchild Semiconductor Europe Fax: +49 (0) 1 80-530 8586 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 8 141-35-0 English Tel: +44 (0) 1 1793-85-68-56 Italy Tel: +39 (0) 2575631		Fairchild Semiconductor Hong Kong Ltd	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179
			13th Floor, Straight Block,	
			Ocean Centre, 5 Canton Rd.	
			Tsimshatsui, Kowloon	
			Hong Kong	
			Tel: +852 2737-7200	
www.fairchildsemi.com			Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

EAIRCHILD
 รеMI®ロNロபロTロR ${ }_{\text {т }}$
 DM74LS10
 Triple 3－Input NAND Gates

General Description

This device contains three independent gates each of which performs the logic NAND function．
Features
－Alternate Military／Aerospace device（54LS10）is available．Contact a Fairchild Semiconductor Sales Office／Distributor for specifications．

Connection Diagram

Order Number 54LS10DMQB，54LS10FMQB，54LS10LMQB， DM54LS10J，DM54LS10W，DM74LS10M or DM74LS10N See Package Number E20A，J14A，M14A，N14A or W14B
Function Table
$\mathbf{Y}=\overline{\mathbf{A B C}}$

Inputs			Output
A	B	C	Y
X	X	L	H
X	L	X	H
L	X	X	H
H	H	H	L

H＝High Logic Level
L＝Low Logic Level
X＝Either Low or High Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS10			DM74LS10			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.6	1.2	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$			1.8	3.3	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS10FMQB or DM54LS10W

Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

தEMICロNロபСTロR ${ }_{\text {тм }}$

DM74LS11

Triple 3－Input AND Gates

General Description

This device contains three independent gates each of which performs the logic AND function．
Features
－Alternate military／aerospace device（54LS11）is available．Contact a Fairchild Semiconductor Sales Office／Distributor for specifications．

Connection Diagram

Dual－In－Line Package

Order Number 54LS11DMQB，54LS11FMQB，54LS11LMQB， DM54LS11J，DM54LS11W，DM74LS11M or DM74LS11N See Package Number E20A，J14A，M14A，N14A or W14B
Function Table
$Y=A B C$

Inputs			Output
A	B	C	Y
X	X	L	L
X	L	X	L
L	X	X	L
H	H	H	H

H＝High Logic Leve
L＝Low Logic Level
X＝Either Low or High Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS11			DM74LS11			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note } 3) \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}$			1.8	3.6	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			3.3	6.6	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	4	13	6	18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	11	5	18	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W)
Order Number 54LS11FMQB or DM54LS11W
Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor		Fairchild Semiconductor
Corporation	Europe	Hong Kong Ltd.	National Semiconductor
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Input Voltage
Output Voltage

Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS12			DM74LS12			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.36	mA
ICCH	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			0.7	1.4	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.8	3.3	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=\mathbf{2} \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	6	20	20	45	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	15	4	20	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)
14-Lead Molded Dual-In-Line Package (N) Order Number DM74LS12N NS Package Number N14A

14-Lead Ceramic Flat Package (W) Order Number DM54LS12W NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

DM74LS13 Dual 4-Input Schmitt Trigger General Description This device contains two independent gates each of which perform the logic NAND function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing jitter free output.						
Connection Diagram						
Dual-In-Line Package						
Function Table						
Inputs Output						
	A	B	C	D	Y	
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	X X L X H	X L X X H	L X X X H	H H H H H	
$\begin{aligned} & \mathrm{H}=\text { High Level Logic } \\ & \mathrm{L}=\text { Low Level Logic } \\ & \mathrm{X}=\text { Either Low or High Level Logic } \end{aligned}$						

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS13		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-0.4	mA
I_{OL}	Low Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.7			V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	-20		-100	mA
ICCH	Supply Current with Outputs High	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=G N D \end{aligned}$			6.0	mA
$I_{\text {CCL }}$	Supply Current with Outputs Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{OPEN} \\ & \hline \end{aligned}$			7.0	mA
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Threshold Voltage	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$	1.5		2.0	V
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Threshold Voltage	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$	0.6		1.1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis Voltage	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$	0.4			V
$\mathrm{I}_{\mathrm{T}+}$	Input Current at PositiveGoing Threshold	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}+}$		-0.14*		mA
$\mathrm{I}_{\mathrm{T}-}$	Input Current at NegativeGoing Threshold	$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{T}-}$		-0.18*		mA
*Typical Value Note 1: All typic Note 2: Not mor	at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. one output should be shorted at	and the duration should not exceed	second			

Switching Characteristics$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				
Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \hline \text { DM74LS13 } \end{aligned}$		Units
		Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		22	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		27	ns

Physical Dimensions inches (millimeters)

14-Lead Small Outline Molded Package (M)
Order Number DM74LS13M
NS Package Number M14A
LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	54LS14			DM74LS14			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {T+ }}$	Positive-Going Input Threshold Voltage (Note 2)	1.5	1.6	2.0	1.4	1.6	1.9	V
$\mathrm{V}_{\text {T- }}$	Negative-Going Input Threshold Voltage (Note 2)	0.6	0.8	1.1	0.5	0.8	1	V
HYS	Input Hysteresis (Note 2)	0.4	0.8		0.4	0.8		V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	54LS	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	54LS		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	DM74		0.25	0.4	
$\mathrm{I}_{\text {+ }}$	Input Current at Positive-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}_{+}}$	DM74		-0.14		mA
$\mathrm{I}_{\text {T- }}$	Input Current at Negative-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}_{-}}$	DM74		-0.18		mA
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$	DM74			0.1	mA
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=10.0 \mathrm{~V}$	54LS				
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 4)	54LS	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			8.6	16	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			12	21	mA

Note 2: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	5	22	8	25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	5	22	10	33	ns

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number 54LS14DMQB
Order Number 54LS14DMQB
Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS14 Hex Inverters with Schmitt Trigger Inputs
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS14FMQB Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions at $\mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	DM54LS15			DM74LS15			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL	Low Level Output Current			4			8	mA
TA	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	
			DM74			0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{1}=10 \mathrm{~V} \text { (for } \mathrm{DM} 54 \text {) } \end{aligned}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ OPEN				3.6	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$				6.6	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				
Symbol	Parameter	$\begin{aligned} & \mathbf{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Max		
		DM54	DM74	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	24	20	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	18	15	ns

Physical Dimensions inches (millimeters)

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS15J
NS Package Number J14A

Physical Dimensions inches (millimeters) (Continued)

DETAIL A
W14B (REV J)
14-Lead Ceramic Flat Package (W)
Order Number DM54LS15W
NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

FAIRCHILD
 SEMICONDUCTOR ${ }_{\text {TN }}$
 DM74LS20
 Dual 4-Input NAND Gates

General Description

This device contains two independent gates each of which performs the logic NAND function.
Features

- Alternate Military/Aerospace device (54LS20) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications
Connection Diagram

Order Number 54LS20DMQB, 54LS20FMQB, 54LS20LMQB, DM54LS20J, DM54LS20W, DM74LS20M or DM74LS20N See Package Number E20A, J14A, M14A, N14A or W14B
Function Table
$\mathbf{Y}=\overline{\mathbf{A B C D}}$

Inputs				
Output				
A	B	C	D	Y
X	X	X	L	H
X	X	L	X	H
X	L	X	X	H
L	X	X	X	H
H	H	H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level
X = Either Low or High Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS20			DM74LS20			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
l OS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note } 3) \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.4	0.8	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.2	2.2	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
\square

Physical Dimensions inches (millimeters) unless otherwise noted

EOA (REV D
Ceramic Leadless Chip Carrier Package (E) Order Number 54LS20LMQB

Package Number E20A

14-Lead Ceramic Dual-In-Line Package (J)
Order Number 54LS20DMQB or DM54LS20J
Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Europe Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS and 54 LS
DM74LS
Storage Temperature Range
Te

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS21			DM74LS21			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {I }}$	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.2	2.4	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2.2	4.4	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	4	13	6	18	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	11	5	18	ns
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.						

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS22		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
$\mathrm{~V}_{\mathrm{OH}}$	High Level Output Voltage			5.5	mA
I_{OL}	Low Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range unless otherwise noted

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM74			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
ICCH	Supply Current Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$				0.8	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current Outputs Low	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{IN}}=$ Open				2.2	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				
Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		22	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		24	ns

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

OPTION 1
OPTION 02

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS22N
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

[^0]Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	15 V

Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS26			DM74LS26			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			15			15	V
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$			1000	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$			50	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \end{aligned}$	DM74			0.1	mA
			DM54				
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	DM54			-0.40	mA
			DM74			-0.36	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.8	1.6	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2.4	4.4	mA

Switching Characteristics

Symbol	Parameter	$\begin{gathered} \hline \text { DM54 } \\ \hline \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \hline \end{gathered}$		DM74				Units
				$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				
				$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		27		20		45	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		18		15		20	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS26J
Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W)
Order Number DM54LS26W
Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe		Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas Customer Response Center	Fax: +49 (0) 1 80-530 8586		13th Floor, Straight Block,	Tel: 81-3-5620-6175
	Email: europe.support@nsc.com		Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch	Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English	Tel: +44 (0) 1 193-85-68-56	Hong Kong	
	Italy	Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com			Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS27			DM74LS27			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
l OS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2	4	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			3.4	6.8	mA

Switching Characteristics

Symbol	Parameter	DM54		DM74				Units
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$						
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	13	3	13	5	18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	13	3	10	4	15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Leadless Chip Carrier Package (E)
Order Number DM54LS27E Package Number E20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS27J Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
V	

Operating Free Air Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.7	V
I_{OH}	High Level Output Current			-1.2	mA
I_{OL}	Low Level Output Current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$	2.7			V
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4	mA
l_{OS}	Short Circuit Output Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 3)	-30		-130	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			3.6	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			13.8	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		20	ns

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD
 SEMICロNロபСTロR ${ }_{\text {тм }}$
 DM74LS30
 8－Input NAND Gate

General Description

This device contains a single gate which performs the logic NAND function．
Features
－Alternate Military／Aerospace device（54LS30）is available．Contact a Fairchild Semiconductor Sales Office／Distributor for specifications．

Connection Diagram

Order Number 54LS30DMQB，54LS30FMQB，
54LS30LMQB，DM54LS30J，DM54LS530W，DM74LS30M or DM74LS30N See Package Number E20A，J14A，M14A，N14A or W14B
Function Table
$\mathbf{Y}=\overline{\text { ABCDEFGH }}$

Inputs	Output
A thru H	\mathbf{Y}
All Inputs H	L
One or More	H
Input L	

H＝High Logic Level
L＝Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS30			DM74LS30			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit	$V_{C C}=\operatorname{Max}$ (Note 3)	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.35	0.5	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.6	1.1	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	4	12	5	18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	4	15	5	20	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
\square

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS30DMQB or DM54LS30J

Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS30FMQB or DM54LS30W

Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS32			DM74LS32			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			3.1	6.2	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			4.9	9.8	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	11	4	15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	11	4	15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS32FMQB or DM54LS32W

Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	7 V

Operating Free Air Temperature Range

54 LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS33			DM74LS33			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
I_{OL}	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation .

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	
			DM74			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$				3.6	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { Open } \end{aligned}$				13.8	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		22	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		22	ns

\square

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS33J
Package Number J14A

14-Lead Small Outline Molded Package (M)
Order Number DM74LS33M
Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)

Supply Voltage

Input Voltage
Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-1.2	mA
I_{OL}	Low Level Output Current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.36	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-20		-100	mA
${ }^{\text {ICCH }}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		0.9	2	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		6	12	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		$\begin{aligned} & C_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$		Units
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	15	4	18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	15	4	21	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Physical Dimensions inches (millimeters)

14-Lead Small Outline Molded Package (M)
Order Number DM74LS37M
NS Package Number M14A

Physical Dimensions inches (millimeters) (Continued)

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS37N
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Order Number 54LS38DMQB, 54LS38FMQB, 54LS38LMQB, DM54LS38J, DM74LS38M or DM74LS38N
See Package Number E20A, J14A, M14A, N14A or W14B
Function Table
$\mathbf{Y}=\overline{\mathbf{A B}}$

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

H = High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	7 V

Operating Free Air Temperature Range

DM54LS and 54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS38			DM74LS38			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
I_{OL}	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 2) \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.9	2	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			6	12	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		22		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		22		29	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Leadless Chip Carrier Package (E) Order Number 54LS38LMQB Package Number E20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Dual-In-Line Package (J)
Order Number 54LS538DMQB or DM54LS38J
Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS38 Quad 2-Input NAND Buffers with Open-Collector Outputs

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (N) Order Number 54LS538DMQB or DM54LS38W

Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS40		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-1.2	mA
I_{OL}	Low Level Output Current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.7			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	-30		-130	mA
${ }^{\text {I CCH }}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$			1.0	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=$ OPEN			6.0	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Note more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				
Symbol	Parameter	$\begin{aligned} & \mathbf{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		24	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		24	ns

Physical Dimensions inches (millimeters)

14-Lead Small Outline Molded Package (M)
Order Number DM74LS40M
NS Package Number M14A
DM74LS40 Dual 4-Input NAND Buffer

Physical Dimensions inches (millimeters) (Continued)

OPTION 1

option 02

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS40N
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS and 54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS42			DM74LS42			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			7	13	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 3: I_{CC} is measured with all outputs open and all inputs grounded.

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				5 pF		pF	
			Min	Max	Min	Max	
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A, B, C, or D (2 Levels of Logic) to Output		25		30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	A, B, C, or D (3 Levels of Logic) to Output		30		35	ns
${ }_{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	A, B, C, or D (2 Levels of Logic) to Output		25		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A, B, C, or D (3 Levels of Logic) to Output		30		35	ns

Physical Dimensions inches (millimeters) (Continued)

detail A

16-Lead Ceramic Flat Package (W) Order Number 54LS42FMQB or DM54LS42W NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

FAIRCHILD

DM74LS47

BCD to 7-Segment Decoder/Driver with Open-Collector Outputs

General Description

The 'LS47 accepts four lines of BCD (8421) input data, generates their complements internally and decodes the data with seven AND/OR gates having open-collector outputs to drive indicator segments directly. Each segment output is guaranteed to sink 24 mA in the ON (LOW) state and withstand 15 V in the OFF (HIGH) state with a maximum leakage current of $250 \mu \mathrm{~A}$. Auxiliary inputs provided blanking, lamp test and cascadable zero-suppression functions.

Features

- Open-collector outputs
- Drive indicator segments directly
- Cascadable zero-suppression capability
- Lamp test input

Connection Diagram

Order Number DM54LS47J, DM54LS47W,
DM74LS47M or DM74LS47N
See Package Number J16A, M16A, N16E or W16A

Pin Names	Description
$\mathrm{A} 0-\mathrm{A} 3$	BCD Inputs
$\overline{\mathrm{RBI}}$	Ripple Blanking Input (Active LOW)
$\overline{\mathrm{LT}}$	Lamp Test Input (Active LOW)
$\overline{\mathrm{BI} / \mathrm{RBO}}$	Blanking Input (Active LOW) or $\overline{\mathrm{a}}-\overline{\mathrm{g}}$

Note 1: *OC—Open Collector

Absolute Maximum Ratings (Note 2)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS47			DM74LS47			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ @15V = V_{OH} (Note 3)			-50			-250	$\mu \mathrm{A}$
I_{OH}	High Level Output Current $\overline{\mathrm{BI}} / \overline{\mathrm{RBO}}$						-50	$\mu \mathrm{A}$
l_{OL}	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 3: OFF state at $\overline{\mathrm{a}}-\overline{\mathrm{g}}$.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=665 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay An to $\overline{\mathrm{a}}-\overline{\mathrm{g}}$			$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{RBI}}$ to $\overline{\mathrm{a}}-\overline{\mathrm{g}}$ (Note 6)			$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	ns

Note 6: $\overline{\mathrm{LT}}=\mathrm{HIGH}, \mathrm{A} 0-\mathrm{A} 3=$ LOW

Functional Description

The 'LS47 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the $\overline{\text { RBI }}$ blanks the display and causes a multidigit display. For example, by grounding the RBI of the highest order decoder and connecting its $\overline{\mathrm{BI} / \mathrm{RBO}}$ to $\overline{\mathrm{RBI}}$ of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding $\overline{\text { RBI }}$ of the lowest order decoder and connecting its $\overline{\mathrm{BI} / \mathrm{RBO}}$ to $\overline{\mathrm{RBI}}$ of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, i.e.: by driving RBI of a intermediate decoder from an OR gate whose inputs are $\overline{\mathrm{BI} / \mathrm{RBO}}$ of the next highest and lowest order decoders. $\mathrm{BI} / \mathrm{RBO}$ also serves as an unconditional blanking input. The internal NAND gate that generates the $\overline{\text { RBO }}$ signal has a resistive pull-up, as opposed to a totem pole, and thus BI/RBO can be forced LOW by external means, using wired-collector logic. A LOW signal thus applied to $\overline{\mathrm{BI} / \mathrm{RBO}}$ turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to $\overline{\mathrm{LT}}$ turns on all segment outputs, provided that $\overline{\mathrm{BI} / \mathrm{RBO}}$ is not forced LOW.

Logic Diagram

Numerical Designations—Resultant Displays

$$
0 \text { O23456789cJUSE }
$$

Logic Symbol

$V_{C C}=\operatorname{Pin} 16$
GND $=$ Pin 8

Truth Table

Decimal or Function	Inputs							Outputs							Note
	$\overline{\text { LT }}$	$\overline{\text { RBI }}$	A3	A2	A1	A0	$\overline{\text { BI/RBO }}$	$\overline{\mathrm{a}}$	$\overline{\mathrm{b}}$	$\overline{\mathbf{c}}$	\bar{d}	$\overline{\mathbf{e}}$	$\overline{\mathbf{f}}$	$\overline{\mathbf{g}}$	
0	H	H	L	L	L	L	H	L	L	L	L	L	L	H	(Note 7)
1	H	X	L	L	L	H	H	H	L	L	H	H	H	H	(Note 7)
2	H	X	L	L	H	L	H	L	L	H	L	L	H	L	
3	H	X	L	L	H	H	H	L	L	L	L	H	H	L	
4	H	X	L	H	L	L	H	H	L	L	H	H	L	L	
5	H	X	L	H	L	H	H	L	H	L	L	H	L	L	
6	H	X	L	H	H	L	H	H	H	L	L	L	L	L	
7	H	X	L	H	H	H	H	L	L	L	H	H	H	H	
8	H	X	H	L	L	L	H	L	L	L	L	L	L	L	
9	H	X	H	L	L	H	H	L	L	L	H	H	L	L	
10	H	X	H	L	H	L	H	H	H	H	L	L	H	L	
11	H	X	H	L	H	H	H	H	H	L	L	H	H	L	
12	H	X	H	H	L	L	H	H	L	H	H	H	L	L	
13	H	X	H	H	L	H	H	L	H	H	L	H	L	L	
14	H	x	H	H	H	L	H	H	H	H	L	L	L	L	
15	H	X	H	H	H	H	H	H	H	H	H	H	H	H	
$\overline{\text { Bl }}$	X	X	X	X	X	X	L	H	H	H	H	H	H	H	(Note 8)
$\overline{\text { RBI }}$	H	L	L	L	L	L	L	H	H	H	H	H	H	H	(Note 9)
$\overline{\text { LT }}$	L	X	X	X	X	X	H	L	L	L	L	L	L	L	(Note 10)

Note 7: $\mathrm{BI} / \mathrm{RBO}$ is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking out (BI) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking or a decimal 0 is not desired. $\mathrm{X}=\mathrm{input}$ may be HIGH or LOW.
Note 8: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.
Note 9: When ripple-blanking input ($\overline{\mathrm{RBI}})$ and inputs $\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2$ and A 3 are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output ($\overline{\mathrm{RBO}}$) goes to a LOW level (response condition).
Note 10: When the blanking input/ripple-blanking output $(\overline{\mathrm{BI} / \mathrm{RBO}})$ is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W)
Order Number DM54LS47W Package Number W16A
DM74LS47 BCD to 7-Segment Decoder/Driver with Open-Collector Outputs
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS48			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-50	$\mu \mathrm{~A}$
I_{OL}	Low Level Output Current			6.0	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.4			V
IOFF	Output High Current Segment Outputs	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.85 \mathrm{~V}$	-1.3			mA
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.5	V
		$\mathrm{IOL}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ at BI/RBO (Note 2)	-0.3		-2	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$			38	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Time A_{n} to $a-g$		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Time $\overline{\text { RBI }}$ to $a-f$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	ns

Note: $\overline{\mathrm{LT}}=\mathrm{HIGH}, \mathrm{A}_{0}-\mathrm{A}_{3}=\mathrm{HIGH}$.

Physical Dimensions inches (millimeters)

16-Lead Small Outline Molded Package (M)
Order Number DM74LS48M
NS Package Number M16A
DM74LS48 BCD to 7-Segment Decoder
Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	54LS51			DM74LS51			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\text { Max }, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	54LS	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	54LS			0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=10 \mathrm{~V}$ (54LS)				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	54LS			-0.40	mA
			DM74			-0.36	
l OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	54LS	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.8	1.6	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.4	2.8	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} 54 \mathrm{LS} 51 \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} \hline \text { DM74LS51 } \\ \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \hline \end{gathered}$		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		20	4	18	ns

Switching Characteristics (Continued)

Symbol	Parameter	54LS51		DM74LS51		Units
		$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \hline \end{gathered}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		20	3	15	ns

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Leadless Chip Carrier Package (E) Order Number 54LS51LMQB

Package Number E20A

Ceramic Dual-In-Line Package (J)
Order Number 54LS51DMQB
Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor Corporation
Americas	Europe	Fax: $+49(0) 180-5308586$	Hong Kong Ltd.
Customer Response Center	Email: europe.support@nsc.com		13th Floor, Straight Block,

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS54			DM74LS54			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Voltage			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54LS	2.5			V
			DM74LS	2.7			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54LS			0.4	V
			DM74LS			0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74LS			0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1} & =7 \mathrm{~V} \\ \mathrm{~V}_{1} & =10 \mathrm{~V} \end{aligned}$	DM74LS			0.1	mA
			DM54LS				
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54LS	-20		-100	mA
			DM74LS	-20		-100	
ICCH	Supply Current with Outputs High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$				1.6	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { Open } \end{aligned}$				2.0	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		Units
		Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		15	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

14-Lead Ceramic Flat Package (W)
Order Number DM54LS54W
NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS55			DM74LS55			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	V
			DM74			0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$,	DM74			0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}} & =7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{I}} & =10 \mathrm{~V}(\mathrm{DM} 54) \end{aligned}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$				0.8	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=$ Open				1.3	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{p F}, \mathbf{R}_{\mathbf{L}}=\mathbf{2 k} \boldsymbol{k}$		Units
		$\mathbf{M i n}$	$\mathbf{M a x}$	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Time		15	ns
$\mathrm{t}_{\mathrm{PHL}}$			15	

Physical Dimensions inches (millimeters) (Continued)

14-Lead Ceramic Flat Package (W)
Order Number DM54LS55W
NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS73A			DM74LS73A			
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
l_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 3)		0		30	0		30	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 4)		0		25	0		25	MHz
t_{w}	Pulse Width (Note 3)	Clock High	20			20			ns
		Preset Low	25			25			
		Clear Low	25			25			
t_{w}	Pulse Width (Note 4)	Clock High	25			25			ns
		Preset Low	30			30			
		Clear Low	30			30			
$t_{\text {Su }}$	Setup Time (Notes 2, 3)		20 \downarrow			20】			ns
t_{su}	Setup Time (Notes 2, 4)		25 \downarrow			25 \downarrow			ns
t_{H}	Hold Time (Notes 2, 3)		0 \downarrow			0 \downarrow			ns
t_{H}	Hold Time (Notes 2, 4)		5 \downarrow			5 \downarrow			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.
Note 3: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=7 \mathrm{~V} \end{aligned}$	J, K			0.1	
			Clear			0.3	mA
			Clock			0.4	
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{1}=2.7 \mathrm{~V} \end{aligned}$	J, K			20	
			Clear			60	$\mu \mathrm{A}$
			Clock			80	

Electrical Characteristics (Continued)

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{1}=0.4 \mathrm{~V} \end{aligned}$	J, K			-0.4	mA
			Clear			-0.8	
			Clock			-0.8	
los	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note } 6) \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 7)			4	6	mA

Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$		20		28	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		20		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or $\overline{\mathrm{Q}}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		20		28	ns

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state, an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM 74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment. Note 7: With all outputs open, I_{CC} is measured with the Q and $\overline{\mathrm{Q}}$ outputs high in turn. At the time of measurement, the clock is grounded.

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS73AJ
Package Number J14A

14-Lead Small Outline Molded Package (M)
Order Number DM74LS73AM
Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS73AN
Package Number N14A

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: $+49(0) 180-5308586$		13th Floor, Straight Block,

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 2)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS74A			DM74LS74A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
I_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 4)		0		25	0		25	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 5)		0		20	0		20	MHz
t_{w}	Pulse Width (Note 4)	Clock High	18			18			ns
		Preset Low	15			15			
		Clear Low	15			15			
t_{w}	Pulse Width (Note 5)	Clock High	25			25			ns
		Preset Low	20			20			
		Clear Low	20			20			
$\mathrm{t}_{\text {su }}$	Setup Time (Notes 3, 4)		$20 \uparrow$			$20 \uparrow$			ns
$t_{\text {su }}$	Setup Time (Notes 3, 5)		$25 \uparrow$			$25 \uparrow$			ns
t_{H}	Hold Time (Notes 3, 6)		$0 \uparrow$			$0 \uparrow$			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 3: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 4: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 5: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=7 \mathrm{~V} \end{aligned}$	Data			0.1	mA
			Clock			0.1	
			Preset			0.2	
			Clear			0.2	
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	Data			20	$\mu \mathrm{A}$
			Clock			20	
			Clear			40	
			Preset			40	

Electrical Characteristics (Continued)

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	Data			-0.4	mA
			Clock			-0.4	
			Preset			-0.8	
			Clear			-0.8	
l OS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \text { (Note 8) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 9)			4	8	mA

Note 7: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM 74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment. Note 9: With all outputs open, $I_{C C}$ is measured with CLOCK grounded after setting the Q and \bar{Q} outputs high in turn.

Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or $\overline{\mathrm{Q}}$		25		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or $\overline{\mathrm{Q}}$		30		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		25		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		30		35	ns
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		25		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$		30		35	ns

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Leadless Chip Carrier Package (E) Order Number 54LS74LMQB

Package Number E20A

14-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS74DMQB or DM54LS74AJ Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS74FMQB or DM54LS74AW
Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

	March 1998
FAIRCHILD	
SEMICONDUCTOR $_{\text {т }}$	
DM74LS75	
Quad Latches	
General Description	the enable remains high. When the enable goes low, the in-
These latches are ideally suited for use as temporary storage for binary information between processing units and	transition occured) is retained at the Q output until the enable is permitted to go high.
(D) input is transferred to the Q output when the enable is high, and the Q output will follow the data input as long as	These latches feature complementary Q and $\overline{\mathrm{Q}}$ outputs from a 4 -bit latch, and are available in 16 -pin packages.

Connection Diagram

Function Table

(Each Latch)

Inputs		Outputs	
D	Enable	Q	$\overline{\text { Q }}$
L	H	L	H
H	H	H	L
X	L	Q_{0}	\bar{Q}_{0}

H = High Level, L = Low Level, X = Don't Care
$Q_{0}=$ The Level of Q Before the High-to-Low Transition of ENABLE

Order Number DM54LS75J, DM54LS75W,
DM74LS75M or DM74LS75N
See Package Number J16A, M16A, N16A or W16A

Logic Digram (Each Latch)

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS75			DM74LS75			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
t_{w}	Enable Pulse Width (Note 5)	20			20			ns
$t_{\text {su }}$	Setup Time (Note 5)	20			20			ns
$t_{\text {H }}$	Hold Time (Note 5)	0			0			ns
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.5		V
			DM74	2.7	3.5		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	D			0.1	mA
			Enable			0.4	
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	D			20	$\mu \mathrm{A}$
			Enable			80	
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	D			-0.4	mA
			Enable			-1.6	
l OS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			6.3	12	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: $I_{C C}$ is measured with all outputs open and all inputs grounded.
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{D} \text { to } \\ \mathrm{Q} \end{gathered}$		27		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \mathrm{D} \text { to } \\ \mathrm{Q} \\ \hline \end{gathered}$		17		25	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{D} \text { to } \\ \overline{\mathrm{Q}} \end{gathered}$		20		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{D} \text { to } \\ \overline{\mathrm{Q}} \end{gathered}$		15		20	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Q		27		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Q		25		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to \bar{Q}		30		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to \bar{Q}		15		20	ns

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

DM74LS83A

4－Bit Binary Adders with Fast Carry

General Description

These full adders perform the addition of two 4－bit binary numbers．The sum (Σ) outputs are provided for each bit and the resultant carry（C4）is obtained from the fourth bit．These adders feature full internal look ahead across all four bits． This provides the system designer with partial look－ahead performance at the economy and reduced package count of a ripple－carry implementation．
The adder logic，including the carry，is implemented in its true form meaning that the end－around carry can be accom－ plished without the need for logic or level inversion．

Features
－Full－carry look－ahead across the four bits

Connection Diagram

－Systems achieve partial look－ahead performance with the economy of ripple carry
－Typical add times Two 8－bit words 25 ns Two 16－bit words 45 ns
－Typical power dissipation per 4－bit adder 95 mW
－Alternate Military／Aerospace device（54LS83A）is available．Contact a Fairchild Semiconductor Sales Office／Distributor for specifications．

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS83A			DM74LS83A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}= \\ & \mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
	Voltage	$\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}= \\ & \mathrm{Min} \end{aligned}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=7 \mathrm{~V} \end{aligned}$	A or B			0.2	mA
			C0			0.1	
I_{H}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	A or B			40	$\mu \mathrm{A}$
			C0			20	
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	A or B			-0.8	mA
			C0			-0.4	
$\mathrm{I}_{\text {OS }}$	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 4)			19	34	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 5)			22	39	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 4: $\mathrm{I}_{\mathrm{CC} 1}$ is measured with all outputs open, all B inputs low and all other inputs at 4.5 V , or all inputs at 4.5 V . Note 5: $\mathrm{I}_{\mathrm{CC} 2}$ is measured with all outputs open and all inputs grounded.

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \Sigma 1 \text { or } \Sigma 2 \end{gathered}$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \Sigma 1 \text { or } \Sigma 2 \\ \hline \end{gathered}$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \Sigma 3 \\ \hline \end{gathered}$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \Sigma 3 \end{gathered}$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \Sigma 4 \end{gathered}$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \mathrm{C} 0 \text { to } \\ \Sigma 4 \end{gathered}$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{A}_{\mathrm{i}}, \mathrm{~B}_{\mathrm{i}} \\ & \text { to } \sum_{\mathrm{i}} \end{aligned}$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{A}_{\mathrm{i}}, \mathrm{~B}_{\mathrm{i}} \\ & \text { to } \sum_{\mathrm{i}} \end{aligned}$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \mathrm{C} 4 \end{gathered}$		17		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \mathrm{C} 4 \end{gathered}$		17		25	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{A}_{\mathrm{i}}, \mathrm{~B}_{\mathrm{i}} \\ & \text { to } \mathrm{C} 4 \end{aligned}$		17		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{A}_{\mathrm{i}}, \mathrm{~B}_{\mathrm{i}} \\ & \text { to } \mathrm{C} 4 \end{aligned}$		17		26	ns

Truth Table

H = High Level, L = Low Level
Note 6: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the internal carry C 2 . The values at $\mathrm{C} 2, \mathrm{~A} 3, \mathrm{~B} 3, \mathrm{~A} 4$, and B4 are then used to determine outputs $\Sigma 3, \Sigma 4$, and C4.

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS83ADMQB or DM54LS83AJ Package Number J16A

16-Lead Wide Small Outline Molded Package (M)
 Order Number DM74LS83AWM

Package Number M16B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

detail a

16-Lead Ceramic Flat Package (W)
Order Number 54LS83AFMQB or DM54LS83AW
Package Number W16A
DM74LS83A 4-Bit Binary Adders with Fast Carry
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD
 DM74LS85
 4－Bit Magnitude Comparators

General Description

These 4－bit magnitude comparators perform comparison of straight binary or BCD codes．Three fully－decoded decisions about two，4－bit words（A，B）are made and are externally available at three outputs．These devices are fully expand－ able to any number of bits without external gates．Words of greater length may be compared by connecting comparators in cascade．The $A>B, A<B$ ，and $A=B$ outputs of a stage handling less－significant bits are connected to the corre－ sponding inputs of the next stage handling more－significant bits．The stage handling the least－significant bits must have

Order Number 54LS85DMQB，54LS85FMQB，54LS85LMQB，DM54LS85J，DM54LS85W，DM74LS85M or DM74LS85N See Package Number E20A，J16A，M16A，N16E or W16A

Function Table

Comparing Inputs				Cascading Inputs			Outputs		
A3, B3	A2, B2	A1, B1	A0, B0	A $>$ B	A $<$ B	$A=B$	A > B	A $<$ B	$A=B$
A3 > B3	X	X	X	X	X	X	H	L	L
A3 < B3	X	X	X	X	X	X	L	H	L
$\mathrm{A} 3=\mathrm{B} 3$	A2 $>$ B2	X	X	X	X	X	H	L	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2<\mathrm{B} 2$	X	X	X	X	X	L	H	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1>\mathrm{B} 1$	X	X	X	X	H	L	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1<\mathrm{B} 1$	X	X	X	X	L	H	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{AO}>\mathrm{BO}$	X	X	X	H	L	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{AO}<\mathrm{BO}$	X	X	X	L	H	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{A} 0=\mathrm{BO}$	H	L	L	H	L	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	L	H	L	L	H	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	L	L	H	L	L	H
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	X	X	H	L	L	H
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	H	H	L	L	L	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	L	L	L	H	H	L

H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS85			DM74LS85			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=7 \mathrm{~V} \end{aligned}$	A < B			0.1	mA
			A > B			0.1	
			Others			0.3	
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	A < B			20	$\mu \mathrm{A}$
			A > B			20	
			Others			60	
I_{IL}	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	A < B			-0.4	mA
			A > B			-0.4	
			Others			-1.2	
I_{OS}	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			10	20	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with all outputs open, $\mathrm{A}=\mathrm{B}$ grounded and all other inputs at 4.5 V .

Switching Characteristics

Symbol	Parameter	From Input	To Output	Number of Gate Levels	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
					Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low-to-High Level Output	Any A or B Data Input	$\begin{aligned} & A<B, \\ & A>B \end{aligned}$	3		36		42	ns
			$\mathrm{A}=\mathrm{B}$	4		40		40	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High-to-Low Level Output	Any A or B Data Input	$\begin{aligned} & A<B, \\ & A>B \end{aligned}$	3		30		40	ns
			$\mathrm{A}=\mathrm{B}$	4		30		40	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low-to-High Level Output	$\begin{gathered} \mathrm{A}<\mathrm{B} \\ \text { or } \mathrm{A}=\mathrm{B} \end{gathered}$	A > B	1		22		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High-to-Low Level Output	$\begin{gathered} \mathrm{A}<\mathrm{B} \\ \text { or } \mathrm{A}=\mathrm{B} \end{gathered}$	A > B	1		17		26	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low-to-High Level Output	$A=B$	$A=B$	2		20		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High-to-Low Level Output	$A=B$	$A=B$	2		17		26	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low-to-High Level Output	$\begin{gathered} \mathrm{A}>\mathrm{B} \\ \text { or } \mathrm{A}=\mathrm{B} \end{gathered}$	A < B	1		22		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High-to-Low Level Output	$\begin{gathered} \mathrm{A}>\mathrm{B} \\ \text { or } \mathrm{A}=\mathrm{B} \end{gathered}$	A < B	1		17		26	ns

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS85 4-Bit Magnitude Comparators
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

detall A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS86			DM74LS86			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.2	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & (\text { Note } 4) \end{aligned}$			6.1	10	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 5) } \end{aligned}$			9	15	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 4: $\mathrm{I}_{\mathrm{CCH}}$ is measured with all outputs open, one input at each gate at 4.5 V , and the other inputs grounded.
Note 5: $\mathrm{I}_{\mathrm{CCL}}$ is measured with all outputs open and all inputs grounded.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Other Input		18		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Low		17		21	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Other Input		10		15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			12		15	ns

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS86J
Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD
 sEMICロNロபロTロロ
 DM74LS90／DM74LS93
 Decade and Binary Counters

General Description

Each of these monolithic counters contains four master－slave flip－flops and additional gating to provide a divide－by－two counter and a three－stage binary counter for which the count cycle length is divide－by－five for the＇LS90 and divide－by－eight for the＇LS93．
All of these counters have a gated zero reset and the LS90 also has gated set－to－nine inputs for use in BCD nine＇s complement applications．
To use their maximum count length（decade or four bit bi－ nary），the B input is connected to the Q_{A} output．The input
count pulses are applied to input A and the outputs are as described in the appropriate truth table．A symmetrical divide－by－ten count can be obtained from the＇LS90 counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide－by－ten square wave at output Q_{A}

Features

－Typical power dissipation 45 mW
－Count frequency 42 MHz

Connection Diagrams（Dual－ln－Line Packages）

Order Number DM74LS90M or DM74LS90N See Package Number M14A or N14A

Order Number DM74LS93M or DM74LS93N See Package Number M14A or N14A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage (Reset)	7 V
Input Voltage (A or B)	5.5 V

Operating Free Air Temperature Range DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM74LS90			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
l_{OL}	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 3)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
t_{w}	Pulse Width (Note 2)	A	15			ns
		B	30			
		Reset	15			
$\mathrm{t}_{\text {w }}$	Pulse Width (Note 3)	A	25			ns
		B	50			
		Reset	25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 2)		25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 3)		35			ns
T_{A}			0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS90 Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \text { (Note 7) } \end{aligned}$			0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \\ & \hline \end{aligned}$	Reset			0.1	
			A			0.2	mA
			B			0.4	
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	Reset			20	
			A			40	$\mu \mathrm{A}$
			B			80	

'LS90 Electrical Characteristics (Continued) over recommended operating free air temperature range (unless otherwise noted)							
Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-3.2	
l OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{Cc}}=\operatorname{Max}($ Note 5)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}($ Note 4)			9	15	mA
Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 6: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded. Note 7: Q_{A} outputs are tested at $I_{\mathrm{OL}}=$ Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.							

'LS90 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$		A to Q_{A}	32		20		MHz
	Frequency	B to Q_{B}	16		10		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		48		52	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50		60	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		32		36	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-9 to $\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$		40		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Recommended Operating Conditions

Symbol	Parameter		DM74LS93			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
I_{OL}	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 8)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 9)	A to Q_{A}	0		20	
		B to Q_{B}	0		10	
t_{w}	Pulse Width (Note 8)	A	15			ns
		B	30			
		Reset	15			
$t_{\text {w }}$	Pulse Width (Note 9)	A	25			ns
		B	50			
		Reset	25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 8)		25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 9)		35			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 8: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 9: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS93 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 10)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \\ & \text { (Note 13) } \end{aligned}$			0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \end{aligned}$	Reset			0.1	
			A			0.2	mA
			B			0.4	
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	Reset			20	
			A			40	$\mu \mathrm{A}$
			B			80	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-1.6	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 11)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 12)			9	15	mA

Note 10: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 12: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded
Note 13: Q_{A} outputs are tested at $I_{O L}=$ max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.

'LS93 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock	A to Q_{A}	32		20		MHz
	Frequency	B to Q_{B}	16		10		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to $Q_{\text {A }}$		16		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to $Q_{\text {A }}$		18		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		85	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		90	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		60	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		70	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Function Tables													
LS90 BCD Count Sequence (Note 14)							LS90 Bi-Quinary (5-2) (Note 15)						
Count		Output					Count	Output					
		Q_{D}	0		Q_{B}	$Q_{\text {A }}$			$\mathrm{Q}_{\mathbf{A}}$	$Q_{\text {D }}$	Q_{C}		$\mathbf{Q}_{\text {B }}$
0		L			L	L	0		L	L	L		L
1		L	L		L	H	1		L	L	L		H
2		L	L		H	L	2		L	L	H		L
3		L	L		H	H	3		L	L	H		H
4		L	H		L	L	4		L	H	L		L
5		L	H		L	H	5		H	L	L		L
6		L			H	L	6		H	L	L		H
7		L			H	H	7		H	L	H		L
8		H			L	L	8		H	L	H		H
9		H			L	H	9		H	H	L		L
LS93 Count Sequence (Note 16)							Note 14: Output Q_{A} is connected to input B for $B C D$ count. Note 15: Output Q_{D} is connected to input A for bi-quinary count. Note 16: Output Q_{A} is connected to input B. Note 17: $\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care.						
Count	Output						LS90 Reset/Count Truth Table						
	$\begin{array}{llll}\mathbf{Q}_{\mathrm{D}} & \mathrm{Q}_{\mathrm{C}} & \mathrm{Q}_{\mathrm{B}} & \mathbf{Q}_{\mathrm{A}}\end{array}$												
0		L	L	L			Reset Inputs				Output		
1	L	L	L	H L			R0(1)	R0(2)	R9(1)	R9(2)	$Q_{\text {D }}$	Q_{c}	Q_{A}
3	L	L	H	H			H	H	L	X	L	L	L
4	L	H	L	L				H	X	L	L	L	L
5	L	H	L	H			X	X	H	H	H	L	H
6	L	H	H	L			X	L	X	L		cou	
7	L	H	H	H			L	x	L	x		cou	
8	H	L	L	L			L	X	X	L		cou	
9	H	L	L	H			X	L	L	x		cou	
10	H	L	H	L									
11	H	L	H	H			LS93						
12	H	H	L	L			Reset	Cou	nt Tr	th Ta	ble		
13	H	H	L				Res	et Inpu			Outp		
14	H H	H H	H H	L			R0(1)	R	R0(2)	\mathbf{Q}_{D}	Q_{C}	Q_{B}	Q_{A}
15				H			H		H	L	L	L	L
							L		X		cou		
							x		L		cou		

Logic Diagrams

The J and K inputs shown without connection are for reference only and are functionally at a high level.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD
 sEMICロNロபロTロロ
 DM74LS90／DM74LS93
 Decade and Binary Counters

General Description

Each of these monolithic counters contains four master－slave flip－flops and additional gating to provide a divide－by－two counter and a three－stage binary counter for which the count cycle length is divide－by－five for the＇LS90 and divide－by－eight for the＇LS93．
All of these counters have a gated zero reset and the LS90 also has gated set－to－nine inputs for use in BCD nine＇s complement applications．
To use their maximum count length（decade or four bit bi－ nary），the B input is connected to the Q_{A} output．The input
count pulses are applied to input A and the outputs are as described in the appropriate truth table．A symmetrical divide－by－ten count can be obtained from the＇LS90 counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide－by－ten square wave at output Q_{A}

Features

－Typical power dissipation 45 mW
－Count frequency 42 MHz

Connection Diagrams（Dual－ln－Line Packages）

Order Number DM74LS90M or DM74LS90N See Package Number M14A or N14A

Order Number DM74LS93M or DM74LS93N See Package Number M14A or N14A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage (Reset)	7 V
Input Voltage (A or B)	5.5 V

Operating Free Air Temperature Range DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM74LS90			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
l_{OL}	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 3)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
t_{w}	Pulse Width (Note 2)	A	15			ns
		B	30			
		Reset	15			
$\mathrm{t}_{\text {w }}$	Pulse Width (Note 3)	A	25			ns
		B	50			
		Reset	25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 2)		25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 3)		35			ns
T_{A}			0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS90 Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \text { (Note 7) } \end{aligned}$			0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \\ & \hline \end{aligned}$	Reset			0.1	
			A			0.2	mA
			B			0.4	
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	Reset			20	
			A			40	$\mu \mathrm{A}$
			B			80	

'LS90 Electrical Characteristics (Continued) over recommended operating free air temperature range (unless otherwise noted)							
Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-3.2	
l OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{Cc}}=\operatorname{Max}($ Note 5)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}($ Note 4)			9	15	mA
Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 6: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded. Note 7: Q_{A} outputs are tested at $I_{\mathrm{OL}}=$ Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.							

'LS90 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$		A to Q_{A}	32		20		MHz
	Frequency	B to Q_{B}	16		10		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		48		52	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50		60	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		32		36	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-9 to $\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$		40		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Recommended Operating Conditions

Symbol	Parameter		DM74LS93			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
I_{OL}	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 8)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 9)	A to Q_{A}	0		20	
		B to Q_{B}	0		10	
t_{w}	Pulse Width (Note 8)	A	15			ns
		B	30			
		Reset	15			
$t_{\text {w }}$	Pulse Width (Note 9)	A	25			ns
		B	50			
		Reset	25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 8)		25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 9)		35			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 8: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 9: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS93 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 10)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \\ & \text { (Note 13) } \end{aligned}$			0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \end{aligned}$	Reset			0.1	
			A			0.2	mA
			B			0.4	
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	Reset			20	
			A			40	$\mu \mathrm{A}$
			B			80	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-1.6	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 11)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 12)			9	15	mA

Note 10: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 12: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded
Note 13: Q_{A} outputs are tested at $I_{O L}=$ max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.

'LS93 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock	A to Q_{A}	32		20		MHz
	Frequency	B to Q_{B}	16		10		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to $Q_{\text {A }}$		16		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to $Q_{\text {A }}$		18		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		85	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		90	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		60	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		70	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Function Tables													
LS90 BCD Count Sequence (Note 14)							LS90 Bi-Quinary (5-2) (Note 15)						
Count		Output					Count	Output					
		Q_{D}	0		Q_{B}	$Q_{\text {A }}$			$\mathrm{Q}_{\mathbf{A}}$	$Q_{\text {D }}$	Q_{C}		$\mathbf{Q}_{\text {B }}$
0		L			L	L	0		L	L	L		L
1		L	L		L	H	1		L	L	L		H
2		L	L		H	L	2		L	L	H		L
3		L	L		H	H	3		L	L	H		H
4		L	H		L	L	4		L	H	L		L
5		L	H		L	H	5		H	L	L		L
6		L			H	L	6		H	L	L		H
7		L			H	H	7		H	L	H		L
8		H			L	L	8		H	L	H		H
9		H			L	H	9		H	H	L		L
LS93 Count Sequence (Note 16)							Note 14: Output Q_{A} is connected to input B for $B C D$ count. Note 15: Output Q_{D} is connected to input A for bi-quinary count. Note 16: Output Q_{A} is connected to input B. Note 17: $\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care.						
Count	Output						LS90 Reset/Count Truth Table						
	$\begin{array}{llll}\mathbf{Q}_{\mathrm{D}} & \mathrm{Q}_{\mathrm{C}} & \mathrm{Q}_{\mathrm{B}} & \mathbf{Q}_{\mathrm{A}}\end{array}$												
0		L	L	L			Reset Inputs				Output		
1	L	L	L	H L			R0(1)	R0(2)	R9(1)	R9(2)	$Q_{\text {D }}$	Q_{c}	Q_{A}
3	L	L	H	H			H	H	L	X	L	L	L
4	L	H	L	L				H	X	L	L	L	L
5	L	H	L	H			X	X	H	H	H	L	H
6	L	H	H	L			X	L	X	L		cou	
7	L	H	H	H			L	x	L	x		cou	
8	H	L	L	L			L	X	X	L		cou	
9	H	L	L	H			X	L	L	x		cou	
10	H	L	H	L									
11	H	L	H	H			LS93						
12	H	H	L	L			Reset	Cou	nt Tr	th Ta	ble		
13	H	H	L				Res	et Inpu			Outp		
14	H H	H H	H H	L			R0(1)	R	R0(2)	\mathbf{Q}_{D}	Q_{C}	Q_{B}	Q_{A}
15				H			H		H	L	L	L	L
							L		X		cou		
							x		L		cou		

Logic Diagrams

The J and K inputs shown without connection are for reference only and are functionally at a high level.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions $\mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	DM54LS95			DM74LS95			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW Ds or Pn to CPn	$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time HIGH or LOW Ds or Pn to $\overline{\mathrm{CP}} \mathrm{n}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			ns
$t_{w}(H)$	$\overline{\text { CPn Pulse Width HIGH }}$	20			20			ns
$t_{\text {en }}(\mathrm{L})$	Enable Time LOW, PE to $\overline{\mathrm{CP}} 1$	25			25			ns
$\mathrm{t}_{\text {inh }}(\mathrm{H})$	Inhibit Time HIGH, PE to $\overline{\mathrm{CP}} 1$	20			20			ns
$\mathrm{ten}_{\text {(}}(\mathrm{H})$	Enable Time HIGH, PE to $\overline{\mathrm{CP}} 2$	25			25			ns
$\mathrm{t}_{\text {inh }}(\mathrm{L})$	Inhibit Time LOW, PE to $\overline{\mathrm{CP}} 2$	20			20			ns

Functional Description

The '95 is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial (DS) and four Parallel (P0-P3) Data inputs and four Parallel Data outputs (Q0-Q3). The serial or parallel mode of operation is controlled by a Parallel Enable input (PE) and two Clock inputs, $\overline{\mathrm{CP}} 1$ and $\overline{\mathrm{CP}} 2$. The serial (right-shift) or parallel data transfers occur synchronous with the HIGH-to-LOW transition of the selected clock input.
When PE is HIGH, $\overline{\mathrm{CP}} 2$ is enabled. A HIGH-to-LOW transition on enabled $\overline{\mathrm{CP}} 2$ transfers parallel data from the P0P3 inputs to the Q0-Q3 outputs. When PE is LOW, CP1 is
enabled. A HIGH-to-LOW transition on enabled CP1 transfers the data from Serial input $\left(D_{S}\right)$ to $Q 0$ and shifts the data in Q0 to Q1, Q1 to Q2, and Q2 to Q3 respectively (rightshift). A left-shift is accomplished by externally connecting Q3 to P2, Q2 to P1, and Q1 to P0, and operating the ' 95 in the parallel mode ($\mathrm{PE}=\mathrm{HIGH}$). For normal operation, PE should only change states when both Clock inputs are LOW. However, changing PE from LOW to HIGH while CP2 is HIGH, or changing PE from HIGH to LOW while $\overline{\mathrm{CP}} 1$ is HIGH and $\overline{\mathrm{CP}} 2$ is LOW will not cause any changes on the register outputs.

Mode Select Table									
Operating Mode	Inputs					Outputs			
	PE	$\overline{\mathrm{CP}} 1$	$\overline{\mathrm{CP}} 2$	$\mathrm{D}_{\text {S }}$	Pn	Q0	Q1	Q2	Q3
Shift	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\sim	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { q0 } \\ & \text { q0 } \end{aligned}$	$\begin{aligned} & \text { q1 } \\ & \text { q1 } \end{aligned}$	$\begin{aligned} & \text { q2 } \\ & \text { q2 } \end{aligned}$
Parallel Load	H	X	\checkmark	X	pn	p0	p1	p2	p3
Mode Change	־	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \text { X } \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	No	hange ange hange termin termin hange termin hange		

I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.
$h=$ HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.
$\mathrm{pn}=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.
H $=$ HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

FIGURE A

Physical Dimensions inches (millimeters)

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS95BJ
NS Package Number J14A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS107A			DM74LS107A			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2)		0		30	0		30	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 3)		0		25	0		25	MHz
${ }^{\text {tw }}$	Pulse Width (Note 2)	Clock High	20			20			ns
		Clear Low	25			25			
tw	Pulse Width (Note 3)	Clock High	25			25			ns
		Clear Low	30			30			
$\mathrm{t}_{\text {SU }}$	Setup Time (Notes 1 \& 2)		$20 \downarrow$			$20 \downarrow$			ns
tsu	Setup Time (Notes 1 \& 3)		25 \downarrow			25 \downarrow			ns
t_{H}	Hold Time (Notes 1 \& 2)		0 \downarrow			$0 \downarrow$			ns
t_{H}	Hold Time (Notes 1 \& 3)		5 \downarrow			5 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.
Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	J, K			0.1	mA
			Clear			0.3	
			Clock			0.4	

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Cond		Min	Typ (Note 1)	Max	Units
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	J, K			20	$\mu \mathrm{A}$
			Clear			60	
			Clock			80	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	J, K			-0.4	mA
			Clear			-0.8	
			Clock			-0.8	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 3)			4	6	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{2 k}$ 行				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		20		24	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		20		28	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		20		24	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to Q } \end{aligned}$		20		28	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or $\overline{\mathrm{Q}}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or $\overline{\mathrm{Q}}$		20		28	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.
Note 3: With all inputs open, I_{CC} is measured with the Q and $\overline{\mathrm{Q}}$ outputs high in turn. At the time of measurement the clock is grounded.

Physical Dimensions inches (millimeters) (Continued)

14-Lead Ceramic Flat Package (W)
Order Number DM54LS107AW NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 2)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS109A			DM74LS109A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
l_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 4)		0		25	0		25	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 5)		0		20	0		20	MHz
t_{w}	Pulse Width (Note 4)	Clock High	18			18			ns
		Preset Low	15			15			
		Clear Low	15			15			
t_{w}	Pulse Width (Note 5)	Clock High	25			25			ns
		Preset Low	20			20			
		Clear Low	20			20			
$\mathrm{t}_{\text {su }}$	Setup Time (Notes 3, 4)	Data High	$30 \uparrow$			$30 \uparrow$			ns
		Data Low	$20 \uparrow$			$20 \uparrow$			
t_{su}	Setup Time (Notes 3, 5)	Data High	$35 \uparrow$			$35 \uparrow$			ns
		Data Low	$25 \uparrow$			$25 \uparrow$			
t_{H}	Hold Time (Note 6)		$0 \uparrow$			$0 \uparrow$			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 3: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 4: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 5: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=7 V \end{aligned}$	J, $\overline{\mathrm{K}}$			0.1	
			Clock			0.1	mA
			Preset			0.2	
			Clear			0.2	

Electrical Characteristics (Continued)

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
I_{H}	High Level Input Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	J, $\overline{\mathrm{K}}$			20	$\mu \mathrm{A}$
			Clock			20	
			Preset			40	
			Clear			40	
$I_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{1}=0.4 \mathrm{~V} \end{aligned}$	J, $\overline{\mathrm{K}}$			-0.4	mA
			Clock			-0.4	
			Preset			-0.8	
			Clear			-0.8	
Ios	Short Circuit Output Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 8) } \\ & \hline \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{cc}	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 9)			4	8	mA

Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		25		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		30		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		25		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \mathrm{Q} \end{aligned}$		30		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		25		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		30		35	ns

Note 7: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.
Note 9: I_{CC} is measured with all outputs open, with CLOCK grounded after setting the Q and $\overline{\mathrm{Q}}$ outputs high in turn.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

detail a

16-Lead Ceramic Flat Package
Order Number 54LS109FMQB or DM54LS109AW
Package Number W16A
DM74LS109A Dual Positive-Edge-Triggered J-K Flip-Flops with Preset, Clear, and Complementary

A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Function Table

Inputs					Outputs	
PR	CLR	CLK	J	K	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H (Note 1)	H (Note 1)
H	H	\downarrow	L	L	Q_{0}	\bar{Q}_{0}
H	H	\downarrow	H	L	H	L
H	H	\downarrow	L	H	L	H
H	H	\downarrow	H	H		
H	H	H	X	X	Q_{0}	\bar{Q}_{0}
H = High Logic Level L = Low Logic Level X = Either Low or High Logic Level $\downarrow=$ Negative Going Edge of Pulse $Q_{0}=$ The output logic level before the indicated input conditions were established.						
oggle able; th	ch outpu	panges to	e com	ment	s previous level ar inputs return	each falling edge ir inactive (high)

Absolute Maximum Ratings (Note 2)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS112A			DM74LS112A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
l_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 4)		0		30	0		30	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 5)		0		25	0		25	MHz
t_{w}	Pulse Width (Note 4)	Clock High	20			20			ns
		Preset Low	25			25			
		Clear Low	25			25			
$t_{\text {w }}$	Pulse Width (Note 5)	Clock High	25			25			ns
		Preset Low	30			30			
		Clear Low	30			30			
t_{su}	Setup Time (Notes 3, 4)		20 \downarrow			20 \downarrow			ns
$t_{\text {su }}$	Setup Time (Notes 3, 5)		25 \downarrow			25 \downarrow			ns
t_{H}	Hold Time (Notes 3, 4)		0 \downarrow			0 \downarrow			ns
t_{H}	Hold Time (Notes 3, 5)		5 \downarrow			5 \downarrow			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 3: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.
Note 4: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 5: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Electrical Characteristics (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{I}_{\text {LL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	J, K			-0.4	mA
			Clear			-0.8	
			Preset			-0.8	
			Clock			-0.8	
l_{OS}	Short Circuit	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	DM54	-20		-100	mA
	Output Current	(Note 7)	DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 8)			4	6	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		20		28	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \end{aligned}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$		20		28	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or $\overline{\mathrm{Q}}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		20		28	ns

Note 6: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM 74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment. Note 8: With all outputs open, $I_{C C}$ is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement the clock is grounded.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS112FMQB or DM54LS112AW

Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-

CONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD

DM74LS122

Retriggerable One－Shot with Clear and Complementary Outputs

General Description

The DM74LS122 is a retriggerable monostable multivibrator featuring both positive and negative edge triggering with complementary outputs．An internal $10 \mathrm{k} \Omega$ timing resistor is provided for design convenience minimizing component count and layout problems．This device can be used with a single external capacitor．The＇LS122 has two active－low transition triggering inputs（A），two active－high transition trig－ gering inputs（B），and a CLEAR input that terminates the out－ put pulse width at a predetermined time independent of the timing components．The clear（CLR）input also serves as a trigger input when it is pulsed with a low level pulse transition （ㄷ）．To obtain optimum and trouble free operation please read operating rules and NSC one－shot application notes carefully and observe recommendations．
－Retriggerable to 100% duty cycle
－Over－riding clear terminates output pulse
－Internal $10 \mathrm{k} \Omega$ timing resistor
－TTL，DTL compatible
－Compensated for V_{CC} and temperature variations
－Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of the internal resistor $\mathrm{R}_{\mathrm{INT}}$ or an external resistor $\left(\mathrm{R}_{\mathrm{X}}\right)$ and ca－ pacitor $\left(C_{x}\right)$ ．Once triggered，the output pulse width may be extended by retriggering the gated active－low（A）transition inputs or the active－high transition（B）inputs or the CLEAR input．The output pulse width can be reduced or terminated by overriding it with the active－low CLEAR input．

Features

－DC triggered from active－high transition or active－low transition inputs

Connection Diagram

Order Number DM74LS122M or DM74LS122N See Package Number M14A or N14A

Function Table

Inputs					Outputs	
CLEAR	A1	A2	B1	B2	Q	$\overline{\mathbf{Q}}$
L	X	X	X	X	L	H
X	H	H	X	X	L	H
X	X	X	L	X	L	H
X	X	X	X	L	L	H
H	L	X	\uparrow	H	ת	ㄴ
H	L	X	H	\uparrow	Ω	บ
H	X	L	\uparrow	H	Ω	บ
H	X	L	H	\uparrow	Ω	บ
H	H	\downarrow	H	H	Ω	ㄷ
H	\downarrow	\downarrow	H	H	Ω	บ
H	\downarrow	H	H	H	ת	บ
\uparrow	L	X	H	H	Ω	บ
\uparrow	X	L	H	H	Ω	ㄷ

$\mathrm{H}=$ High Logic Leve
＝Low Logic Level
X＝Can Be Either Low or High
＝Positive Going Transition
$\downarrow=$ Negative Going Transition
$\Omega=$ A Positive Pulse
－＝A Negative Puls

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V

Input Voltage

Operating Free Air Temperature Range DM74LS
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameters		Min	Nom	Max	Units
V_{Cc}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
I_{OL}	Low Level Output Current				8	mA
t_{w}	Pulse Width (Note 7)	A or B High	40			ns
		A or B Low	40			
		Clear Low	40			
$\mathrm{R}_{\text {EXT }}$	External Timing Resistor		5		260	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {EXT }}$	External Timing Capacitance		No Restriction			$\mu \mathrm{F}$
$\mathrm{C}_{\text {WIRE }}$	Wiring Capacitance at $\mathrm{R}_{\text {EXT }} / \mathrm{C}_{\text {EXT }}$ Terminal				50	pF
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4	mA
l OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)	-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Notes 4, 5, 6)		6	11	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{EXT}}=0 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{EXT}}=5 \mathrm{k} \Omega \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{EXT}}=1000 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \end{gathered}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q		33			ns

Switching Characteristics (Continued)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{EXT}}=0 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{EXT}}=5 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} C_{L}=15 \mathrm{pF} \\ C_{E X T}=1000 \mathrm{pF}, \\ R_{E X T}=10 \mathrm{k} \Omega \end{gathered}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q		44			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to $\overline{\mathrm{Q}}$		45			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to \bar{Q}		56			ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clear to $\overline{\mathrm{Q}}$		45			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Q		27			ns
$\mathrm{t}_{\mathrm{WQ} \text { (Min) }}$	Minimum Width of Pulse at Output Q	A or B to Q		200			ns
$\mathrm{t}_{\text {W(out) }}$	Output Pulse Width	A or B to Q			4	5	$\mu \mathrm{s}$

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 4: Quiescent I_{CC} is measured (after clearing) with 2.4 V applied to all clear and A inputs, B inputs grounded, all outputs open, $\mathrm{C}_{\mathrm{EXT}}=0.02 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{EXT}}=$ $25 \mathrm{k} \Omega$.
Note 5: I_{CC} is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, $\mathrm{C}_{\mathrm{EXT}}=0.02 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{EXT}}=25 \mathrm{k} \Omega$
Note 6: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V is applied to the clock.
Note 7: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Operating Rules

1. To use the internal $10 \mathrm{k} \Omega$ timing resistor, connect the $\mathrm{R}_{\text {INT }}$ pin to V_{CC}.
2. An external resistor $\left(R_{x}\right)$ or the internal resistor ($10 \mathrm{k} \Omega$) and an external capacitor $\left(\mathrm{C}_{\mathrm{x}}\right)$ are required for proper operation. The value of C_{X} may vary from 0 to any necessary value. For small time constants use high-quality mica, glass, polypropylene, polycarbonate, or polystyrene capacitors. For large time constants use solid tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
3. The pulse width is essentially determined by external timing components R_{x} and C_{x}. For $\mathrm{C}_{\mathrm{x}}<1000 \mathrm{pF}$ see Figure 1; design curves on T_{w} as function of timing components value. For $\mathrm{C}_{x} \gg 1000 \mathrm{pF}$ the output is defined as:

$$
T_{w}=K R_{x} C_{x}
$$

where $\left[R_{X}\right.$ is in $k \Omega$]

$$
\text { [} \left.\mathrm{C}_{\mathrm{x}} \text { is in } \mathrm{pF}\right]
$$

$$
\text { [} \mathrm{T}_{\mathrm{w}} \text { is in } \mathrm{ns} \text {] }
$$

$$
K \approx 0.37
$$

The K factor is not a constant, but, varies with C_{x}. See Figure 2.
4. The switching diode required for most TTL one-shots when using an electrolytic timing capacitor is not needed for the 'LS122 and should not be used.
5. To obtain variable pulse width by remote trimming, the following circuit is recommended:
6. The retriggerable pulse width is calculated as shown below:

$$
\mathrm{T}=\mathrm{T}_{\mathrm{w}}+\mathrm{t}_{\mathrm{PLH}}=0.50 \times \mathrm{R}_{\mathrm{X}} \times \mathrm{C}_{\mathrm{X}}+\mathrm{T}_{\mathrm{PLH}}
$$

The retriggered pulse width is equal to the pulse width plus a delay time period (Figure 4).
7. Output pulse width variation versus V_{Cc} and operation temperatures: Figure 5 depicts the relationship between pulse width variation versus V_{Cc}; and Figure 6 depicts pulse width variation versus temperatures.
8. Under any operating condition C_{x} and R_{x} must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I -R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_{x} to pins (13) and (11) is greater than 3 cm , for example, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_{x} in each cycle of its operation so that the output pulse width will be accurate.

Operating Rules (Continued)
9. $V_{C C}$ and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{cc} and ground return leads do not cause interaction between one-shots. A $0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ bypass capacitor (disk ceramic or monolithic type) from V_{Cc} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{Cc} pin as space permits.
Note: For further detailed device characteristics and output performance please refer to the NSC one-shot application note AN-366.

FIGURE 1.

FIGURE 2.

Note: "R remote " should be as close to the device pins as possible.
FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS123

Dual Retriggerable One－Shot with Clear and

 Complementary Outputs
General Description

The DM74LS123 is a dual retriggerable monostable multivi－ brator capable of generating output pulses from a few nano－seconds to extremely long duration up to 100% duty cycle．Each device has three inputs permitting the choice of either leading edge or trailing edge triggering．Pin (A) is an active－low transition trigger input and pin（B）is an active－high transition trigger input．The clear（CLR）input ter－ minates the output pulse at a predetermined time indepen－ dent of the timing components．The clear input also serves as a trigger input when it is pulsed with a low level pulse tran－ sition（ㄷ）．To obtain the best trouble free operation from this device please read the operating rules as well as the NSC one－shot application notes carefully and observe recommen－ dations．

Features
－DC triggered from active－high transition or active－low transition inputs
－Retriggerable to 100% duty cycle
－Compensated for V_{CC} and temperature variations
－Triggerable from CLEAR input
－DTL，TTL compatible
－Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of an external resistor $\left(R_{x}\right)$ and capacitor（ C_{x} ）．Once triggered，the basic pulse width may be extended by retriggering the gated active－low transition or active－high transition inputs or be re－ duced by use of the active－low or CLEAR input．Retriggering to 100% duty cycle is possible by application of an input pulse train whose cycle time is shorter than the output cycle time such that a continuous＂HIGH＂logic state is maintained at the＂Q＂output．

Connection Diagram

Order Number DM74LS123M or DM74LS123N See Package Number M16A or N16E

Function Table

Inputs			Outputs	
CLEAR	A	B	Q	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	$\mathrm{\Psi}$
H	\downarrow	H	Ω	$工$
\uparrow	L	H	Ω	J

H＝High Logic Level
L＝Low Logic Level
X＝Can Be Either Low or High
$\uparrow=$ Positive Going Transition
$\downarrow=$ Negative Going Transition
$\Omega=$ A Positive Pulse
ㄴ A Negative Pulse

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
V_{Cc}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
l_{OL}	Low Level Output Current				8	mA
t_{w}	Pulse Width (Note 7)	A or B High	40			
		A or B Low	40			ns
		Clear Low	40			
$\mathrm{R}_{\text {EXT }}$	External Timing Resistor		5		260	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {EXT }}$	External Timing Capacitance		No Restriction			$\mu \mathrm{F}$
C WIRE	Wiring Capacitance at $\mathrm{R}_{\text {EXT }} / \mathrm{C}_{\text {EXT }}$ Terminal				50	pF
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$			0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4	mA
l OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 3)	-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max (Notes 4, 5, 6)		12	20	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: Quiescent I_{CC} is measured (after clearing) with 2.4 V applied to all clear and A inputs, B inputs grounded, all outputs open, $\mathrm{C}_{\mathrm{EXT}}=0.02 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{EXT}}=25 \mathrm{k} \Omega$.
Note 5: I_{CC} is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, $\mathrm{C}_{\mathrm{EXT}}=0.02 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{EXT}}=25 \mathrm{k} \Omega$. Note 6: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V is applied to the clock. Note 7: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameters	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{EXT}}=0 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{EXT}}=5 \mathrm{k} \Omega \\ \hline \end{gathered}$		$\begin{gathered} C_{L}=15 \mathrm{pF} \\ C_{E X T}=1000 \mathrm{pF}, \\ R_{E X T}=10 \mathrm{k} \Omega \end{gathered}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q		33			ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q		44			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to $\overline{\mathrm{Q}}$		45			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to $\overline{\mathrm{Q}}$		56			ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clear to $\overline{\mathrm{Q}}$		45			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Q		27			ns
$t_{\text {WQ(Min) }}$	Minimum Width of Pulse at Output Q	A or B to Q		200			ns
$\mathrm{t}_{\text {W(out) }}$	Output Pulse Width	A or B to Q			4	5	$\mu \mathrm{s}$

Operating Rules

1. An external resistor $\left(R_{X}\right)$ and an external capacitor $\left(C_{X}\right)$ are required for proper operation. The value of C_{x} may vary from 0 to any necessary value. For small time constants high-grade mica, glass, polypropylene, polycarbonate, or polystyrene material capacitors may be used. For large time constants use tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
2. When an electrolytic capacitor is used for C_{X} a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current. This switching diode is not needed for the 'LS123 one-shot and should not be used. In general the use of the switching diode is not recommended with retriggerable operation.
Furthermore, if a polarized timing capacitor is used on the 'LS123 the negative terminal of the capacitor should be connected to the " $\mathrm{C}_{\text {EXT }}$ " pin of the device (Figure 1).

FIGURE 1.
3. For $\mathrm{C}_{\mathrm{X}} \gg 1000 \mathrm{pF}$ the output pulse width $\left(\mathrm{T}_{\mathrm{W}}\right)$ is de fined as follows:
$T_{w}=K R_{x} C_{x}$ where $\left[R_{x}\right.$ is in $k \Omega$]

$$
\text { [} \mathrm{C}_{\mathrm{x}} \text { is in } \mathrm{pF} \text {] }
$$

[T_{w} is in $n s$]
$K \approx 0.37$
4. The multiplicative factor K is plotted as a function of C_{X} below for design considerations:

FIGURE 2.

Operating Rules (Continued)

5. For $\mathrm{C}_{\mathrm{x}}<1000 \mathrm{pF}$ see Figure 3 for T_{w} vs C_{x} family curves with R_{X} as a parameter:

FIGURE 3.
6. To obtain variable pulse widths by remote trimming, the following circuit is recommended:

FIGURE 4.

Note: " $\mathrm{R}_{\text {remote }}$ " should be as close to the device pin as possible.
7. The retriggerable pulse width is calculated as shown below:

$$
T=T_{W}+t_{P L H}=K \times R_{X} \times C_{X}+t_{P L H}
$$

The retriggered pulse width is equal to the pulse width plus a delay time period (Figure 5).

FIGURE 5.

8. Output pulse width variation versus V_{CC} and temperatures: Figure 6 depicts the relationship between pulse width variation versus V_{cc}, and Figure 7 depicts pulse width variation versus temperatures.

FIGURE 6.

FIGURE 7.
9. Under any operating condition C_{X} and R_{X} must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I -R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_{X} to pins (6) and (7) or pins (14) and (15) is greater than 3 cm , for ex ample, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_{x} in each cycle of its operation so that the output pulse width will be accurate.
10. The $\mathrm{C}_{\text {EXT }}$ pins of this device are internally connected to the internal ground. For optimum system performance they should be hard wired to the system's return ground plane.
11. V_{CC} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{CC} and ground return leads do not cause interaction between one-shots. A $0.01 \mu \mathrm{~F}$ to 0.10 $\mu \mathrm{F}$ bypass capacitor (disk ceramic or monolithic type) from V_{CC} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the $\mathrm{V}_{\mathrm{CC}}-\mathrm{pin}$ as space permits.
Note: For further detailed device characteristics and output performance please refer to the NSC one-shot application note AN-372.

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS125A

Quad 3－STATE Buffers

General Description

This device contains four independent gates each of which performs a non－inverting buffer function．The outputs have the 3－STATE feature．When enabled，the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors．When disabled，both the output transistors are turned off presenting a high－impedance state to the bus line．Thus the output will act neither as a signifi－

Connection Diagram

Order Number 54LS125ADMQB，54LS125AFMQB，54LS125ALMQB， DM54LS125AJ，DM54LS125AW，DM74LS125AM or DM74LS125AN See Package Number E20A，J14A，M14A，N14A or W14B

Function Table

$Y=A$

Inputs		Output
A	C	Y
L	L	L
H	L	H
X	H	Hi－Z

$\mathrm{H}=$ High Logic Level
L＝Low Logic Level
X＝Either Low or High Logic Level
Hi－Z $=3$－STATE（Outputs are disabled）

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS125A			DM74LS125A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-1			-2.6	mA
I_{OL}	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ (\text { Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{LL}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
$\mathrm{I}_{\text {OZH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 3) } \\ & \hline \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 4)			11	20	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with the data control (C) inputs at 4.5 V and the data inputs grounded.

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$R_{L}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		15		21	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		18		22	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output		25		35	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output		25		40	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 5)		20			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 5)		20			ns

Note 5: $C_{L}=5 p F$.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS125AFMQB or DM54LS125AW
Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

FAIRCHILD
 SEMICロNロபСTロR ${ }_{\text {т }}$
 DM74LS126A
 Quad 3－STATE Buffer

General Description

This device contains four independent gates each of which performs a non－inverting buffer function．The outputs have the 3－STATE feature．When enabled，the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors．When disabled，both the output

Connection Diagram

Order Number DM74LS126AM or DM74LS126AN See Package Number M14A or N14A
Function Table
$\mathbf{Y}=\mathbf{A}$

Inputs		Output
A	C	Y
L	H	L
H	H	H
X	L	$\mathrm{Hi}-Z$

H＝High Logic Level
L＝Low Logic Level
$\mathrm{X}=$ Either Low or High Logic Level
Hi－Z $=3$－STATE（Outputs are disabled）

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air
Temperature Range
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage				V
V_{IL}	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-2.6	mA
I_{OL}	Low Level Output Current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 2) \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$			0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4	mA
$\mathrm{I}_{\mathrm{OZH}}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			-20	$\mu \mathrm{A}$
l OS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\operatorname{Max} \\ & (\text { Note 3) } \end{aligned}$	-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		12	22	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics:

for test waveforms and output load. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	DM74LS				Units
		$R_{L}=667 \Omega$				
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		15		21	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		18		22	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output		30		36	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output		30		42	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 4)		25			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 4)		25			ns

Note 4: $C_{L}=5 p F$.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS132			DM74LS132			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {T+ }}$	Positive-Going Input Threshold Voltage (Note 2)	1.4	1.6	1.9	1.4	1.6	1.9	V
$\mathrm{V}_{\text {T- }}$	Negative-Going Input Threshold Voltage (Note 2)	0.5	0.8	1	0.5	0.8	1	V
HYS	Input Hysteresis (Note 2)	0.4	0.8		0.4	0.8		V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{T}-} \text { Min } \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{T}+} \mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
$\mathrm{I}_{\text {+ }}$	Input Current at Positive-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}+}$			-0.14		mA
$\mathrm{I}_{\text {T- }}$	Input Current at Negative-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}_{-}}$			-0.18		mA
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & (\text { Note 4) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			5.9	11	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			8.2	14	mA

Note 2: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Time Low to High Level Output	5	22	8	25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	5	22	10	33	ns

\square

Physical Dimensions inches (millimeters) unless otherwise noted

DM74LS132 Quad 2-Input NAND Gates with Schmitt Trigger Inputs
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS132N
Package Number N14A

14-Lead Ceramic Flat Package (W)
Order Number DM54LS132W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor		Fairchild Semiconductor
Corporation	Europe	Hong Kong Ltd.	National Semiconductor
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)
$\begin{array}{ll}\text { Supply Voltage } & 7 \mathrm{~V} \\ \text { Input Voltage } & 7 \mathrm{~V}\end{array}$

Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2		V	
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	
I_{OL}	Low Level Output Current		V		
T_{A}	Free Air Operating Temperature	0		8	

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.2	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.6	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			10	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for Test Waveforms and Output Load)

Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		23	ns

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS138，DM74LS139 Decoders／Demultiplexers

General Description

These Schottky－clamped circuits are designed to be used in high－performance memory－decoding or data－routing applica－ tions，requiring very short propagation delay times．In high－performance memory systems these decoders can be used to minimize the effects of system decoding．When used with high－speed memories，the delay times of these decod－ ers are usually less than the typical access time of the memory．This means that the effective system delay intro－ duced by the decoder is negligible．
The LS138 decodes one－of－eight lines，based upon the con－ ditions at the three binary select inputs and the three enable inputs．Two active－low and one active－high enable inputs re－ duce the need for external gates or inverters when expand－ ing．A 24 －line decoder can be implemented with no external inverters，and a 32 －line decoder requires only one inverter． An enable input can be used as a data input for demultiplex－ ing applications．

The LS139 comprises two separate two－line－to－four－line de－ coders in a single package．The active－low enable input can be used as a data line in demultiplexing applications．
All of these decoders／demultiplexers feature fully buffered in－ puts，presenting only one normalized load to its driving cir－
cuit．All inputs are clamped with high－performance Schottky diodes to suppress line－ringing and simplify system design．

Features

－Designed specifically for high speed：
Memory decoders
Data transmission systems
－LS138 3－to－8－line decoders incorporates 3 enable inputs to simplify cascading and／or data reception
－LS139 contains two fully independent 2－to－4－line decoders／demultiplexers
－Schottky clamped for high performance
－Typical propagation delay（3 levels of logic） LS138 21 ns LS139 21 ns
－Typical power dissipation
LS138 32 mW
LS139 34 mW
－Alternate Military／Aerospace devices（54LS138， 54LS139）are available．Contact a Fairchild Semiconductor Sales Office／Distributor for specifications．

Connection Diagrams

Order Number 54LS138DMQB，54LS138FMQB，
54LS138LMQB，DM54LS138J，DM54LS138W， DM74LS138M or DM74LS138N See Package Number E20A，J16A，

M16A，N16E or W16A
Dual－in－Line Package

Order Number 54LS139DMQB，54LS139FMQB， 54LS139LMQB，DM54LS139J，DM54LS139W， DM74LS139M or DM74LS139N See Package Number E20A，J16A， M16A，N16E or W16A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS138			DM74LS138			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
'LS138 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\text { Max } \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			6.3	10	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: $I_{\text {CC }}$ is measured with all outputs enabled and open.

'LS138 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	Levels of Delay	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output	2		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output	2		27		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output	3		18		27	ns

'LS138 Switching Characteristics (Continued) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$								
Symbol	Parameter	From (Input) To (Output)	Levels of Delay	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output	3		27		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output	2		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output	2		24		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output	3		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output	3		28		40	ns

Recommended Operating Conditions

Symbol	Parameter	DM54LS139			DM74LS139			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS139 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 6) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 7)			6.8	11	mA

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 7: I_{CC} is measured with all outputs enabled and open.

'LS139 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output		27		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output		24		40	ns

Function Tables

LS138

Inputs					Outputs							
Enable		Select										
G1	G2 (Note 8)	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care
Note 8: G2 = G2A + G2B

LS139

Inputs			Outputs			
Enable	Select					
G	B	A	Y0	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

H = High Level, L = Low Level, X = Don't Care

Logic Diagrams

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A

16-Lead Ceramic Flat Package (W) Order Number 54LS138FMQB, 54LS139FMQB, DM54LS138W or DM54LS139W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

FAIRCHILD

DM74LS138，DM74LS139 Decoders／Demultiplexers

General Description

These Schottky－clamped circuits are designed to be used in high－performance memory－decoding or data－routing applica－ tions，requiring very short propagation delay times．In high－performance memory systems these decoders can be used to minimize the effects of system decoding．When used with high－speed memories，the delay times of these decod－ ers are usually less than the typical access time of the memory．This means that the effective system delay intro－ duced by the decoder is negligible．
The LS138 decodes one－of－eight lines，based upon the con－ ditions at the three binary select inputs and the three enable inputs．Two active－low and one active－high enable inputs re－ duce the need for external gates or inverters when expand－ ing．A 24 －line decoder can be implemented with no external inverters，and a 32 －line decoder requires only one inverter． An enable input can be used as a data input for demultiplex－ ing applications．

The LS139 comprises two separate two－line－to－four－line de－ coders in a single package．The active－low enable input can be used as a data line in demultiplexing applications．
All of these decoders／demultiplexers feature fully buffered in－ puts，presenting only one normalized load to its driving cir－
cuit．All inputs are clamped with high－performance Schottky diodes to suppress line－ringing and simplify system design．

Features

－Designed specifically for high speed：
Memory decoders
Data transmission systems
－LS138 3－to－8－line decoders incorporates 3 enable inputs to simplify cascading and／or data reception
－LS139 contains two fully independent 2－to－4－line decoders／demultiplexers
－Schottky clamped for high performance
－Typical propagation delay（3 levels of logic） LS138 21 ns LS139 21 ns
－Typical power dissipation
LS138 32 mW
LS139 34 mW
－Alternate Military／Aerospace devices（54LS138， 54LS139）are available．Contact a Fairchild Semiconductor Sales Office／Distributor for specifications．

Connection Diagrams

Order Number 54LS138DMQB，54LS138FMQB，
54LS138LMQB，DM54LS138J，DM54LS138W， DM74LS138M or DM74LS138N See Package Number E20A，J16A，

M16A，N16E or W16A
Dual－in－Line Package

Order Number 54LS139DMQB，54LS139FMQB， 54LS139LMQB，DM54LS139J，DM54LS139W， DM74LS139M or DM74LS139N See Package Number E20A，J16A， M16A，N16E or W16A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS138			DM74LS138			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
'LS138 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\text { Max } \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			6.3	10	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: $I_{\text {CC }}$ is measured with all outputs enabled and open.

'LS138 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	Levels of Delay	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output	2		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output	2		27		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output	3		18		27	ns

'LS138 Switching Characteristics (Continued) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$								
Symbol	Parameter	From (Input) To (Output)	Levels of Delay	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output	3		27		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output	2		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output	2		24		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output	3		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output	3		28		40	ns

Recommended Operating Conditions

Symbol	Parameter	DM54LS139			DM74LS139			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS139 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 6) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 7)			6.8	11	mA

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 7: I_{CC} is measured with all outputs enabled and open.

'LS139 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output		27		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output		24		40	ns

Function Tables

LS138

Inputs					Outputs							
Enable		Select										
G1	G2 (Note 8)	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care
Note 8: G2 = G2A + G2B

LS139

Inputs			Outputs			
Enable	Select					
G	B	A	Y0	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

H = High Level, L = Low Level, X = Don't Care

Logic Diagrams

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A

16-Lead Ceramic Flat Package (W) Order Number 54LS138FMQB, 54LS139FMQB, DM54LS138W or DM54LS139W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

FAIROHILD
 DM74LS151
 Data Selector/Multiplexer

General Description

This data selector/multiplexer contains full on-chip decoding to select the desired data source. The 'LS151 selects one-of-eight data sources. The 'LS151 has a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high, and the Y output low.
The 'LS151 features complementary W and Y outputs.
Features

- Select one-of-eight data lines

Connection Diagram

- Performs parallel-to-serial conversion
- Permits multiplexing from N lines to one line
- Also for use as Boolean function generator
- Typical average propagation delay time data input to W output 12.5 ns
- Typical power dissipation 30 mW

Truth Table

Inputs				Outputs	
	Select	Strobe	Y	W	
C	B	A	S		
X	X	X	H	L	H
L	L	L	L	D0	$\overline{\text { D0 }}$
L	L	H	L	D1	$\overline{\text { D1 }}$
L	H	L	L	D2	$\overline{\text { D2 }}$
L	H	H	L	D3	$\overline{\text { D3 }}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\text { D7 }}$

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS151			DM74LS151			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
l OS	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 4)			6	10	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with all outputs open, strobe and data select inputs at 4.5 V , and all other inputs open.

Switching Characteristics

Symbol	Parameter	From (Input) To (output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select (4 Levels) to Y		43		46	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select (4 Levels) to Y		30		36	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select (3 Levels) to W		23		25	ns

Switching Characteristics (Continued)

Symbol	Parameter	From (Input) To (output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select (3 Levels) to W		32		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		42		44	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		32		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to W		24		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to W		30		36	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { D0 thru } \mathrm{D} 7 \\ \text { to } \mathrm{Y} \end{gathered}$		32		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { D0 thru D7 } \\ \text { to } \mathrm{Y} \end{gathered}$		26		33	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { D0 thru D7 } \\ & \text { to W } \end{aligned}$		21		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { D0 thru D7 } \\ \text { to W } \end{gathered}$		20		27	ns

Logic Diagram

See Address Buffers to the Right

Address Buffers for 54LS151/74LS151

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W)
Order Number 54LS151FMQB or DM54LS151W
Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD

SEMICONDUCTOR ${ }_{\text {im }}$

DM74LS153

Dual 4-Line to 1-Line Data Selectors/Multiplexers

General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

Features

- Permits multiplexing from N lines to 1 line

Connection Diagram

Order Number 54LS153DMQB, 54LS153FMQB, 54LS153LMQB,
DM54LS153J, DM54LS153W, DM74LS153M or DM74LS153N
See Package Number E20A, J16A, M16A, N16E or W16A

- Performs at parallel-to-serial conversion
- Strobe (enable) line provided for cascading (N lines to n lines)
- High fan-out, low impedance, totem pole outputs
- Typical average propagation delay times
- From data 14 ns
- From strobe 19 ns
- From select 22 ns
- Typical power dissipation 31 mW

Logic Diagram

DS006393-2

Function Table

Select Inputs		Data Inputs				Strobe	Output
B	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	H	L
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Select inputs A and B are common to both sections
H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS153			DM74LS153			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max } \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			6.2	10	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with all outputs open and all other inputs grounded

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) to (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		15		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		26		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		29		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		38		45	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		24		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		32		40	ns

\square

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS153DMQB or DM54LS153J

Package Number J16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

DM74LS154

4-Line to 16-Line Decoder/Demultiplexer

General Description

Each of these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

Features

■ Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs

- Performs the demultiplexing function by distributing data from one input line to any one of 16 outputs
- Input clamping diodes simplify system design
- High fan-out, low-impedance, totem-pole outputs
- Typical propagation delay

3 levels of logic 23 ns
Strobe 19 ns

- Typical power dissipation 45 mW

Connection and Logic Diagrams

Order Number DM54LS154J, DM74LS154WM or DM74LS154N See Package Number J24A, M24B or N24A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS154			DM74LS154			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM74		0.25	0.4	
					0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 3) } \\ & \hline \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			9	14	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with all outputs open and all inputs grounded.

Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		30		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		30		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Output		20		25	ns

Switching Characteristics (Continued)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Output		25		35	ns

Function Table

Inputs						Outputs															
G1	G2	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L
L	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

\square

Physical Dimensions inches (millimeters) unless otherwise noted

4-Lead Ceramic Dual-In-Line Package (J) Order Number DM54LS154J Package Number J24A

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor		Fairchild Semiconductor
Corporation	Europe	Hong Kong Ltd.	National Semiconductor
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

DM74LS155/DM74LS156

Dual 2-Line to 4-Line Decoders/Demultiplexers

General Description

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C1 is inverted at its outputs and data applied at C2 is true through its outputs. The inverter following the C 1 data input permits use as a 3 -to- 8 -line decoder, or 1-to-8-line demultiplexer, without external gating. Input clamping diodes are provided on these circuits to minimize transmission-line effects and simplify system design.

Connection Diagram and Function Tables

Order Number 54LS155DMQB, 54LS155FMQB, 54LS155LMQB,
DM54LS155J, DM54LS155W,
DM74LS155M, DM74LS155N, 54LS156DMQB, 54LS156FMQB, DM54LS156J, DM54LS156W,

DM74LS156M or DM74LS156N
See Package Number E20A, J16A,
M16A, N16E or W16A

Connection Diagram and Function Tables (Continued)
3-Line-to-8-Line Decoder or
1-Line-to-8-Line Demultiplexer

Inputs				Outputs								
Select			Strobe Or Data	(0)						(6) (7)		
C (Note 1)	B	A		G (Note 2)	2Y0	Y1	Y2	Y3	Y0	Y1	Y2	
X	X	X	H	H	H	H	H	H	H	H	H	
L	L	L	L	L	H	H	H	H	H	H	H	
L	L	H	L	H	L	H	H	H	H	H	H	
L	H	L	L	H	H	L	H	H	H	H	H	
L	H	H	L	H	H	H	L	H	H	H	H	
H	L	L	L	H	H	H	H	L	H	H	H	
H	L	H	L	H	H	H	H	H	L	H	H	
H	H	L	L	H	H	H	H	H	H	L	H	
H	H	H	L	H	H	H	H	H	H	H	L	

2-Line-to-4-Line Decoder or 1-Line-to-4-Line Demultiplexer

Inputs				Outputs			
Select		Strobe	Data				
B	A	G1	C1	1 YO	1Y1	1Y2	1Y3
X	X	H	X	H	H	H	H
L	L	L	H	L	H	H	H
L	H	L	H	H	L	H	H
H	L	L	H	H	H	L	H
H	H	L	H	H	H	H	L
X	X	X	L	H	H	H	H

Inputs				Outputs			
Select	Strobe	Data					
B	A	G2	C2	2Y0	2Y1	2Y2	2Y3
X	X	H	X	H	H	H	H
L	L	L	L	L	H	H	H
L	H	L	L	H	L	H	H
H	L	L	L	H	H	L	H
H	H	L	L	H	H	H	L
X	X	X	H	H	H	H	H

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ don't care
Note 1: $\mathrm{C}=$ inputs C 1 and C 2 connected together
Note 2: $\mathrm{G}=$ inputs G 1 and G 2 connected together

Absolute Maximum Ratings (Note 3)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS155			DM74LS155			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	C

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
'LS155 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 5) } \\ & \hline \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 6)			6.1	10	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: I_{CC} is measured with all outputs open, A, B, and C 1 inputs at 4.5 V , and $\mathrm{C} 2, \mathrm{G} 1$, and G 2 inputs grounded.

'LS155 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \hline \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or G2 to } \mathrm{Y} \end{gathered}$		18		22	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or G2 to } \mathrm{Y} \end{gathered}$		27		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{A} \text { or } \mathrm{B} \\ & \text { to } \mathrm{Y} \end{aligned}$		18		24	ns

'LS155 Switching Characteristics (Continued) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A or B to Y		27		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \mathrm{Y} \end{gathered}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \mathrm{Y} \end{gathered}$		27		35	ns

Recommended Operating Conditions

Symbol	Parameter	DM54LS156			DM74LS156			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS156 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 7)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 8)			6.1	10	mA

Note 7: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: I_{CC} is measured with all outputs open, A, B, and C 1 inputs at 4.5 V , and $\mathrm{C} 2, \mathrm{G} 1$, and G 2 grounded

'LS156 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or G2 to } \mathrm{Y} \end{gathered}$		28		53	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or } \mathrm{G} 2 \text { to } \mathrm{Y} \end{gathered}$		33		43	ns

'LS156 Switching Characteristics (Continued) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A or B to Y		28		53	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A or B to Y		33		43	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \mathrm{Y} \end{gathered}$		28		53	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \mathrm{Y} \end{gathered}$		34		43	ns

Logic Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS155/DM74LS156 Dual 2-Line to 4-Line Decoders/Demultiplexers
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS155FMQB, 54LS156FMQB, DM54LS155W or DM54LS156W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe		Fairchild Semiconductor Hong Kong Ltd	National Semiconductor
Americas	Fax: +49 (0) $180-5308586$		13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com		Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch	Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English	Tel: +44 (0) 1 193-85-68-56	Hong Kong	
	Italy	Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com			Fax: +852 2314-0061	

DM74LS155/DM74LS156

Dual 2-Line to 4-Line Decoders/Demultiplexers

General Description

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C1 is inverted at its outputs and data applied at C2 is true through its outputs. The inverter following the C 1 data input permits use as a 3 -to- 8 -line decoder, or 1-to-8-line demultiplexer, without external gating. Input clamping diodes are provided on these circuits to minimize transmission-line effects and simplify system design.

Connection Diagram and Function Tables

Order Number 54LS155DMQB, 54LS155FMQB, 54LS155LMQB,
DM54LS155J, DM54LS155W,
DM74LS155M, DM74LS155N, 54LS156DMQB, 54LS156FMQB, DM54LS156J, DM54LS156W,

DM74LS156M or DM74LS156N
See Package Number E20A, J16A,
M16A, N16E or W16A

Connection Diagram and Function Tables (Continued)
3-Line-to-8-Line Decoder or
1-Line-to-8-Line Demultiplexer

Inputs				Outputs								
Select			Strobe Or Data	(0)						(6) (7)		
C (Note 1)	B	A		G (Note 2)	2Y0	Y1	Y2	Y3	Y0	Y1	Y2	
X	X	X	H	H	H	H	H	H	H	H	H	
L	L	L	L	L	H	H	H	H	H	H	H	
L	L	H	L	H	L	H	H	H	H	H	H	
L	H	L	L	H	H	L	H	H	H	H	H	
L	H	H	L	H	H	H	L	H	H	H	H	
H	L	L	L	H	H	H	H	L	H	H	H	
H	L	H	L	H	H	H	H	H	L	H	H	
H	H	L	L	H	H	H	H	H	H	L	H	
H	H	H	L	H	H	H	H	H	H	H	L	

2-Line-to-4-Line Decoder or 1-Line-to-4-Line Demultiplexer

Inputs				Outputs			
Select		Strobe	Data				
B	A	G1	C1	1 YO	1Y1	1Y2	1Y3
X	X	H	X	H	H	H	H
L	L	L	H	L	H	H	H
L	H	L	H	H	L	H	H
H	L	L	H	H	H	L	H
H	H	L	H	H	H	H	L
X	X	X	L	H	H	H	H

Inputs				Outputs			
Select	Strobe	Data					
B	A	G2	C2	2Y0	2Y1	2Y2	2Y3
X	X	H	X	H	H	H	H
L	L	L	L	L	H	H	H
L	H	L	L	H	L	H	H
H	L	L	L	H	H	L	H
H	H	L	L	H	H	H	L
X	X	X	H	H	H	H	H

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ don't care
Note 1: $\mathrm{C}=$ inputs C 1 and C 2 connected together
Note 2: $\mathrm{G}=$ inputs G 1 and G 2 connected together

Absolute Maximum Ratings (Note 3)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS155			DM74LS155			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	C

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
'LS155 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 5) } \\ & \hline \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 6)			6.1	10	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: I_{CC} is measured with all outputs open, A, B, and C 1 inputs at 4.5 V , and $\mathrm{C} 2, \mathrm{G} 1$, and G 2 inputs grounded.

'LS155 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \hline \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or G2 to } \mathrm{Y} \end{gathered}$		18		22	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or G2 to } \mathrm{Y} \end{gathered}$		27		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{A} \text { or } \mathrm{B} \\ & \text { to } \mathrm{Y} \end{aligned}$		18		24	ns

'LS155 Switching Characteristics (Continued) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A or B to Y		27		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \mathrm{Y} \end{gathered}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \mathrm{Y} \end{gathered}$		27		35	ns

Recommended Operating Conditions

Symbol	Parameter	DM54LS156			DM74LS156			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS156 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 7)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 8)			6.1	10	mA

Note 7: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: I_{CC} is measured with all outputs open, A, B, and C 1 inputs at 4.5 V , and $\mathrm{C} 2, \mathrm{G} 1$, and G 2 grounded

'LS156 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or G2 to } \mathrm{Y} \end{gathered}$		28		53	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or } \mathrm{G} 2 \text { to } \mathrm{Y} \end{gathered}$		33		43	ns

'LS156 Switching Characteristics (Continued) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A or B to Y		28		53	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A or B to Y		33		43	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \mathrm{Y} \end{gathered}$		28		53	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \mathrm{Y} \end{gathered}$		34		43	ns

Logic Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS155/DM74LS156 Dual 2-Line to 4-Line Decoders/Demultiplexers
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS155FMQB, 54LS156FMQB, DM54LS155W or DM54LS156W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe		Fairchild Semiconductor Hong Kong Ltd	National Semiconductor
Americas	Fax: +49 (0) $180-5308586$		13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com		Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch	Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English	Tel: +44 (0) 1 193-85-68-56	Hong Kong	
	Italy	Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com			Fax: +852 2314-0061	

FAIRCHILD

SEMICロNロபСTロR ${ }_{\text {т }}$

DM74LS157／DM74LS158

Quad 2－Line to 1－Line Data Selectors／Multiplexers

General Description

These data selectors／multiplexers contain inverters and driv－ ers to supply full on－chip data selection to the four output gates．A separate strobe input is provided．A 4－bit word is se－ lected from one of two sources and is routed to the four out－ puts．The LS157 presents true data whereas the LS158 pre－ sents inverted data to minimize propagation delay time．

Applications

－Expand any data input point
－Multiplex dual data buses
－Generate four functions of two variables（one variable is common）
－Source programmable counters

Features

－Buffered inputs and outputs
－Typical Propagation Time
LS157 9 ns
LS158 7 ns
－Typical Power Dissipation LS157 49 mW
LS158 24 mW

Connection Diagrams

Order Number 54LS157DMQB，54LS157FMQB， 54LS157LMQB，DM54LS157J，DM54LS157W，

DM74LS157M or DM74LS157N
See Package Number E20A，J16A，
M16A，N16E or W16A

Dual－In－Line Package

DS006396－2
Order Number 54LS158DMQB，54LS158FMQB， 54LS158LMQB，DM54LS158J，DM54LS158W， DM74LS158M or DM74LS158N
See Package Number E20A，J16A，
M16A，N16E or W16A

Function Table

Inputs				Output Y	
Strobe	Select	A	B	LS157	LS158
H	X	X	X	L	H
L	L	L	X	L	H
L	L	H	X	H	L
L	H	X	L	L	H
L	H	X	H	H	L

H＝High Level，L＝Low Level，X＝Don＇t Care

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS157			DM74LS157			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS157 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V} \end{aligned}$	S or G			0.2	mA
			A or B			0.1	
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	S or G			40	$\mu \mathrm{A}$
			A or B			20	
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	S or G			-0.8	mA
			A or B			-0.4	
I_{OS}	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			9.7	16	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 4: I_{CC} is measured with 4.5 V applied to all inputs and all outputs open.

'LS157 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		14		18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		14		23	ns

'LS157 Switching Characteristics (Continued) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		21		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		23		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		27		32	ns

Recommended Operating Conditions

Symbol	Parameter	DM54LS158			DM74LS158			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS158 Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=7 \mathrm{~V} \end{aligned}$	S or G			0.2	mA
			A or B			0.1	
I_{H}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	S or G			40	$\mu \mathrm{A}$
			A or B			20	
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \hline V_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{1}=0.4 \mathrm{~V} \end{aligned}$	S or G			-0.8	mA
			A or B			-0.4	
I_{OS}	Short Circuit Output Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 6) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 7)			4.8	8	mA

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 7: I_{CC} is measured with 4.5 V applied to all inputs and all outputs open.

'LS158 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		12		18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		12		21	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		17		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		18		28	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		24		36	ns

Logic Diagrams

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS157/DM74LS158 Quad 2-Line to 1-Line Data Selectors/Multiplexers

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A

16-Lead Ceramic Flat Package (W)
Order Number 54LS157FMQB, 54LS158FMQB, DM54LS157W or DM54LS158W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
$7 V$
Operating Free Air Temperature Range
54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range

Recommended Operating Conditions

Symbol	Parameter	54LS160A/162A			DM74LS160A/162A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW $\mathrm{P}_{\mathrm{n}} \text { to } \mathrm{CP}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW PE to CP	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { PE to } C P ~}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW CEP, CET or $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW CEP, CET or $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width, HIGH or LOW	$\begin{aligned} & 15 \\ & 25 \end{aligned}$			$\begin{array}{r} 15 \\ 25 \\ \hline \end{array}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{MR}}$ Pulse Width LOW ('160)	15			15			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP ('160)	20			20			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	54LS	2.5			V
			DM74	2.7			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	54LS			0.4	V
			DM74			0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Electrical Characteristics							
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	Other			0.1	mA
		$\overline{\text { PE, CET Inputs }}$				0.2	
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=2.7 \mathrm{~V}$	Other			20	$\mu \mathrm{A}$
		$\overline{\text { PE, CET Inputs }}$				40	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$ Inputs	54LS			-0.4	mA
			DM74			-1.6	
		$\overline{\text { PE, CET Inputs }}$				-0.8	mA
Ios	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	54LS	-20		-100	mA
			DM74	-20		-100	
${ }^{\text {I CCH }}$	Supply Current with Outputs HIGH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{PE}}=\mathrm{GND} \\ & \mathrm{CP}=\Omega, \text { Other Inputs }=4.5 \mathrm{~V} \end{aligned}$				31	mA
${ }^{\text {I CCL }}$	Supply Current with Outputs LOW	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \\ & \mathrm{CP}=\Omega \end{aligned}$				31	mA

Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{aligned} & \mathbf{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \hline \end{aligned}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	25		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to TC		$\begin{aligned} & 25 \\ & 21 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q_{n}		$\begin{aligned} & 24 \\ & 27 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CET to TC		$\begin{array}{r} 14 \\ 23 \\ \hline \end{array}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{n} ('160)		28	ns

Functional Description

The 'LS160 and 'LS162 count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The '161 and '163 count modulo-16 binary sequence. From state $15(\mathrm{HHHH})$ they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 'LS160) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('LS160), synchronous reset ('LS162), parallel load, count-up and hold. Five control inputs-Master Reset (MR, 'LS160), Synchronous Reset ($\overline{\mathrm{SR}}$, ' 'LS162), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the

Mode Select Table. A LOW signal on $\overline{M R}$ overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{\mathrm{SR}}$ overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data $\left(\mathrm{P}_{\mathrm{n}}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{\mathrm{PE}}$ and $\overline{\mathrm{MR}}$ ('LS160) or $\overline{\text { SR }}$ ('LS162) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.
The 'LS160A and 'LS162A use D-type edge-triggered flipflops and changing the $\overline{\mathrm{SR}}, \overline{\mathrm{PE}}, \mathrm{CEP}$ and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

Functional Description (Continued)

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in its maximum count state (9 for the decade counters, 15 for the binary counters). To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. These two schemes are shown in the 9310 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the decade counters of the 'LS160, 'LS162, the TC output is fully decoded and can only be HIGH in state 9. LOGIC EQUATIONS:
Count Enable $=\mathrm{CEP} \cdot \mathrm{CET} \bullet \mathrm{PE}$
$\mathrm{TC}=\mathrm{Q} 0 \bullet \mathrm{Q} 1 \bullet \mathrm{Q} 2 \bullet \mathrm{Q} 3 \cdot \mathrm{CET}$

State Diagrams

Mode Select Table					
$* \overline{\mathbf{S R}}$	$\overline{\mathbf{P E}}$	CET	CEP	Action on the Rising Clock Edge (
L	X	X	X	RESET (Clear)	
H	L	X	X	LOAD ($\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$)	
H	H	H	H	COUNT (Increment)	
H	H	L	X	NO CHANGE (Hold)	
H	H	X	L	NO CHANGE (Hold)	

*For the 'LS162
$\mathrm{H}=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

detail A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

General Description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The LS161A and LS163A are 4-bit binary counters The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of op eration. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable input The clear function for the LS161A is asynchronous; and a low level at the clear input sets all four of the flip-flop outputs low, regardless of the levels of clock, load, or enable inputs. The clear function for the LS163A is synchronous; and a low level at the clear inputs sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily, as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to all low outputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output.
Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_{A} output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs may occur, regardless of the logic level of the clock. These counters feature a fully independent clock circuit. Changes made to control inputs (enable P or T or load) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable set-up and hold times.

Features

- Synchronously programmable
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs
- Typical propagation time, clock to Q output 14 ns
- Typical clock frequency 32 MHz
- Typical power dissipation 93 mW

Connection Diagram

Order Numbers 54LS161ADMQB, 54LS161AFMQB, 54LS161ALMQB, 54LS163ADMQB, 54LS163AFMQB, 54LS163ALMQB, DM54LS161AJ, DM54LS161AW, DM54LS163AJ, DM54LS163AW, DM74LS161AM, DM74LS161AN, DM74LS163AM or DM74LS163AN
See Package Number E20A, J16A, M16A, N16E or W16A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS161A			DM74LS161A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
l_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)		0		25	0		25	MHz
	Clock Frequency (Note 3)		0		20	0		20	MHz
$t_{\text {w }}$	Pulse Width (Note 2)	Clock	20	6		20	6		ns
		Clear	20	9		20	9		
	Pulse Width (Note 3)	Clock	25			25			ns
		Clear	25			25			
t_{su}	Setup Time (Note 2)	Data	20	8		20	8		ns
		Enable P	25	17		25	17		
		Load	25	15		25	15		
	Setup Time (Note 3)	Data	20			20			ns
		Enable P	30			30			
		Load	30			30			
$t_{\text {H }}$	Hold Time (Note 2)	Data	0	-3		0	-3		ns
		Others	0	-3		0	-3		
	Hold Time (Note 3)	Data	5			5			ns
		Others	5			5			
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 2)		20			20			ns
	Clear Release Time (Note 3)		25			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.
'LS161 Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	

'LS161 Electrical Characteristics (Continued) over recommended operating free air temperature range (unless otherwise noted)									
Symbol	Parameter	Conditions			Min	Typ	Max	Units	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & \mathrm{~V}_{1}= \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \mathrm{V} \end{aligned}$	Enable T			0.2	mA	
				Clock			0.2		
				Load			0.2		
				Others			0.1		
I_{H}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{1}=2.7 \mathrm{~V} \end{aligned}$		Enable T			40	$\mu \mathrm{A}$	
				Clock			40		
				Load			40		
				Others			20		
I_{IL}	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$		Enable T			-0.8	mA	
				Clock			-0.8		
				Load			-0.8		
				Others			-0.4		
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note } 5) \end{aligned}$		DM54	-20		-100	mA	
				DM74	-20		-100		
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \text { (Note 6) } \end{aligned}$				18	31	mA	
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \text { (Note 7) } \end{aligned}$				19	32	mA	
Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 6: $\mathrm{I}_{\mathrm{CCH}}$ is measured with the load high, then again with the load low, with all other inputs high and all outputs open. Note 7: $\mathrm{I}_{\mathrm{CCL}}$ is measured with the clock input high, then again with the clock input low, with all other inputs low and all output 'LS161 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$									
Symbol	Parameter		From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units	
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$					
			Min	Max	Min	Max			
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency				25		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output			Clock to Ripple Carry		25		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Clock to Ripple Carry		30		38	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		$\begin{gathered} \text { Clock to Any Q } \\ \text { (Load High) } \end{gathered}$		22		27	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Clock to Any Q (Load High)		27		38	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		Clock to Any Q (Load Low)		24		30	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Clock to Any Q (Load Low)		27		38	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		Enable T to Ripple Carry		14		27	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Enable T to Ripple Carry		15		27	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Clear to Any Q		28		45	ns	

Recommended Operating Conditions

Symbol	Parameter		DM54LS163A			DM74LS163A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
l_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 8)		0		25	0		25	MHz
	Clock Frequency (Note 9)		0		20	0		20	MHz
t_{w}	Pulse Width (Note 8)	Clock	20	6		20	6		ns
		Clear	20	9		20	9		
	Pulse Width (Note 9)	Clock	25			25			ns
		Clear	25			25			
$\mathrm{t}_{\text {su }}$	Setup Time (Note 8)	Data	20	8		20	8		ns
		Enable P	25	17		25	17		
		Load	25	15		25	15		
	Setup Time (Note 9)	Data	20			20			ns
		Enable P	30			30			
		Load	30			30			
t_{H}	Hold Time (Note 8)	Data	0	-3		0	-3		ns
		Others	0	-3		0	-3		
	Hold Time (Note 9)	Data	5			5			ns
		Others	5			5			
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 8)		20			20			ns
	Clear Release Time (Note 9)		25			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 8: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 9: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS163 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{l}}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		v
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \mathrm{V}_{1}=7 \mathrm{~V} \end{aligned}$	Enable T			0.2	mA
			Clock, Clear			0.2	
			Load			0.2	
			Others			0.1	
I_{H}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	Enable T			40	$\mu \mathrm{A}$
			Load			40	
			Clock, Clear			40	
			Others			20	

Note 14: The propagation delay clear to output is measured from the clock input transition.

Logic Diagram

The LS161A is similar, however, the clear buffer is connected directly to the flip flops.

Parameter Measurement Information

Note 15: The input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%, Z_{\text {OUT }} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$. Vary PRR to measure $\mathrm{f}_{\text {MAX }}$.
Note 16: Outputs Q_{D} and carry are tested at t_{n+16} where t_{n} is the bit time when all outputs are low.
Note 17: $\mathrm{V}_{\text {REF }}=1.5 \mathrm{~V}$.

Note 18: The input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$. Vary PRR to measure $\mathrm{f}_{\mathrm{MAX}}$.
Note 19: Enable P and enable T setup times are measured at t_{n+0}.
Note 20: $V_{\text {REF }}=1.3 \mathrm{~V}$.

Timing Diagram

Sequence:
(1) Clear outputs to zero
(2) Preset to binary twelve
(3) Count to thirteen, fourteen, fifteen, zero, one, and two
(4) Inhibit
\square

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J) Order Numbers 54LS161ADMQB, 54LS163ADMQB, DM54LS161AJ or DM54LS163AJ

Package Number J16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS164			DM74LS164			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
l_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 5)		0		25	0		25	MHz
t_{w}	Pulse Width (Note 5)	Clock	20			20			ns
		Clear	20			20			
$\mathrm{t}_{\text {Su }}$	Data Setup Time (Note 5)		17			17			ns
t_{H}	Data Hold Time (Note 5)		5			5			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 5)		30			30			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" tables will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\operatorname{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 4)			16	27	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with all outputs open, the SERIAL input grounded, the CLOCK input at 2.4 V , and a momentary ground, then 4.5 V , applied to the CLEAR input.
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$.

Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25				MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output		27		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		32		40	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		36		45	ns

Timing Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS164DMQB or DM54LS164J

Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS164FMQB or DM54LS164W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Europe Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD

General Description

This device is an 8－bit serial shift register which shifts data in the direction of Q_{A} toward Q_{H} when clocked．Parallel－in ac－ cess is made available by eight individual direct data inputs， which are enabled by a low level at the shift／load input These registers also feature gated clock inputs and comple－ mentary outputs from the eighth bit．
Clocking is accomplished through a 2 －input NOR gate，per－ mitting one input to be used as a clock－inhibit function．Hold－ ing either of the clock inputs high inhibits clocking，and hold－ ing either clock input low with the load input high enables the other clock input．The clock－inhibit input should be changed to the high level only while the clock input is high．Parallel
loading is inhibited as long as the load input is high．Data at the parallel inputs are loaded directly into the register on a high－to－low transition of the shift／load input，regardless of the logic levels on the clock，clock inhibit，or serial inputs．

Features

－Complementary outputs
－Direct overriding（data）inputs
－Gated clock inputs
－Parallel－to－serial data conversion
－Typical frequency 35 MHz
－Typical power dissipation 105 mW

Connection Diagram

Order Number DM54LS165J，DM54LS165W，DM74LS165WM or DM74LS165N See Package Number J16A，M16B，N16E or W16A

Function Table

Inputs					Internal Outputs		Output \mathbf{Q}_{H}
Shift/ Load	Clock Inhibit	Clock	Serial	Parallel			
				A...H	$\mathbf{Q}_{\mathbf{A}}$	Q_{B}	
L	X	X	X	a...h	a	b	h
H	L	L	X	X	$\mathrm{Q}_{\text {AO }}$	$\mathrm{Q}_{\text {Bo }}$	$\mathrm{Q}_{\text {Ho }}$
H	L	\uparrow	H	X	H	$Q_{\text {An }}$	$Q_{G n}$
H	L	\uparrow	L	X	L	$Q_{\text {An }}$	$Q_{\text {Gn }}$
H	H	X	X	X	$\mathrm{Q}_{\text {AO }}$	$\mathrm{Q}_{\text {B0 }}$	$\mathrm{Q}_{\text {Ho }}$

H = High Level (steady state), L = Low Level (steady state)
X = Don't Care (any input, including transitions)
$X=$ Don't Care (any input, including tr
$\uparrow=$ Transition from low-to-high level
a...h = The level of steady-state input at inputs A through H, respectively.
$Q_{A 0}, Q_{B 0}, Q_{H 0}=$ The level of Q_{A}, Q_{B}, or Q_{H}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{G n}=$ The level of Q_{A} or Q_{G}, respectively, before the most recent \uparrow transition of the clock.

Electrical Characteristics (Continued)
Note 7: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\frac{\text { DM54LS }}{\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}}$		$\frac{\text { DM74LS }}{C_{L}=15 \mathrm{pF}}$		$\begin{gathered} \hline \text { DM74LS } \\ \hline \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		Units
			Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		25		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Load to Any Q		30		35		37	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Load to Any Q		30		35		42	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		30		40		42	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		30		40		47	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{H} \\ \text { to } \mathrm{Q}_{\mathrm{H}} \end{gathered}$		20		25		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{H} \\ \text { to } \mathrm{Q}_{\mathrm{H}} \end{gathered}$		30		30		37	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{H} \\ \text { to } \overline{\mathrm{Q}}_{\mathrm{H}} \end{gathered}$		30		30		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{H} \\ \text { to } \overline{\mathrm{Q}}_{\mathrm{H}} \end{gathered}$		25		25		32	ns

Timing Diagram

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J) Order Number DM54LS165J Package Number J16A

16-Lead Wide Small Outline Molded Package (M)
 Order Number DM74LS165WM

Package Number M16B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range DM74LS
Storage Temperature Range

Recommended Operating Conditions

Symbol	Parameter		DM74LS166			Units
			Min	Nom	Max	
V_{Cc}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
l_{OL}	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)		0		25	MHz
	Clock Frequency (Note 3)		0		20	MHz
$t_{\text {w }}$	Pulse Width (Note 7)	Clock	20			ns
		Clear	20			
$\mathrm{t}_{\text {su }}$	Setup Time (Note 7)	Mode	30			ns
		Data	20			
t_{H}	Hold Time (Note 7)		0			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4	mA
l_{OS}	Short Circuit Output Current	$V_{C c}=\operatorname{Max}$ (Note 5)	-20		-100	mA
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 6)		22	38	mA

Note 2: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: With all outputs open, 4.5 V applied to the serial input, all other inputs except the CLOCK grounded, I_{CC} is measured after a momentary ground, then 4.5 V is applied to the CLOCK.
Note 7: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output	8	35		38	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output	8	35		41	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output	6	30		36	ns

Parameter Measurement Information

Test Table for Synchronous Inputs

Data Input for Test	Shift/Load	Output Tested (See Note C)
H Serial Input	0 V	Q_{H} at $\mathrm{T}_{\mathrm{N}+1}$

Note A:The clock pulse has the following characteristics: $\mathrm{t}_{\mathrm{W} \text { (clock) }} \geq 20 \mathrm{~ns}$ and $\mathrm{PRR}=1 \mathrm{MHz}$. The clear pulse has the following characteristics: $\mathrm{t}_{\mathrm{W} \text { (clear) }} \geq 20 \mathrm{~ns}$ and HOLD $=0 \mathrm{~ns}$. When testing $\mathrm{f}_{\text {MAX }}$, vary the clock PRR.
Note B:A clear pulse is applied prior to each test.
Note C:Propagation delay times ($t_{P L H}$ and $t_{P H L}$) are measured at t_{n+1}. Proper shifting of data is verified at t_{n+8} with a functional test.
Note D: $\mathrm{t}_{\mathrm{n}}=$ bit time before clocking transition
$t_{n+1}=$ bit time after one clocking transition
$\mathrm{t}_{\mathrm{n}+8}=$ bit time after eight clocking transitions
Note $\mathrm{E}: \mathrm{V}_{\mathrm{REF}}=1.3 \mathrm{~V}$.

Logic Diagram

Timing Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Wide Small Outline Molded Package (M) Order Number DM74LS166WM Package Number M16B

DM74LS166 8-Bit Parallel-In/Serial-Out Shift Registers
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS169A

Synchronous 4－Bit Up／Down Binary Counter

General Description

This synchronous presettable counter features an internal carry look－ahead for cascading in high－speed counting appli－ cations．Synchronous operation is provided by having all flip－flops clocked simultaneously，so that the outputs all change at the same time when so instructed by the count－enable inputs and internal gating．This mode of opera－ tion helps eliminate the output counting spikes that are nor－ mally associated with asynchronous（ripple clock）counters． A buffered clock input triggers the four master－slave flip－flops on the rising edge of the clock waveform．
This counter is fully programmable；that is，the outputs may each be preset either high or low．The load input circuitry al－ lows loading with the carry－enable output of cascaded counters．As loading is synchronous，setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse．
The carry look－ahead circuitry permits cascading counters for n－bit synchronous applications without additional gating． Both count－enable inputs（ $\overline{\mathrm{P}}$ and $\overline{\mathrm{T}}$ ）must be low to count． The direction of the count is determined by the level of the up／down input．When the input is high，the counter counts up；when low，it counts down．Input $\overline{\mathrm{T}}$ is fed forward to enable
the carry outputs．The carry output thus enabled will produce a low－level output pulse with a duration approximately equal to the high portion of the Q_{A} output when counting up，and approximately equal to the low portion of the Q_{A} output when counting down．This low－level overflow carry pulse can be used to enable successively cascaded stages．Transitions at the enable P or T inputs are allowed regardless of the level of the clock input．All inputs are diode clamped to minimize transmission－line effects，thereby simplifying system design． This counter features a fully independent clock circuit． Changes at control inputs（enable $\overline{\mathrm{P}}$ ，enable $\overline{\mathrm{T}}$ ，load，up／ down），which modify the operating mode，have no effect until clocking occurs．The function of the counter（whether en－ abled，disabled，loading，or counting）will be dictated solely by the conditions meeting the stable setup and hold times．

Features

－Fully synchronous operation for counting and programming．
－Internal look－ahead for fast counting．
－Carry output for n－bit cascading．
－Fully independent clock circuit

Connection Diagram

Order Number 54LS169DMQB，54LS169FMQB，54LS169LMQB， DM54LS169AJ，DM54LS169AW，DM74LS169AM or DM74LS169AN See Package Number E20A，J16A，M16A，N16E or W16A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS169A			DM74LS169A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
l_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {cLK }}$	Clock Frequency (Note 2)		0		25	0		25	MHz
	Clock Frequency (Note 3)		0		20	0		20	MHz
t_{w}	Clock Pulse Width (Note 4)		25			25			ns
$t_{\text {su }}$	Setup Time (Note 4)	Data	20			20			ns
		$\begin{aligned} & \text { Enable } \\ & \overline{\mathrm{T}} \text { or } \overline{\mathrm{P}} \end{aligned}$	20			20			
		Load	25			25			
		U/D	30			30			
t_{H}	Hold Time (Note 4)		0			0			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=7 \mathrm{~V} \end{aligned}$	Enable $\overline{\text { T }}$			0.2	mA
			Others			0.1	
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	Enable T			40	$\mu \mathrm{A}$
			Others			20	
$I_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & V_{c c}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	Enable $\overline{\text { T }}$			-0.8	mA
			Others			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{c \mathrm{c}}=\operatorname{Max} \\ & \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \hline \text { DM54 } \\ & \hline \text { DM74 } \end{aligned}$	-20		-100	mA
				-20		-100	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 7)			20	34	mA

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 7: I_{CC} is measured after a momentary 4.5 V , then ground, is applied to the CLOCK with all other inputs grounded and all the outputs open.

Switching Characteristic

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Ripple Carry		35		39	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Ripple Carry		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		23		32	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable $\overline{\mathrm{T}}$ to Ripple Carry		18		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable $\overline{\mathrm{T}}$ to Ripple Carry		18		28	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Up/Down to Ripple Carry (Note 8)		25		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Up/Down to Ripple Carry (Note 8)		29		38	ns

Note 8: The propagation delay from UP/DOWN to RIPPLE CARRY must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum, the ripple carry output transition will be in phase. If the count is maximum, the ripple carry output will be out of phase.

Timing Diagram
LS169A Binary Counters
Typical Load, Count, and Inhibit Sequences

DS006401-3

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

National Semicondu	tor \quad January 1992	
DM74LS170 4×4 Register File with Open-Collector Outputs		
	Features	
General Description The 'LS170 contains 16 high speed, low power, transparent	- Simultaneous read/witit operation	
D-type latches aranged as tour worts of four bits each, to funcion as as a 4×4 register file, Separate read and wite	- Expandable to 512 words of n .bits	
inputs, both address and enable, alow simuttaneous read L. Low leakage open--collectoro outputs for expansion		
to connect up to 128 outputs in a wired-AND configuration to increase the word capacity up to 512 words. Any numberof these devices can be operated in parallel to generate an n-bit tength. The ' 670 provides a similar function to this de-		
Connection Diagram	Logic Symbol	
Dual-n-L-Line Package		
Order Number DM74LS170WM or DM74LS170N See NS Package Number M16B or N16E		

Pin Names	Description
D1-D4	Data Inputs
WA0-WA1	Write Address Inputs
$\overline{\text { WE }}$	Write Enable Input (Active LOW)
RA0, RA1	Read Address Inputs
$\overline{\text { RE }}$	Read Enable Input (Active LOW)
O1-O4	Data Outputs

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS170			Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			V
V_{IL}	Low Level Input Voltage			0.8	V
V_{OH}	High Level Output Voltage			5.5	V
IOL	Low Level Output Current			8	mA
T_{A}	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {s }}$	Setup Time HIGH or LOW Dn to Rising WE	10			ns
$t_{\text {h }}$	Hold Time HIGH or LOW Dn to Rising WE	5.0			ns
$\mathrm{t}_{\text {s }}$	Setup Time HIGH or LOW WAn to Falling $\overline{\text { WE }}$	10			ns
$t_{\text {h }}$	Hold Time HIGH or LOW WAn to Rising $\overline{\mathrm{WE}}$	5.0			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { WE }}$ or $\overline{\mathrm{RE}}$ Pulse Width LOW	25			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Uints
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	Dns, RAO, WA0			0.1	mA
			$\overline{\text { WE, }} \overline{\mathrm{RE}}$			0.2	
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	Inputs			20	$\mu \mathrm{A}$
			$\overline{\mathrm{RE}}, \overline{\mathrm{WE}}$			40	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	$\overline{\mathrm{RE}}, \overline{\mathrm{WE}}$	-0.06		-0.8	mA
			RA1, WA1	-0.05		-0.4	
			DATA, RAO, WAO	-0.03		-0.4	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	DM74	-20		-100	mA
${ }^{\text {ICC }}$	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{Dn}, \overline{\mathrm{WE}}, \\ & \overline{\mathrm{RE}}=4.5 \mathrm{~V}, \text { WAn, RAn }=\mathrm{GND} \end{aligned}$				40	mA

*Measured at least 25 ns after entry of new data at selected location.

Switching Waveforms

Write Function Table

Write Inputs			D Inputs to
$\overline{\text { WE }}$	WA1	WAO	
L	L	L	Word 0
L	L	H	Word 1
L	H	L	Word 2
L	H	H	Word 3
H	X	X	None (Hold)

Read Inputs			Outputs from
$\overline{\mathbf{R E}}$	RA1	RAO	
L	L	L	Word 0
L	L	H	Word 1
L	H	L	Word 2
L	H	H	Word 3
H	X	X	None (High Z)

$H=H I G H$ Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Diagram

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage

Operating Free Air Temperature Range	
54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		54LS173			DM74LS173A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-1			-2.6	mA
lOL	Low Level Output Current				12			24	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 1)		30			0		30	MHz
	Clock Frequency (Note 2)					0		20	MHz
tw	Pulse Width (Note 3)	Clock	20			17			ns
		Clear	17			17			
tsu	Setup Time (Note 3)	Enable	17			23			ns
		Data	15			15			
t_{H}	Hold Time (Note 3)	Enable	0			0			ns
		Data	5			0			
$\mathrm{t}_{\text {REL }}$	Clear Release Time		10			10			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $C_{L}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=150 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4			V
V OL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	54LS			0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
IOZH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
IozL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & (\text { Note 5) } \end{aligned}$	54LS	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 6)			17	30	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)	54LS		DM74LS		Units
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency		30		20		ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output		28		25	ns
${ }^{\text {PPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		28		28	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		30		30	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output	Output Control (M or N) to Any Q		23		26	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output	Output Control (M or N) to Any Q		28		24	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 7)	Output Control (M or N) to Any Q		17		17	ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 7)	Output Control (M or N) to Any Q		23		25	ns

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: I_{CC} is measured with all outputs open: Clear grounded after a momentary 4.5 V ; N, G1, G2 and all data inputs grounded: and the CLOCK and M input at 4.5 V .

Note 7: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Physical Dimensions inches (millimeters) (Continued)

16-Lead Small Outline Molded Package (M)
Order Number DM74LS173AM
NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Function Table

(Each Flip-Flop)

Inputs				Outputs	
Clear	Clock	D	Q	$\overline{\mathbf{Q} ~ t}$	
L	X	X	L	H	
H	\uparrow	H	H	L	
H	\uparrow	L	L	H	
H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$	

H = High Level (steady state)
$\mathrm{L}=$ Low Level (steady state)
X = Don't Care
$\uparrow=$ Transition from low to high level
$Q_{0}=$ The level of Q before the indicated steady-state input conditions were established.
$\dagger=$ LS175 only

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS174			DM74LS174			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
I_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)		0		30	0		30	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 3)		0		25	0		25	MHz
$t_{\text {w }}$	Pulse Width (Note 7)	Clock	20			20			ns
		Clear	20			20			
$\mathrm{t}_{\text {su }}$	Data Setup Time (Note 7)		20			20			ns
t_{H}	Data Hold Time (Note 7)		0			0			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 7)		25			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.									

'LS174 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current@Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	Clock			-0.4	
			Clear			-0.4	mA
			Data			-0.36	
l OS	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 5) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 6)			16	26	mA

Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V applied to the clock.
Note 7: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS174 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output		30		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		30		36	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		35		42	ns

Recommended Operating Conditions

Symbol	Parameter		DM54LS175			DM74LS175			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
$\mathrm{l}_{\text {OL }}$	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 8)		0		30	0		30	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 9)		0		25	0		25	MHz
t_{w}	Pulse Width (Note 10)	Clock	20			20			ns
		Clear	20			20			
t_{su}	Data Setup Time (Note 10)		20			20			ns
t_{H}	Data Hold Time (Note 10)		0			0			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 10)		25			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 8: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 9: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 10: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$.

'LS175 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current@Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	Clock			-0.4	
			Clear			-0.4	mA
			Data			-0.36	
los	Short Circuit Output Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & \text { (Note 12) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max (Note 13)			11	18	mA

'LS175 Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or $\overline{\mathrm{Q}}$		30		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or $\overline{\mathrm{Q}}$		30		36	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clear to \bar{Q}		25		29	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Q		35		42	ns

Note 11: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 12: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 13: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V applied to the clock input.

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W)
Order Number 54LS174FMQB, 54LS175FMQB, DM54LS174W or DM54LS175W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor	National Semiconductor
Americas	Fax: +49 (0) $180-5308586$	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 193-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD				
SEMICONDUCTOR ${ }_{\text {im }}$				
DM74LS181				
4-Bit Arithmetic Logic Unit				
General Description			Features	
The 'LS181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations.			Provides 16 arithmetic compare, double, plus - Provides all 16 logic exclusive-OR, compa ten other logic operati long words	
Connection Diagram				
Dual-In-Line Package				
		$\overline{\mathrm{A}} 0-2$	23 - $\overline{\text { A }} 1$	
		$\mathrm{S3}^{-3}$	$22-\overline{\text { B1 }}$	
		S2-4	$21-\overline{\text { A } 2}$	
		S1-5	20 - ${ }^{\text {¢ } 2}$	
		S0-6	19 - ${ }^{\text {A }}$ 3	
		$\mathrm{c}_{\mathrm{n}}-7$	18 -行	
		M-8	${ }_{17}-\overline{\text { G }}$	
		F0-9	$16-c_{n+4}$	
		F1-10	15 - $\overline{\text { P }}$	
		F2- 11	$14-\mathrm{A}=\mathrm{B}$	
		No- 12	$13-\overline{\text { F }} 3$	
Order Number DM54LS181J, DM54LS181W or DM74LS181N See Package Number J24A, N24A or W24C				
	Pin Names		Description	
	$\overline{\mathrm{A}} 0-\overline{\mathrm{A}} 3$	Operand In	ts (Active LOW)	
	$\overline{\text { B }}$ - $-\overline{\mathrm{B}} 3$	Operand In	ts (Active LOW)	
	S0-S3	Function Se	ect Inputs	
	M	Mode Contro	Input	
	C_{n}	Carry Input		
	$\overline{\mathrm{F}} 0-\overline{\mathrm{F}} 3$	Function O	puts (Active Low)	
	$A=B$	Comparator	Output	
	$\overline{\mathrm{G}}$	Carry Gene	ate Output (Active LOW)	
		Carry Propa	ate Output (Active LOW)	
	$\mathrm{C}_{\mathrm{n}+4}$	Carry Outpu		

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range DM74LS
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS181		DM74LS181			Units
		Min	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		0.7			0.8	V
IOH	High Level Output Current		-0.4			-0.4	mA
I_{OL}	Low Level Output Current		4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55	125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{1}=10 \mathrm{~V}(\mathrm{DM} 54) \end{aligned}$	M input \bar{A}_{n}, \bar{B}_{n} S_{n} C_{n}			$\begin{aligned} & \hline 0.1 \\ & 0.3 \\ & 0.4 \\ & 0.5 \\ & \hline \end{aligned}$	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	$\begin{aligned} & \hline \text { M input } \\ & \bar{A}_{n}, \bar{B}_{n} \\ & S_{n} \\ & C_{n} \\ & \hline \end{aligned}$			$\begin{gathered} \hline 20 \\ 60 \\ 80 \\ 100 \end{gathered}$	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	M input \bar{A}_{n}, \bar{B}_{n} S_{n} C_{n}			$\begin{aligned} & \hline-0.4 \\ & -1.2 \\ & -1.6 \\ & -2.0 \end{aligned}$	mA
$\mathrm{I}_{\text {OS }}$	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)		-20		-100	mA
I_{cc}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{~B}}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}=\mathrm{GND} \\ & \mathrm{~S}_{\mathrm{n}}, \mathrm{M}, \overline{\mathrm{~A}}_{\mathrm{n}}=4.5 \mathrm{~V} \end{aligned}$	DM54			35	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second

Switching Characteristics:

for test waveforms and output load. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	$\begin{gathered} \text { DM54/DM74LS } \\ \hline C_{L}=15 \mathrm{pF} \end{gathered}$		Units
			Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{C}_{\mathrm{n}} \text { to } \mathrm{C}_{\mathrm{n}+4}$	$\mathrm{M}=$ GND		$\begin{aligned} & 27 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C_{n} to $\overline{\mathrm{F}}$	$\mathrm{M}=\mathrm{GND}$		$\begin{aligned} & 26 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{G}}$ (Sum)	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\mathrm{GND} ; \\ & \mathrm{S}_{1}, \mathrm{~S}_{3}=4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 29 \\ & 23 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{G}}$ (Diff)	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\mathrm{GND} ; \\ & \mathrm{S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 32 \\ & 26 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{P}}$ (Sum)	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\mathrm{GND} ; \\ & \mathrm{S}_{0}, \mathrm{~S}_{3}=4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{P}}$ (Diff)	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\mathrm{GND} ; \\ & \mathrm{S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 30 \\ & 33 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}_{\mathrm{i}}$ or $\overline{\mathrm{B}}_{\mathrm{i}}$ to $\overline{\mathrm{F}}_{\mathrm{i}}$ (Sum)	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\mathrm{GND} ; \\ & \mathrm{S}_{0}, \mathrm{~S}_{3}=4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 32 \\ & 25 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}_{\mathrm{i}}$ or $\overline{\mathrm{B}}_{\mathrm{i}}$ to $\overline{\mathrm{F}}_{\mathrm{i}}$ (Diff)	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\mathrm{GND} ; \\ & \mathrm{S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 32 \\ & 33 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{F}}$ (Logic)	$\mathrm{M}=4.5 \mathrm{~V}$		$\begin{aligned} & 33 \\ & 29 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\mathrm{C}_{\mathrm{n}+4}$ (Sum)	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{1}, \mathrm{~S}_{2}=\mathrm{GND} ; \\ & \mathrm{S}_{0}, \mathrm{~S}_{3}=4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{A} or \bar{B} to C_{n+4} (Diff)	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\mathrm{GND} ; \\ & \mathrm{S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 41 \\ & 41 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\mathrm{A}=\mathrm{B}$	$\begin{aligned} & \mathrm{M}, \mathrm{~S}_{0}, \mathrm{~S}_{3}=\mathrm{GND} ; \\ & \mathrm{S}_{1}, \mathrm{~S}_{2}=4.5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 62 \end{aligned}$	ns

Sum Mode Test Table 1 Function Inputs

Symbol	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test
		$\begin{gathered} \hline \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Apply } \\ \text { GND } \end{gathered}$	$\begin{gathered} \hline \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	$\overline{\bar{A}}_{i}$	\bar{B}_{i}	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	C_{n}	\bar{F}_{i}
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{B}_{i}	$\overline{\bar{A}}_{i}$	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	C_{n}	\bar{F}_{i}
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	$\overline{\text { A }}$	$\overline{\text { B }}$	None	None	$\begin{gathered} \begin{array}{c} \text { Remaining } \\ \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \\ \hline \end{array} \\ \hline \end{gathered}$	$\overline{\bar{p}}$
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\text {PHL }}$	$\overline{\text { B }}$	$\overline{\mathrm{A}}$	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\mathrm{P}}$
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	$\overline{\mathrm{A}}$	None	$\overline{\bar{B}}$	Remaining $\overline{\mathrm{B}}$	Remaining \bar{A}, C_{n}	$\overline{\mathrm{G}}$
$t_{\text {PLH }}$ $\mathrm{t}_{\text {PHL }}$	$\overline{\text { B }}$	None	$\overline{\text { A }}$	Remaining \bar{B}	Remaining $\overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\mathrm{G}}$
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{A}	None	$\overline{\text { B }}$	$\begin{gathered} \text { Remaining } \\ \bar{B} \\ \hline \end{gathered}$	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \\ \hline \end{gathered}$	C_{n+4}

Sum Mode Test Table 1 Function Inputs (Continued)

Symbol	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test
		$\begin{gathered} \hline \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND	$\begin{gathered} \hline \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	\bar{B}	None	$\overline{\mathrm{A}}$	Remaining \bar{B}	Remaining $\overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}}$	$\mathrm{C}_{\mathrm{n}+4}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	C_{n}	None	None	$\begin{aligned} & \mathrm{All} \\ & \overline{\mathrm{~A}} \end{aligned}$	$\begin{gathered} \hline \text { All } \\ \bar{B} \end{gathered}$	$\begin{aligned} & \text { Any } \bar{F} \\ & \text { or } C_{n+4} \end{aligned}$

Diff Mode Test Table 2 Function Inputs
 $\mathrm{S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$, S0 $=$ S3 $=\mathrm{M}=0 \mathrm{~V}$

Symbol	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test
		$\begin{gathered} \hline \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Apply } \\ \text { GND } \end{gathered}$	$\begin{gathered} \hline \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND	
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & t_{\mathrm{pHHL}} \\ & \hline \end{aligned}$	$\overline{\mathrm{A}}$	None	\bar{B}	$\begin{gathered} \hline \text { Remaining } \\ \bar{A} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Remaining } \\ \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \\ \hline \end{gathered}$	\bar{F}_{i}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\overline{\bar{B}}$	$\overline{\mathrm{A}}$	None	$\begin{gathered} \text { Remaining } \\ \bar{A} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Remaining } \\ \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \\ \hline \end{gathered}$	\bar{F}_{i}
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	$\overline{\mathrm{A}}$	None	$\overline{\text { B }}$	None	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}} . \mathrm{C}_{\mathrm{n}} \end{gathered}$	$\overline{\text { P }}$
$\begin{aligned} & \hline \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$	$\overline{\text { B }}$	\bar{A}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\text { P }}$
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\overline{\mathrm{A}}$	$\overline{\text { B }}$	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\mathrm{G}}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \\ & \hline \end{aligned}$	\bar{B}	None	$\overline{\mathrm{A}}$	None	$\begin{aligned} & \hline \text { Remaining } \\ & \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \\ & \hline \end{aligned}$	$\overline{\mathrm{G}}$
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHHL }} \end{aligned}$	$\overline{\mathrm{A}}$	None	\bar{B}	$\begin{gathered} \text { Remaining } \\ \bar{A} \\ \hline \end{gathered}$	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \\ \hline \end{gathered}$	$\mathrm{A}=\mathrm{B}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\overline{\text { B }}$	$\overline{\text { A }}$	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \end{aligned}$	Remaining \bar{B}, C_{n}	$A=B$
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	$\overline{\text { A }}$	$\overline{\text { B }}$	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	C_{n+4}
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	$\overline{\text { B }}$	None	$\overline{\mathrm{A}}$	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	C_{n+4}
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	C_{n}	None	None	$\begin{gathered} \text { All } \\ \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}} \end{gathered}$	None	$\mathrm{C}_{\mathrm{n}+4}$

Logic Mode Test Table 3 Function Inputs

Symbol	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test
		$\begin{gathered} \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND	$\begin{gathered} \hline \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\overline{\mathrm{A}}$	\bar{B}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	Any $\overline{\mathrm{F}}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	\bar{B}	$\overline{\mathrm{A}}$	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	Any F

Functional Description

The 'LS181 is a 4 -bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs (S0-S3) and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations
When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4 -bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $\mathrm{C}_{\mathrm{n}+4}$ output, or for carry lookahead between packages using the signals $\overline{\mathrm{P}}$ (Carry Propagate) and $\overline{\mathrm{G}}$ (Carry Generate). In the ADD mode, $\overline{\mathrm{P}}$ indicates that $\overline{\mathrm{F}}$ is 15 or more, while $\overline{\mathrm{G}}$ indicates that F is 16 or more. In the SUBTRACT mode, P indicates that F is zero or less, while \bar{G} indicates that \bar{F} is less than zero. \bar{P} and $\overline{\mathrm{G}}$ are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output $\left(\mathrm{C}_{\mathrm{n}+4}\right)$ signal to the Carry input $\left(\mathrm{C}_{n}\right)$ of the next unit. For high speed operation the device is used in conjunction with the 9342 or 93 S42 carry lookahead circuit. One carry lookahead package is re-
quired for each group of four 'LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.
The $A=B$ output from the device goes HIGH when all four \bar{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The $\mathrm{A}=\mathrm{B}$ output is open-collector and can be wired-AND with other $A=B$ outputs to give a comparison for more than four bits. The $A=B$ signal can also be used with the C_{n+4} signal to indicate $A>B$ and $A<B$.
The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

Function Table

Mode Select Inputs				Active LOW Operands \& F_{n} Outputs		Active HIGH Operands \& F_{n} Outputs	
S3	S2	S1	S0	Logic $(M=H)$	Arithmetic (Note 5) $(M=L)\left(C_{n}=L\right)$	Logic $(M=H)$	Arithmetic (Note 5) $(M=L)\left(C_{n}=H\right)$
L	L	L	L	$\overline{\mathrm{A}}$	A minus 1	$\overline{\mathrm{A}}$	A
L	L	L	H	$\overline{\mathrm{AB}}$	$A B$ minus 1	$\overline{A+B}$	$A+B$
L	L	H	L	$\overline{A+B}$	$A \bar{B}$ minus 1	$\bar{A} B$	$A+\bar{B}$
L	L	H	H	Logic 1	minus 1	Logic 0	minus 1
L	H	L	L	$\overline{A+B}$	A plus ($\mathrm{A}+\overline{\mathrm{B}})$	$\overline{\mathrm{AB}}$	A plus $A \bar{B}$
L	H	L	H	\bar{B}	$A B$ plus $(A+\bar{B})$	$\overline{\mathrm{B}}$	$(A+B)$ plus $A \bar{B}$
L	H	H	L	$\overline{\mathrm{A} \oplus \mathrm{B}}$	A minus B minus 1	$A \oplus B$	A minus B minus 1
L	H	H	H	$A+\bar{B}$	$\mathrm{A}+\overline{\mathrm{B}}$	$A \bar{B}$	$A B$ minus 1
H	L	L	L	$\overline{\mathrm{A}} \mathrm{B}$	A plus ($A+B$)	$\bar{A}+B$	A plus $A B$
H	L	L	H	$A \oplus B$	A plus B	$\bar{A} \oplus \bar{B}$	A plus B
H	L	H	L	B	$A \bar{B}$ plus $(A+B)$	B	$(A+\bar{B})$ plus $A B$
H	L	H	H	$A+B$	$A+B$	AB	$A B$ minus 1
H	H	L	L	Logic 0	A plus A (Note 4)	Logic 1	A plus A (Note 4)
H	H	L	H	$A \bar{B}$	AB plus A	A $+\bar{B}$	$(A+B)$ plus A
H	H	H	L	$A B$	$A \bar{B}$ minus A	$A+B$	$(A+\bar{B})$ plus A
H	H	H	H	A	A	A	A minus 1

Note 4: Each bit is shifted to the next most significant position.
Note 5: Arithmetic operations expressed in 2s complement notation.

Logic Symbols

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 24$
$\mathrm{GND}=\operatorname{Pin} 12$

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
\rightarrow (

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

National Semiconductor
May 1989

DM54LS190/DM74LS190, DM54LS191/DM74LS191 Synchronous 4-Bit Up/Down Counters with Mode Control

General Description

These circuits are synchronous, reversible, up/down counters. The LS191 is a 4-bit binary counter and the LS190 is a BCD counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.
The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits counting. Level changes at either the enable input or the down/ up input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.
These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as moduloN dividers by simply modifying the count length with the preset inputs.
The clock, down/up, and load inputs are buffered to lower the drive requirement; which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cas cading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Features

- Counts 8-4-2-1 BCD or binary
- Single down/up count control line
- Count enable control input
- Ripple clock output for cascading
- Asynchronously presettable with load control
- Parallel outputs
- Cascadable for n-bit applications
- Average propagation delay 20 ns
- Typical clock frequency 25 MHz
- Typical power dissipation 100 mW

Connection Diagram

TL/F/6405-1
Order Number DM54LS190J, DM54LS191J, DM54LS190W, DM54LS191W, DM74LS190M, DM74LS191M, DM74LS190N, or DM74LS191N See NS Package Number J16A, M16A, N16A or W16A

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS190, LS191			DM74LS190, LS191			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 4)		0		20	0		20	MHz
t_{W}	Pulse Width (Note 4)	Clock	25			25			ns
		Load	35			35			
tsu	Data Setup Time (Note 4)		20			20			ns
t_{H}	Data Hold Time (Note 4)		0			0			ns
t_{EN}	Enable Time to Clock (Note 4)		30			30			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS190 and 'LS191 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		
			DM74	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ \mathrm{V}_{\mathrm{IL}} & =\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	Enable			0.3	mA
			Others			0.1	
I_{H}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	Enable			60	$\mu \mathrm{A}$
			Others			20	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Enable			-1.08	mA
			Others			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			20	35	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all inputs grounded and all outputs open. Note 4: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.							

'LS190 and 'LS191 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		20		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Load to Any Q		33		43	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Load to Any Q		50		59	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Any Q		22		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Any Q		50		62	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Ripple Clock		20		24	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Ripple Clock		24		33	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		24		29	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		36		45	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Max/Min		42		47	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Max/Min		52		65	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Up/Down to Ripple Clock		45		50	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Up/Down to Ripple Clock		45		54	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Down/Up to Max/Min		33		36	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Down/Up to Max/Min		33		42	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Ripple Clock		33		36	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Ripple Clock		33		42	ns

Logic Diagrams (Continued)

LS191 Binary Counters

Timing Diagrams

LS190 Decade Counters

LS191 Binary Counters
Typical Load, Count, and Inhibit Sequences

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

16-Lead Molded Dual-In-Line Package (N) Order Number DM74LS190N, DM74LS191N

NS Package Number N16E

16-Lead Ceramic Flat Package (W) Order Number DM54LS190W or DM54LS191W NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS192			DM74LS192			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Voltage			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW Pn to $\overline{\mathrm{PL}}$	$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$			$\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & t_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW Pn to $\overline{\mathrm{PL}}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$			$\begin{aligned} & 3 \\ & 3 \end{aligned}$			ns
$t_{w}(\mathrm{~L})$	CP Pulse Width LOW	17			17			ns
$t_{w}(\mathrm{~L})$	$\overline{\text { PL Pulse Width LOW }}$	20			20			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	MR Pulse Width HIGH	15			15			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, MR to CP	3			3			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\mathrm{PL}}$ to CP	10			10			ns

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	54LS	2.5			V
			DM74	2.7			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	54LS			0.4	V
			DM74			0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} V_{C C}=M a x, V_{1} & =10 V \\ V_{1} & =7 V \end{aligned}$	DM54			0.1	mA
			DM74				
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	54LS	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{MR}, \overline{\mathrm{PL}}=\mathrm{GND} \\ & \text { Other Inputs }=4.5 \mathrm{~V} \end{aligned}$				31	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.							

Switching Characterisitcs

$\mathrm{V}_{\mathrm{CC}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$\begin{gathered} \mathbf{R}_{\mathrm{L}}=\mathbf{2 k} \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Count Frequency	30		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P u$ or C_{D} to Q_{n}		$\begin{aligned} & 31 \\ & 28 \end{aligned}$	ns
$t_{\text {PLH }}$ tpHL	Propagation Delay CP_{u} to $\overline{\mathrm{TC}} \mathrm{U}$		$\begin{aligned} & 16 \\ & 21 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P_{D}$ to $\overline{T C}_{D}$		$\begin{array}{r} 16 \\ 24 \\ \hline \end{array}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $P_{n} \text { to } Q_{n}$		$\begin{aligned} & 20 \\ & 30 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\text { PL }}$ to Q_{n}		$\begin{aligned} & 32 \\ & 30 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, MR to Q_{n}		25	

Functional Description

The '192 is an asynchronously presettable decade and 4-bit binary synchronous up/down (reversible) counter. The operating modes of the '192 decade counter and the '193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagram. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up, and count down operations.
Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW.
The Terminal Count Up ($\overline{T C}_{U}$) and Terminal Count Down ($\overline{T C}_{\mathrm{D}}$) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the '192, 15 for the '193), the next HIGH-to-LOW transition of the Count Up Clock will cause $\overline{T C}_{U}$ to go LOW. $\overline{T C}_{U}$ will stay LOW until CPu goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the $\overline{T C}_{D}$ output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

$$
\begin{aligned}
& \overline{\mathrm{TC}}_{\mathrm{U}}=\mathrm{Q} 0 \cdot \mathrm{Q} 3 \cdot \overline{\mathrm{CP}}_{\mathrm{U}} \\
& \overline{\mathrm{TC}}_{\mathrm{D}}=\overline{\mathrm{Q}} 0 \bullet \overline{\mathrm{Q}} 1 \bullet \overline{\mathrm{Q}} 2 \bullet \overline{\mathrm{Q}} 3 \bullet \overline{\mathrm{CP}}_{\mathrm{D}}
\end{aligned}
$$

Each circuit has an asynchronous parallel load capability permitting the counter to be reset. When the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs (P0-P3) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted.

State Diagram

TL/F/10178-4

Physical Dimensions inches (millimeters) (Continued)

16-Lead Small Outline Molded Package (M)
Order Number DM74LS192M
NS Package Number M16A

54LS192/DM74LS192 Up/Down Decade Counter with Separate Up/Down Clocks

Physical Dimensions inches (millimeters) (Continued)

DETAIL A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

FAIRCHILD

DM74LS193

Synchronous 4-Bit Binary Counters with Dual Clock

General Description

The DM74LS193 circuit is a synchronous up/down 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (rippleclock) counters.
The outputs of the four master-slave flip-flops are triggered by a LOW-to-HIGH level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is held HIGH.
The counter is fully programmable; that is, each output may be preset to either level by entering the desired data at the inputs while the load input is LOW. The output will change independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.
A clear input has been provided which, when taken to a high level, forces all outputs to the low level; independent of

Ordering Code:

Order Number	Package Number	Package Description
DM74LS193N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
DM74LS193M	M16A	16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body

Connection Diagram

Timing Diagram

Note A: Clear overrides load, data, and count inputs
Note B: When counting up, count-down input must be HIGH; when counting down, count-up input must be HIGH.

Absolute Maximum Ratings $($ Note 1$)$	
Operating Free Air Temperature Range	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	7 V
Input Voltage	7 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrica Characteristics tables are not guaranteed at the abbsolute maximum rat ings. The "Reccommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{IL}	LOW Level Output Current			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2) Clock Frequency (Note 3)	0		25	c
	Pulse Width of any Input (Note 4)				
t_{W}	Data Setup Time (Note 4)	20			ns
t_{SU}	Data Hold Time (Note 4)	20			ns
t_{H}	Enable Time to Clock (Note 4)	0			ns
t_{EN}	Free Air Operating Temperature	40			ns
$\mathrm{~T}_{\mathrm{A}}$		0		70	${ }^{\circ} \mathrm{C}$

Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Units
				(Note 5)		
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.5	3.4		V
	Voltage	$\mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}$	2.7	3.4		
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$		0.25	0.4	V
		$\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
$I_{\text {IH }}$	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
IOS	Short Circuit	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$	-20		-100	mA
	Output Current	(Note 6)	-20		-100	
$\overline{I_{C C}}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 7)		19	34	mA

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 7: I_{CC} is measured with all outputs open, CLEAR and LOAD inputs grounded, and all other inputs at 4.5 V .

AC Electrical Characteristics

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & 15 \mathrm{pF} \end{aligned}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		Units
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Count Up to Carry		26		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Count Up to Carry		24		36	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Count Down to Borrow		24		29	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Count Down to Borrow		24		32	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Either Count to Any Q		38		45	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Either Count to Any Q		47		54	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Load to Any Q		40		41	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Load to Any Q		40		47	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Any Q		35		44	ns

DM74LS193 Synchronous 4-Bit Binary Counters with Dual Clock

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit(SOIC), JEDEC MS-012, 0150" Narrow Body
Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings (Note 1)	54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Supply Voltage	7 V	DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Input Voltage	7 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Free Air Temperature Range
Recommended Operating Conditions

Symbol	Parameter		54LS194A			DM74LS194A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
l_{OL}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)		30		0	0		25	MHz
	Clock Frequency (Note 3)		22			0		20	
t_{w}	Pulse Width (Note 4)	Clock	17			20			ns
		Clear	12			20			
$\mathrm{t}_{\text {su }}$	Setup Time (Note 4)	Mode	25			30			ns
		Data	16			20			
t_{H}	Hold Time (Note 4)		0			0			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 4)		18			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	54LS	2.5			V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	54LS			0.4	
			DM74		0.35	0.5	v
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$				0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{LL}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit	$V_{C C}=\operatorname{Max}$ (Note 6)	54LS	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{cc}	Supply Current		$\mathrm{V}_{\text {CC }}=$ Max (Note 7)		15	23	mA

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 7: With all outputs open, inputs A through D grounded, and 4.5 V applied to $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{CLEAR}$, and the serial inputs, ICC is tested with momentary ground, then 4.5 V applied to CLOCK.
www.fairchildsemi.com

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)	$\begin{gathered} 54 \mathrm{LS} \\ \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$		$\begin{gathered} \text { DM74LS } \\ \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \hline \end{gathered}$		Units
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		21		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		24		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Output	Clear to Any Q		26		38	ns

Note 8: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 10: With all outputs open, inputs A through D grounded, and 4.5 V applied to $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{CLEAR}$, and the serial inputs, I_{CC} is tested with momentary ground, then 4.5 V applied to CLOCK.

Logic Diagram

Function Table

Inputs										Outputs			
Clear	Mode		Clock	Serial		Parallel				$Q_{\text {A }}$	Q_{B}	$\mathbf{Q}_{\mathbf{c}}$	Q_{D}
	S1	S0		Left	Right	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	X	X	X	X	X	X	Q_{AO}	Q_{Bo}	$\mathrm{Q}_{\text {co }}$	$Q_{\text {Do }}$
H	H	H	\uparrow	X	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	X	H	X	X	X	X	H	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	$\mathrm{Q}_{\text {cn }}$
H	L	H	\uparrow	X	L	X	X	X	X	L	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$
H	H	L	\uparrow	H	X	X	X	X	X	Q_{Bn}	$\mathrm{Q}_{\text {cn }}$	$Q_{D n}$	H
H	H	L	\uparrow	L	X	X	X	X	X	$Q_{B n}$	Q_{Cn}	$Q_{D n}$	L
H	L	L	X	X	X	X	X	X	X	$Q_{\text {AO }}$	Q_{Bo}	$\mathrm{Q}_{\mathrm{C} 0}$	Q_{DO}

$\mathrm{H}=$ High Level (steady state), $\mathrm{L}=$ Low Level (steady state), $\mathrm{X}=$ Don't Care (any input, including transitions)
$\uparrow=$ Transition from low to high level
$a, b, c, d=$ The level of steady state input at inputs A, B, C or D, respectively.
$Q_{A 0}, Q_{B 0}, Q_{C 0}, Q_{D 0}=$ The level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established. $Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ The level of Q_{A}, Q_{B}, Q_{C}, respectively, before the most-recent \uparrow transition of the clock.

Timing Diagram
Typical Clear, Load, Right-Shift, Left-Shift, Inhibit, and Clear Sequences

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DETAIL A

16-Lead Ceramic Flat Package (W)
Order Number 54LS194AFMQB
Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor Corporation
Americas	Europe	Fax: $+49(0) 180-5308586$	Hong Kong Ltd.
Customer Response Center	Email: europe.support@nsc.com		13th Floor, Straight Block,

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
Operating Free Air Temperature Range
54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		54LS195A			DM74LS195A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
IOL	Low Level Output Current				4			8	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 1)		30		0	0		30	MHz
	Clock Frequency (Note 2)		30		0	0		25	MHz
t_{W}	Pulse Width (Note 3)	Clock	16			16			ns
		Clear	14			12			
tsu	Setup Time (Note 3)	Shift/Load	25			25			ns
		Data	15			15			
t_{H}	Hold Time (Note 3)		0			0			ns
$t_{\text {REL }}$	Shift/Load Release Time (Note 3)		10			10			ns
	Clear Release Time (Note 3)		25			25			
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	54LS	2.5			V
			DM74LS	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	54LS			0.4	
			DM74LS		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 5) } \end{aligned}$	54LS	-20		-100	mA
			DM74LS	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$, (Note 6)			14	21	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: With all inputs open, SHIFT/LOAD grounded, and 4.5 V applied to the $\mathrm{J}, \overline{\mathrm{K}}$, and data inputs, I_{CC} is measured by applying a momentary ground, then 4.5 V to the CLEAR and then applying a momentary ground then 4.5 V to the CLOCK.

Timing Diagram

Physical Dimensions inches (millimeters) (Continued)

16-Lead Small Outline Molded Package (M)
Order Number DM74LS195AM
NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

DETAIL A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS196			Units
		Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			V
V_{IL}	Low Level Input Voltage			0.8	V
IOH	High Level Output Current			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			8	mA
T_{A}	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW Pn to $\overline{\mathrm{PL}}$	$\begin{gathered} 8 \\ 12 \\ \hline \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW Pn to $\overline{\mathrm{PL}}$	$\begin{aligned} & 0 \\ & 6 \\ & \hline \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	$\overline{\mathrm{CP}} 0$ Pulse Width HIGH	12			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	$\overline{\mathrm{CP}} 1$ Pulse Width HIGH	24			ns
$t_{w}(L)$	$\overline{\text { PL Pulse Width LOW }}$	18			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width LOW	12			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\text { PL }}$ to $\overline{\mathrm{CP}} \mathrm{n}$	16			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to $\overline{\mathrm{CP}} \mathrm{n}$	18			ns

Electrical Characteristics Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$	2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.5	V
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, \overline{\mathrm{CP}} 1$			40	$\mu \mathrm{A}$
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-20		-100	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$			20	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathbf{R}_{\mathrm{L}}=\mathbf{2 k} \\ \mathbf{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$		Units
		Min	Max	
$f_{\text {max }}$	Maximum Count Frequency at $\overline{\mathrm{CP}}$	45		MHz
$\mathrm{f}_{\text {max }}$	Maximum Count Frequency at $\overline{\mathrm{CP}} 1$	22.5		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CP}} 0$ to Q0		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{CP}} 1$ to Q1		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP1 to Q2		$\begin{array}{r} 34 \\ 34 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP1 to Q3		$\begin{array}{r} 15 \\ 21 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Pn to Qn		$\begin{aligned} & 25 \\ & 35 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\text { PL }}$ to Qn		$\begin{array}{r} 31 \\ 37 \\ \hline \end{array}$	ns
tPHL	Propagation Delay $\overline{\mathrm{MR}}$ to Qn		42	ns

Functional Description

The '196 and '197 are asynchronous presettable decade and binary ripple counters. The '196 decade counter is partitioned into divide-by-two and divide-by-five sections while the '197 is partitioned into divide-by-two and divide-by-eight sections, with all sections having a separate Clock input. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The $\overline{\mathrm{CP}} 0$ input serves the Q0 flip-flop in both circuit types while the $\overline{\mathrm{CP}} 1$ input serves the divide-by-five or divide-by-eight section. The Q0 output is designed and specified to drive the rated fan-out plus the $\overline{\mathrm{CP}} 1$ input. With the input frequency connected to $\overline{\mathrm{CP}} 0$ and with Q0 driving $\overline{\mathrm{CP}} 1$, the '197 forms a straight forward modulo-16 counter, with Q0 the least significant output and Q3 the most significant output.

The '196 decade counter can be connected up to operate in two different count sequences. With the input frequency connected to $\overline{\mathrm{CP}} 0$ and with Q 0 driving $\overline{\mathrm{CP}} 1$, the circuit counts in the BCD (8421) sequence. With the input frequency connected to $\overline{\mathrm{CP}} 1$ and Q3 driving $\overline{\mathrm{CP}} 0$, Q0 becomes the low frequency output and has a 50% duty cycle waveform. Note that the maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section.
The '196 and '197 have an asynchronous active LOW Master Reset input ($\overline{\mathrm{MR}}$) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input ($\overline{\mathrm{PL}}$) overrides the clock inputs and loads the data from Parallel Data (P0-P3) inputs into the flip-flops. While PL is LOW, the counters act as transparent latches and any change in the Pn inputs will be reflected in the outputs. In order for the intended parallel data to be entered and stored, the recommended setup and hold times with respect to the rising edge of $\overline{\mathrm{PL}}$ should be observed.

Logic Diagram

Inputs			Response
$\overline{\mathbf{M R}}$	$\overline{\text { PL }}$	$\overline{\mathbf{C P}}$	
L	X	X	Qn forced LOW
H	L	X	$\mathrm{Pn} \rightarrow \mathrm{Qn}$
H	H	入	Count Up
H $=$ HIGH Voltage Level = LOW Voltage Level $X=$ Immaterial			

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS197		Units	
		Min	Nom		
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Voltage			-0.4	mA
I_{OL}	Low Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
I_{IL}	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-20		-100	mA
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$			27	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Physical Dimensions inches (millimeters) (Continued)

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS197N
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

DM74LS221 Dual Non－Retriggerable One－Shot with Clear and Complementary Outputs

General Description

The DM74LS221 is a dual monostable multivibrator with Schmitt－trigger input．Each device has three inputs permit－ ting the choice of either leading－edge or trailing－edge trigger－ ing．Pin（A）is an active－low trigger transition input and pin （B）is an active－high transition Schmitt－trigger input that al－ lows jitter free triggering for inputs with transition rates as slow as $1 \mathrm{volt} /$ second．This provides the input with excellent noise immunity．Additionally an internal latching circuit at the input stage also provides a high immunity to V_{Cc} noise．The clear（CLR）input can terminate the output pulse at a prede－ termined time independent of the timing components．This （CLR）input also serves as a trigger input when it is pulsed with a low level pulse transition（）．To obtain the best and trouble free operation from this device please read operating rules as well as the NSC one－shot application notes carefully and observe recommendations．

Features

－Pin－out identical to＇LS123（Note 1）
－Output pulse width range from 30 ns to 70 seconds
－Hysteresis provided at（B）input for added noise immunity
－Direct reset terminates output pulse
－Triggerable from CLEAR input
－DTL，TTL compatible
－Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of an external resistor $\left(\mathrm{R}_{\mathrm{x}}\right)$ and capacitor（ C_{x} ）．Once triggered，the basic pulse width is independent of further input transitions and is a function of the timing components，or it may be re－ duced or terminated by use of the active low CLEAR input． Stable output pulse width ranging from 30 ns to 70 seconds is readily obtainable．
Note 1：The pin－out is identical to＇LS123 but，functionally it is not；refer to Operating Rules \＃10 in this datasheet．
－A dual，highly stable one－shot
－Compensated for V_{CC} and temperature variations

Connection Diagram

Dual－In－Line Package

Order Number DM74LS221M or DM74LS221N See Package Number M16A or N16A

Function Table

Inputs			Outputs	
CLEAR	A	B	Q	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	$工$
H	\downarrow	H	Ω	$工$
\uparrow（Note 2）	L	H	Ω	$工$

H＝High Logic Level
$\mathrm{L}=$ Low Logic Level
X＝Can Be Either Low or High
$\uparrow=$ Positive Going Transition
$\downarrow=$ Negative Going Transition
$\Omega=$ A Positive Pulse
r＝A Negative Pulse
Note 2：This mode of triggering requires first the B input be set from a low to high level while the CLEAR input is maintained at logic low level．Then with the B input at logic high level，the CLEAR input whose positive transition from low to high will trigger an output pulse．

Absolute Maximum Ratings (Note 4)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range DM74LS
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM74LS221			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
$\mathrm{V}_{\text {T+ }}$	Positive-Going Input Threshold Voltage at the A Input ($\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$)			1	2	V
$\mathrm{V}_{\text {T- }}$	Negative-Going Input Threshold Voltage at the A Input ($\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)$		0.8	1		V
$\mathrm{V}_{\text {T+ }}$	Positive-Going Input Threshold Voltage at the B Input ($\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$)			1	2	V
$\mathrm{V}_{\text {T- }}$	Negative-Going Input Threshold Voltage at the B Input ($\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)$		0.8	0.9		V
I_{OH}	High Level Output Current				-0.4	mA
I_{OL}	Low Level Output Current				8	mA
t_{w}	Pulse Width (Note 3)	Data	40			ns
		Clear	40			
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 3)		15			ns
$\frac{d V}{d t}$	Rate of Rise or Fall of Schmitt Input (B) (Note 3)				1	$\frac{\mathrm{V}}{\mathrm{~s}}$
$\frac{d V}{d t}$	Rate of Rise or Fall of Logic Input (A) (Note 3)				1	$\frac{\mathrm{V}}{\mu \mathrm{s}}$
$\mathrm{R}_{\text {EXT }}$	External Timing Resistor (Note 3)		1.4		100	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {EXT }}$	External Timing Capacitance (Note 3)		0		1000	$\mu \mathrm{F}$
DC	Duty Cycle (Note 3)	$\mathrm{R}_{\mathrm{T}}=2 \mathrm{k} \Omega$			50	\%
		$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\text {EXT }}(\mathrm{Max})$			60	
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 3: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ (\text { Note 5) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$			0.1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$

Electrical Characteristics (Continued)

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	A1, A2			-0.4	mA
			B			-0.8	
			Clear			-0.8	
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 6)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	Quiescent		4.7	11	mA
			Triggered		19	27	

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	Conditions	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \hline \text { A1, A2 } \\ & \text { to } \mathrm{Q} \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{EXT}}=80 \mathrm{pF} \\ \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$		70	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \hline B \\ \text { to } Q \end{gathered}$			55	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \mathrm{A} 1, \mathrm{~A} 2 \\ \text { to } \mathrm{Q} \end{gathered}$			80	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{B} \\ \text { to } \overline{\mathrm{Q}} \end{gathered}$			65	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clear to $\overline{\mathrm{Q}}$			65	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$			55	ns
$\mathrm{tw}_{\text {(out) }}$	Output Pulse Width Using Zero Timing Capacitance	$\begin{aligned} & \text { A1, A2 } \\ & \text { to } \mathrm{Q}, \overline{\mathrm{Q}} \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{EXT}}=0 \\ \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$	20	70	ns
$\mathrm{t}_{\text {W (out) }}$	Output Pulse Width Using External Timing Resistor	$\begin{aligned} & \text { A1, A2 } \\ & \text { to } \mathrm{Q}, \overline{\mathrm{Q}} \end{aligned}$	$\begin{gathered} \hline \mathrm{C}_{\text {EXT }}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \hline \end{gathered}$	600	750	ns
			$\begin{gathered} \mathrm{C}_{\mathrm{EXT}}=1 \mu \mathrm{~F} \\ \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$	6	7.5	ms
			$\begin{gathered} \mathrm{C}_{\mathrm{EXT}}=80 \mathrm{pF} \\ \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \hline \end{gathered}$	70	150	ns

Operating Rules

1. An external resistor $\left(R_{X}\right)$ and an external capacitor $\left(C_{x}\right)$ are required for proper operation. The value of C_{X} may vary from 0 to approximately $1000 \mu \mathrm{~F}$. For small time constants high-grade mica, glass, polypropylene, polycarbonate, or polystyrene material capacitor may be used. For large time constants use tantalum or special aluminum capacitors. If timing capacitor has leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
2. When an electrolytic capacitor is used for C_{X} a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current. This switching diode is not needed for the 'LS221 one-shot and should not be used.
Furthermore, if a polarized timing capacitor is used on the 'LS221, the positive side of the capacitor should be connected to the " $\mathrm{C}_{\text {EXT }}$ " pin (Figure 1).
3. For $C_{X} \gg 1000 \mathrm{pF}$, the output pulse width $\left(\mathrm{T}_{\mathrm{w}}\right)$ is defined as follows:
$T_{w}=K R_{x} C_{x}$
where $\left[R_{x}\right.$ is in $k \Omega$]

$$
\begin{aligned}
& \text { [} \left.\mathrm{C}_{\mathrm{x}} \text { is in } \mathrm{pF}\right] \\
& {\left[\mathrm{T}_{\mathrm{W}} \text { is in } \mathrm{ns}\right]} \\
& \mathrm{K} \approx \mathrm{Ln} 2=0.70
\end{aligned}
$$

4. The multiplicative factor K is plotted as a function of C_{x} for design considerations: (See Figure 2).
5. For $\mathrm{C}_{\mathrm{X}}<1000 \mathrm{pF}$ see Figure 3 for T_{w} vs C_{X} family curves with R_{X} as a parameter.
6. To obtain variable pulse widths by remote trimming, the following circuit is recommended: (See Figure 4).
7. Output pulse width versus V_{CC} and temperatures: Figure 5 depicts the relationship between pulse width variation versus V_{Cc}. Figure 6 depicts pulse width variation versus temperatures.
8. Duty cycle is defined as $T_{w} / T \times 100$ in percentage, if it goes above 50% the output pulse width will become shorter. If the duty cycle varies between low and high values, this causes output pulse width to vary, or jitter (a function of the $\mathrm{R}_{E X T}$ only). To reduce jitter, $\mathrm{R}_{\mathrm{EXT}}$ should be as large as possible, for example, with $R_{\text {EXT }}=100 \mathrm{k}$ jitter is not appreciable until the duty cycle approaches 90%.
9. Under any operating condition C_{X} and R_{X} must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I-R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_{X} to pins (6) and (7) or pins (14) and (15) is greater than 3 cm , for example, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_{x} in each cycle of its operation so that the output pulse width will be accurate.
10. Although the 'LS221's pin-out is identical to the 'LS123 it should be remembered that they are not functionally identical. The 'LS123 is a retriggerable device such that the output is dependent upon the input transitions when its output " Q " is at the "High" state. Furthermore, it is recommended for the 'LS123
to externally ground the $\mathrm{C}_{\text {EXT }}$ pin for improved system performance. However, this pin on the 'LS221 is not an internal connection to the device ground. Hence, if substitution of an 'LS221 onto an 'LS123 design layout where the $\mathrm{C}_{\mathrm{EXT}}$ pin is wired to the ground, the device will not function.
11. V_{Cc} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{CC} and ground return leads do not cause interaction between one-shots. A $0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ bypass capacitor (disk ceramic or monolithic type) from V_{CC} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{Cc}-pin as space permits.

FIGURE 1.

FIGURE 2.

FIGURE 3.

Note: " $\mathrm{R}_{\text {remote" }}$ should be as close to the one-shot as possible.
FIGURE 4.

Operating Rules (Continued)

FIGURE 5.

FIGURE 6.
Note: For further detailed device characteristics and output performance, please refer to the NSC one-shot application note AN-372.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

\begin{abstract}
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Function Tables

LS240

Inputs		Output
$\overline{\mathbf{G}}$	\mathbf{A}	\mathbf{Y}
L	L	H
L	H	L
H	X	Z

LS241

Inputs					Outputs	
G	$\overline{\text { G }}$	$\mathbf{1 A}$	2A	1Y	2Y	
X	L	L	X	L		
X	L	H	X	H		
X	H	X	X	Z		
H	X	X	L		L	
H	X	X	H		H	
L	X	X	X		Z	

H = High Logic Level
X = Either Low or High Logic Level
$Z=$ High Impedance

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS, 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DM74LS

Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS240, 241			DM74LS240, 241			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-12			-15	mA
I_{OL}	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions			Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.5	V
HYS	Hysteresis $\left(\mathrm{V}_{\mathrm{T}_{+}}-\mathrm{V}_{\mathrm{T}_{-}}\right)$ Data Inputs Only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.2	0.4		V
$\overline{\mathrm{V}} \mathrm{OH}$	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$		DM74	2.7			
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$		DM54/DM74	2.4	3.4		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$		DM54/DM74	2			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	DM74			0.4	V
			$\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$	DM54			0.4	
				DM74			0.5	
$\mathrm{I}_{\text {OzH }}$	Off-State Output Current, High Level Voltage Applied	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current, Low Level Voltage Applied		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V}(\mathrm{DM} 74) \\ & \mathrm{V}_{1}=10 \mathrm{~V}(\mathrm{DM} 54) \\ & \hline \end{aligned}$					0.1	mA
${ }^{\text {IH }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
${ }_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$					-0.2	mA
I_{OS}	Short Circuit Output Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 3)			-40		-225	mA
I_{cc}	Supply Current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max},$ Outputs Open	Outputs High	LS240, LS241		13	23	mA
			Outputs Low	LS240		26	44	
				LS241		27	46	
			Outputs Disabled	LS240		29	50	
				LS241		32	54	

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

Symbol	Parameter	Conditions		DM54LS	DM74LS	Units
				Max	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$	LS240	18	14	ns
	Low to High Level Output	$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241	18	18	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$	LS240	18	18	ns
	High to Low Level Output	$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241	18	18	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$	LS240	30	30	ns
	Low Level	$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241	30	30	
$\mathrm{t}_{\text {PzH }}$	Output Enable Time to	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$	LS240	23	23	ns
	High Level	$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241	23	23	
$t_{\text {PLZ }}$	Output Disable Time from Low Level	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	LS240	25	25	ns
		$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241	25	25	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	LS240	18	18	ns
		$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241	18	18	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	LS240		18	ns
		$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241		21	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	LS240		22	ns
		$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241		22	
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	LS240		33	ns
		$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241		33	
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	LS240		26	ns
		$\mathrm{R}_{\mathrm{L}}=667 \Omega$	LS241		26	

Note 4: 54LS Output load is $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PZL }}$ and $\mathrm{t}_{\mathrm{PZH}}$

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Leadless Chip Carrier Package (E)
Order Number DM54LS240E or DM54LS241E
Package Number E20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Dual-In-Line Package (J) Order Number DM54LS240J or DM54LS241J Package Number J20A

20-Lead Wide Small Outline Molded Package (M)
Order Number DM74LS240WM or DM74LS241WM
Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Abstract

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. | Fairchild Semiconductor | Fairchild Semiconductor | Fairchild Semiconductor | National Semiconductor |
| :--- | :--- | :--- | :--- |
| Corporation | Europe | Hong Kong Ltd. | Japan Ltd. |
| Americas | | Fax: $+49(0) 180-5308586$ | 13th Floor, Straight Block, |

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 2)

Supply Voltage	7 V
Input Voltage	
\quad Any G	7 V

A or B
Operating Free Air Temperature Range DM74LS
Storage Temperature Range
5.5 V
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM74LS243		Units
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-15	mA
I_{OL}	Low Level Output Current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

Electrical Characteristics

Symbol	Parameter	Conditions			Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.5	V
HYS	Hysteresis $\left(\mathrm{V}_{\mathrm{T}_{+}}-\mathrm{V}_{\mathrm{T}_{-}}\right)$ (Data Inputs Only)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.2	0.4		V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$			2.7			
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$			2.4	3.4		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$			2			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$				0.4	
			$\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$				0.5	V
$\mathrm{I}_{\text {OzH }}$	Off-State Output Current, High Level Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current, Low Level Voltage Applied		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-200	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	A or B			0.1	mA
			$\mathrm{V}_{1}=7 \mathrm{~V}$	Any G			0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$					-0.2	mA
l I	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			-40		-225	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}$ Outputs Open	Outputs High			22	38	
			Outputs Low			29	50	mA
			Outputs Disabled			32	54	

Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$		18	ns
$\mathrm{t}_{\mathrm{PZL}}$	Output Enable Time to Low Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		30	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		23	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		25	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$		18	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$		21	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		22	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		33	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		26	ns

\square

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	54LS244			DM74LS244			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-12			-15	mA
I_{OL}	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.5	V
HYS	Hysteresis ($\mathrm{V}_{\mathrm{T}_{+}}-\mathrm{V}_{\mathrm{T}_{-}}$) Data Inputs Only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.2	0.4		V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$		DM74	2.7			
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \hline \end{aligned}$		54LS/DM74	2.4	3.4		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$		54LS/DM74	2			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	54LS/DM74			0.4	
			$\mathrm{I}_{\text {OL }}=\mathrm{Max}$	DM74			0.5	V
$\mathrm{l}_{\text {OZH }}$	Off-State Output Current, High Level Voltage Applied	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OzL }}$	Off-State Output Current, Low Level Voltage Applied		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\begin{aligned} & \mathrm{V}_{1}=7 \mathrm{~V}(\mathrm{DM} 74) \\ & \mathrm{V}_{1}=10 \mathrm{~V}(54 \mathrm{LS}) \end{aligned}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max	$\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-0.5		-200	$\mu \mathrm{A}$
I_{os}	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)		54LS	-50		-225	mA
				DM74	-40			
$\overline{I_{C C}}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max},$ Outputs Open	Outputs High			13	23	mA
			Outputs Low			27	46	
			Outputs Disabled			32	54	

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	54LS Max	DM74LS Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$	18	18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	18	18	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	30	30	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	23	23	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	25	25	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time from High Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$	18	18	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		21	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		22	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		33	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		26	ns

Note 4: 54LS Output Load is $C_{L}=50 \mathrm{pF}$ for $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PZL }}$ and $\mathrm{t}_{\text {PZH }}$.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Dual-In-Line Package (J)
Order Number 54LS244DMQB
Package Number J20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Flat Package (W) Order Number 54LS244FMQB
Package Number W20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) $180-5308586$	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 193-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	
DIR or \bar{G}	7 V
A or B	5.5 V

Operating Free Air Temperature Range

DM54LS and 54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM 74 LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
rage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS245			DM74LS245			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-12			-15	mA
l_{OL}	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions			Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.5	V
HYS	Hysteresis ($\mathrm{V}_{\mathrm{T}_{+}-\mathrm{V}_{\mathrm{T}_{-}} \text {) }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.2	0.4		V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$		DM74	2.7			
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$		DM54/DM74	2.4	3.4		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$		DM54/DM74	2			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	DM74			0.4	V
			$\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$	DM54			0.4	
				DM74			0.5	
$\mathrm{l}_{\text {OzH }}$	Off-State Output Current, High Level Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current, Low Level Voltage Applied		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-200	$\mu \mathrm{A}$
I_{1}	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	A or B	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.1	mA
			DIR or $\overline{\mathrm{G}}$	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1	
$\overline{I_{\mathrm{H}}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$					-0.2	mA
I_{OS}	Short Circuit Output Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 3)			-40		-225	mA
I_{Cc}	Supply Current	Outputs High		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		48	70	
		Outputs Low				62	90	mA
		Outputs at Hi-Z				64	95	

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, not to exceed one second duration

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	$\begin{gathered} \hline \text { DM54/74 } \\ \hline \text { LS245 } \end{gathered}$		Units
			Min	Max	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Time, Low-to-High-Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		12	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low-Level Output			12	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level			40	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level			40	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		25	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output Disable Time from High Level			25	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High-Level Output	$\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low-Level Output			17	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level			45	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level			45	ns

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Dual-In-Line Package (J)
Order Number 54LS245DMQB or DM54LS245J
Package Number J20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Flat Package (W)

Order Number 54LS245FMQB or DM54LS245W

Package Number W20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current $\overline{\mathrm{BI}} / \overline{\mathrm{RBO}}$			-50	$\mu \mathrm{~A}$
I_{OL}	Low Level Output Current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions				Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 2) \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$						-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}$				2.4	3.4		V
$\mathrm{I}_{\text {OFF }}$	Output High Current Segment Outputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=15 \mathrm{~V}$						250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \\ & \mathrm{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$				0.35	0.5	V
			$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$		$\overline{\mathrm{BI}} / \overline{\mathrm{RBO}}$			0.5	
			$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		$\overline{\mathrm{a}}-\overline{\mathrm{g}}$		0.25	0.4	
			$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		$\overline{\mathrm{BI}} / \overline{\mathrm{RBO}}$			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$						0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$						20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		Other Inputs				-0.4	mA
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		$\overline{\mathrm{BI}} / \overline{\mathrm{R}}$				-1.2	mA
l OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)				-0.3		-2.0	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$						13	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		100	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		100	ns

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Molded Package (M)
Order Number DM74LS247M
Package Number M16A

16-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS247N
Package Number N16E
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Voltage			-0.1	mA
I_{OL}	Low Level Output Current			6	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$	2.4			
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$			0.5	V
		$\mathrm{IOL}=3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 2)	-0.3		-2.0	mA
ICC	Supply Current	$V_{C C}=$ Max			38	mA
IOFF	Output High Current	Segment Inputs, $\mathrm{V}_{\mathrm{O}}=0.85 \mathrm{~V}$	-1.3			$\mu \mathrm{A}$

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		100	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		100	ns

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

	DM74LS249 BCD to 7-Segment Decoder with Open-Collector Outputs General Description The 'LS249 has active HIGH open-collector outputs and incorporates the Lamp Test and $\overline{\mathrm{BI} / \mathrm{RBO}}$ inputs. Additionally, the 'LS249 will light the top bar (segment a) for numeral 6 and the bottom bar (segment d) for numeral 9.
	Connection Diagram Dual-In-Line Package TL/F/10213-1 Order Number DM74LS249N See NS Package Number N16E Logic Symbol$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 16 \\ & \mathrm{GND}=\operatorname{Pin} 8 \end{aligned}$Pin Names Description $\mathrm{A}_{0}-\mathrm{A}_{3}$ BCD Inputs $\overline{\mathrm{BII}}$ Blanking Input (Active LOW) $\overline{\mathrm{LT}}$ Lamp Test Input (Active LOW) $\overline{\mathrm{BI} / R B O}$ Blanking Input (Active LOW) or $\mathrm{A}-\mathrm{g}$ Segme Blanking Output (Active LOW) Segment Outputs (Active HIGH)

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current $(\overline{\mathrm{BI}} / \overline{\mathrm{RBO}})$			-0.25	mA
I_{OL}	Low Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless othervise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage ($\overline{\mathrm{BI}} / \overline{\mathrm{RBO}}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.7	3.4		V
$I_{\text {CEX }}$	High Level Output Current (a thru g)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$				250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Inputs			-0.4	mA
			$\overline{\mathrm{BI}} / \overline{\mathrm{RBO}}$			-1.2	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)		-0.3		-2.0	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$				15	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Time A_{n} to $a-g\left(54 L S R_{L}=2 k \Omega\right)$		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Time $\overline{\mathrm{Bl}}$ to $\mathrm{a}-\mathrm{g}\left(54 \mathrm{LS} \mathrm{R}_{\mathrm{L}}=6 \mathrm{k} \Omega\right)$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	ns

Numerical Designations-Resultant Displays

Truth Table

Decimal or Function	Inputs						Outputs							Note
	$\overline{\text { LT }}$	A_{3}	A_{2}	A_{1}	A_{0}	BI/RBO	a	b	c	d	e	f	g	
0	H	L	L	L	L	H	H	H	H	H	H	H	L	1
1	H	L	L	L	H	H	L	H	H	L	L	L	L	1
2	H	L	L	H	L	H	H	H	L	H	H	L	H	
3	H	L	L	H	H	H	H	H	H	H	L	L	H	
4	H	L	H	L	L	H	L	H	H	L	L	H	H	
5	H	L	H	L	H	H	H	L	H	H	L	H	H	
6	H	L	H	H	L	H	L	L	H	H	H	H	H	
7	H	L	H	H	H	H	H	H	H	L	L	L	L	
8	H	H	L	L	L	H	H	H	H	H	H	H	H	
9	H	H	L	L	H	H	H	H	H	L	L	H	H	
10	H	H	L	H	L	H	L	L	L	H	H	L	H	
11	H	H	L	H	H	H	L	L	H	H	L	L	H	
12	H	H	H	L	L	H	L	H	L	L	L	H	H	
13	H	H	H	L	H	H	H	L	L	H	L	H	H	
14	H	H	H	H	L	H	L	L	L	H	H	H	H	
15	H	H	H	H	H	H	L	L	L	L	L	L	L	
$\overline{\mathrm{Bl}}$	X	X	X	X	X	L	L	L	L	L	L	L	L	2
$\overline{\text { LT }}$	L	X	X	X	X	H	H	H	H	H	H	H	H	3

Note 1: $\mathrm{BI} / \mathrm{RBO}$ is wired-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking out (BI) must be open or held at a HIGH level when output functions 0 through 15 are desired. $\mathrm{X}=$ input may be HIGH or LOW.
Note 2: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a LOW level, regardless of the state of any other input condition.
Note 3: When the blanking input/ripple-blanking output ($\overline{\mathrm{BI} / \mathrm{RBO}}$) is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a HIGH level.

Physical Dimensions inches (millimeters)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS251			DM74LS251			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-1			-2.6	mA
I_{OL}	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.4	3.1		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$	DM54		0.25	0.4	V
		$\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=$ Min	DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
$\mathrm{I}_{\text {OzH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			6.1	10	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 5)			7.1	12	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: $\mathrm{I}_{\mathrm{CC} 1}$ is measured with the outputs open, STROBE grounded, and all other inputs at 4.5 V .
Note 5: $\mathrm{I}_{\mathrm{CC} 2}$ is measured with the outputs open and all inputs at 4.5 V .

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) to (Output)	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{A}, \mathrm{~B}, \mathrm{C}$ (4 Levels) to Y		45		53	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\mathrm{A}, \mathrm{~B}, \mathrm{C}$ (4 Levels) to Y		45		53	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A, B, C (3 Levels) to W		33		38	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A, B, C (3 Levels) to W		33		42	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{D} \\ \text { to } \mathrm{Y} \end{gathered}$		28		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{D} \\ \text { to } \mathrm{Y} \end{gathered}$		28		38	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{D} \\ \text { to } \mathrm{W} \end{gathered}$		15		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{D} \\ \text { to } \mathrm{W} \end{gathered}$		15		25	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output	Strobe to Y		45		60	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output	Strobe to Y		40		51	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 6)	Strobe to Y		45			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 6)	Strobe to Y		25			ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output	Strobe to W		27		40	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output	Strobe to W		40		47	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 6)	Strobe to W		55			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 6)	Strobe to W		25			ns

Note 6: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

detail a

16-Lead Ceramic Flat Package (W)
Order Number DM54LS251W
Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS253			DM74LS253			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-1			-2.6	mA
I_{OL}	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.4	3.1		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54			0.4	
			DM74			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
$\mathrm{I}_{\text {OZH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0.4 \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			7	12	mA
$\mathrm{I}_{\text {CC2 }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 5)			8.5	14	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: $\mathrm{I}_{\mathrm{CC} 1}$ is measured with all outputs open, and all the inputs grounded.
Note 5: $\mathrm{I}_{\mathrm{CC} 2}$ is measured with the outputs open, OUTPUT CONTROL at 4.5 V and all other inputs grounded.

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		25		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		20		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		45		54	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		32		44	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output	Output Control to Y		18		32	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output	Output Control to Y		23		35	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 6)	Output Control to Y		41			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 6)	Output Control to Y		27			ns

Note 6: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Logic Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS253DMQB or DM54LS253J

Package Number J16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS253 3-STATE Data Selectors/Multiplexers
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS253FMQB or DM54LS253W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| Fairchild Semiconductor | Fairchild Semiconductor | | Fairchild Semiconductor |
| :--- | :--- | :--- | :--- |\quad| National Semiconductor |
| :--- |
| Corporation |

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

General Description

The 'LS256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (A0, A1), an active LOW enable input (\bar{E}) and an active LOW Clear input ($\overline{\mathrm{CL}}$). Each latch has a Data input (D) and four outputs (Q0-Q3).
When the Enable ($\overline{\mathrm{E}}$) is HIGH and the Clear input ($\overline{\mathrm{CL}}$) is LOW, all outputs (Q0-Q3) are LOW. Dual 4-channel demultiplexing occurs when the $\overline{C L}$ and \bar{E} are both LOW. When $\overline{C L}$ is HIGH and $\overline{\mathrm{E}}$ is LOW, the selected output (Q0-Q3), determined by the Address inputs, follows D. When the \bar{E} goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\bar{E}=$ LOW, $\overline{C L}=$ HIGH), changing more than one bit of the Address (AO, A1)
could impose a transient wrong address. Therefore, this should be done only while in the memory mode ($\overline{\mathrm{E}}=\overline{\mathrm{CL}}=$ HIGH).

Features

■ Serial-to-parallel capability

- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Active low common clear

Truth Table

Inputs				Outputs				Mode
$\overline{C L}$	$\overline{\mathrm{E}}$	A0	A1	Q0	Q1	Q2	Q3	
L	H	X	X	L	L	L	L	Clear
L	L	L	L	D	L	L	L	Demultiplex
L	L	H	L	L	D	L	L	
L	L	L	H	L	L	D	L	
L	L	H	H	L	L	L	D	
H	H	X	X	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	Memory
H	L	L	L	D	Q_{t-1}	Q_{t-1}	Q_{t-1}	Addressable
H	L	H	L	Q_{t-1}	D	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	Latch
H	L	L	H	Q_{t-1}	Q_{t-1}	D	Q_{t-1}	
H	L	H	H	Q_{t-1}	Q_{t-1}	Q_{t-1}	D	

$\mathrm{t}-1=$ Bit time before address change or rising edge of E
H $=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

Mode Selection		
$\overline{\mathbf{E}}$	$\overline{\text { CL }}$	Mode
L	H	Addressable Latch
H	H	Memory
L	L	Active HIGH 4-Channel Demultiplexers
H	L	Clear

Logic Diagram

TL/F/9823-3

Recommended Operating Conditions

Symbol	Parameter	54LS256			DM74LS256			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {s }}(\mathrm{H})$	Setup Time HIGH, D_{n} to $\overline{\mathrm{E}}$	20			20			ns
$\mathrm{th}_{\mathrm{h}}(\mathrm{H})$	Hold Time HIGH, D_{n} to $\overline{\mathrm{E}}$	0			0			ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup Time LOW, D_{n} to $\overline{\mathrm{E}}$	15			15			ns
$\mathrm{th}_{\mathrm{h}}(\mathrm{L})$	Hold Time LOW, D_{n} to $\overline{\mathrm{E}}$	0			0			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW, A_{n} to \bar{E}	0			0			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{E}}$ Pulse Width LOW	17			17			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	54LS	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	54LS			0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=10 \mathrm{~V}$	Inputs			0.1	mA
			$\overline{\mathrm{E}}$			0.2	
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	Inputs			20	$\mu \mathrm{A}$
			$\overline{\mathrm{E}}$			40	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Inputs			-0.4	mA
			$\overline{\mathrm{E}}$			-0.8	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	54LS	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				25	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.							

Switching Characteristics
$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	Units
		Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E} to Q_{n}	$\begin{aligned} & 27 \\ & 24 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } Q_{n}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{n} \text { to } Q_{n}$	$\begin{aligned} & 30 \\ & 29 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation Delay $\overline{C L}$ to Q_{n}	18	ns

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS256FMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

General Description

These Schottky-clamped high-performance multiplexers feature TRI-STATE outputs that can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output enable circuitry is designed such that the output disable times are shorter than the output enable times.
This TRI-STATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

Connection Diagrams

Dual-In-Line Package

TL/F/6417-1
Order Number 54LS257ADMQB, 54LS257AFMQB, 54LS257ALMQB, DM54LS257BJ, DM54LS257BW, DM74LS257BM or DM74LS257BN
See NS Package Number E20A, J16A, M16A, N16E or W16A

Features

- TRI-STATE versions LS157 and LS158 with same pinouts
- Schottky-clamped for significant improvement in A-C performance
- Provides bus interface from multiple sources in highperformance systems
- Average propagation delay from data input 12 ns
- Typical power dissipation

LS257B 50 mW
LS258B 35 mW

- Alternate military/aerospace devices (54LS257A/ 54LS258A) are available. Contact a National Semiconductor Sales Office/Distributor for specifications.
n

TL/F/6417-2
Order Number 54LS258ADMQB, 54LS258AFMQB, 54LS258ALMQB, DM54LS258BJ, DM54LS258BW, DM74LS258BM or DM74LS258BN
See NS Package Number E20A, J16A, M16A, N16E or W16A

Function Table

Inputs				Output Y	
Output Control	Select	A	B	LS257	LS258
H	X	X	X	Z	Z
L	L	L	X	L	H
L	L	H	X	H	L
L	H	X	L	L	H
L	H	X	H	H	L

$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care, $Z=$ High Impedance (off)

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS and 54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS257B			DM74LS257B			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-1			-2.6	mA
IOL	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS257B Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.4	3.1		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V} \end{aligned}$	Select			0.2	mA
			Other			0.1	
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	Select			40	$\mu \mathrm{A}$
			Other			20	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	Select			-0.8	mA
			Other			-0.4	
${ }^{\text {OZH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
IOZL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
Ios	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
${ }^{\text {CCH }}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			5.9	10	mA
${ }^{\text {ICCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			9.2	16	mA
I CCZ	Supply Current with Outputs Disabled	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			12	19	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: ICC is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.							

'LS257B Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)											
Symbol	Parameter		From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=667 \Omega$							Units
					$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$				$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
					Min		Max		Min	Max	
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output		Data to Output				18			27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Data to Output				18			27	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		Select to Output				28			35	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		Select to Output				35			42	ns
tPZH	Output Enable Time to High Level Output		Output Control to Y				15			27	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output		Output Control to Y				28			38	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 1)		Output Control to Y				26				ns
tpLZ	Output Disable Time from Low Level Output (Note 1)		Output Control to Y				25				ns
Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. Recommended Operating Conditions											
Symbol	Parameter		DM54LS258B				DM74LS258B				Units
			Min	Nom		Max		Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5		5.5		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2					2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					0.7				0.8	V
IOH	High Level Output Current					-1				-2.6	mA
lOL	Low Level Output Current					12				24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55			125		0		70	${ }^{\circ} \mathrm{C}$
'LS258B Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)											
Symbol	Parameter	Conditions						Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$								-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$				DM54		2.4	3.4		V
						DM74		2.4	3.1		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$				DM54			0.25	0.4	V
						DM74			0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$				DM74			0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{l}}=7 \mathrm{~V} \end{aligned}$				Select				0.2	mA
						Other				0.1	
IIH	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$				Select				40	$\mu \mathrm{A}$
						Other				20	

'LS258B Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	Select			-0.8	mA
			Other			-0.4	
l OZH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
lozL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
Ios	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			4.1	7	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			9	14	mA
ICCZ	Supply Current with Outputs Disabled	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}($ Note 3)			12	19	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $I_{C C}$ is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.
'LS258B Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		18		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		18		27	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output		28		35	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output		35		42	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level Output	Output Control to Y		15		27	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output	Output Control to Y		28		38	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 4)	Output Control to Y		26			ns
tpLZ	Output Disable Time from Low Level Output (Note 4)	Output Control to Y		25			ns

Physical Dimensions inches (millimeters) (Continued)

54LS257A/DM54LS257B/DM74LS257B, 54LS258A/DM54LS258B/DM74LS258B

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS257AFMQB or 54LS258AFMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

FAIRCHILD
 SEMICONDUCTOR ${ }_{\text {TM }}$
 DM74LS259
 8-Bit Addressable Latches

General Description

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1 -of-8 decoder or demultiplexer with active-high outputs.
Four distinct modes of operation are selectable by controlling the clear and enable inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held high (inactive) while the address lines are changing. In the 1 -of -8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

Connection Diagram

Order Number DM54LS259E, DM54LS259J,
DM54LS259W, DM74LS259M,
DM74LS259WM or DM74LS259N
See Package Number E20A, J16A,
M16A, M16B, N16E or W16A

Features

- 8-Bit parallel-out storage register performs serial-to-parallel conversion with storage
- Asynchronous parallel clear
- Active high decoder
- Enable/disable input simplifies expansion
- Direct replacement for Fairchild 9334
- Expandable for N -bit applications
- Four distinct functional modes
- Typical propagation delay times:

Enable-to-output 18 ns
Data-to-output 16 ns
Address-to-output 21 ns
Clear-to-output 17 ns

- Fan-out

IOL (sink current)
54LS259 4 mA
74LS259 8 mA
I_{OH} (source current) -0.4 mA

- Typical $\mathrm{I}_{\mathrm{CC}} 22 \mathrm{~mA}$

Function Table

Latch Selection Table

Select Inputs			Latch
C	B	A	Addressed
L	L	L	0
L	L	H	1
L	H	L	2
L	H	H	3
H	L	L	4
H	L	H	5
H	H	L	6
H	H	H	7

$\mathrm{H}=$ High Level, L = Low Level
$D=$ the Level of the Data Input
$Q_{i 0}=$ the Level of $Q_{i}(i=0,1, \ldots 7$, as Appropriate) before the Indicated Steady-State Input Conditions Were Established.

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS259			DM74LS259			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-0.4			-0.4	mA
I_{OL}	Low Level Output Current				4			8	mA
t_{w}	Pulse Width (Note 8)	Enable	17			15			ns
		Clear	17			15			
$t_{\text {su }}$	Setup Time (Notes 2, 3, 4, 8)	Data	20个			$15 \uparrow$			ns
		Select	15 \downarrow			15 \downarrow			
$t_{\text {H }}$	Hold Time (Notes 2, 3, 8)	Data	$5 \uparrow$			$2.5 \uparrow$			ns
		Select	$0 \uparrow$			$2.5 \uparrow$			
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	C

limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54			0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{1}=10 \mathrm{~V} \end{aligned}$	DM74			0.1	mA
			DM54				
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
	Enable	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.8	
l_{OS}	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \text { (Note 6) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 7)			22	36	mA

Note 2: The symbols (\downarrow, \uparrow) indicate the edge of the clock pulse used for reference: \uparrow for rising edge, \downarrow for falling edge.
Note 3: Setup and hold times are with reference to the enable input.
Note 4: The select-to-enable setup time is the time before the High-to-Low enable transition that the select must be stable so that the correct latch is selected and the others not affected.
Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 7: I_{CC} is measured with all inputs at 4.5 V , and all outputs open.
Note 8: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\frac{\text { DM54LS }}{C_{L}=15 \mathrm{pF}}$		$\begin{gathered} \text { DM74LS } \\ \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \hline \end{gathered}$		Units
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output		27		38	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output		24		32	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		30		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		20		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output		30		41	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output		29		38	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		18		36	ns

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD

DM74LS260
Dual 5-Input NOR Gate

General Description

This device contains two individual five input gates, each of which perform the logic NOR function.

Connection Diagram

Dual-In-Line Package

SEMICONDUCTOR ${ }_{\text {im }}$

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS260			DM74LS260			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54			0.4	
			DM74			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{1}=10 \mathrm{~V} \end{aligned}$ DM54				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	DM54			-0.40	mA
			DM74			-0.36	
I_{OS}	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$				4.0	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=$ Open				5.5	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second

Switching Characteristics

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		10	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		12	ns

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS260J
Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
\quad DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be op erated at these limits. The parametric values defined in the "Electrical Char acteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
$\mathrm{~V}_{\mathrm{OH}}$	High Level Output Voltage			5.5	V
I_{OL}	Low Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ (\text { Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$			0.2	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.8	mA
l OS	Short Circuit Output Current	$V_{C c}=\operatorname{Max}$ (Note 3)	-20		-100	mA
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			13	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		23	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Physical Dimensions inches (millimeters) unless otherwise noted

OPTION 1

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS266N
Package Number N14A
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD
 SEMICロNロபСTロR ${ }_{\text {TM }}$
 DM74LS273
 8－Bit Register with Clear

General Description

The＇LS273 is a high speed 8－bit register，consisting of eight D－type flip－flops with a common Clock and an asynchronous active LOW Master Reset．This device is supplied in a 20－pin package featuring 0.3 inch row spacing．

Dual－In－Line Package

Order Number DM54LS273E，DM54LS273J， DM54LS273W，DM74LS273M or DM74LS273N See Package Number E20A，J20A，M20B， N20A or W20A

Pin Names	Description
CP	Clock Pulse Input（Active Rising Edge）
D0－D7	Data Inputs MR Asynchronous Master Reset Input （Active LOW） Q0－Q7

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS273			DM74LS273			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 5 \\ & 5 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{MR}}$ Pulse Width LOW	20			20			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	15			15			ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{1}=10 \mathrm{~V}(\mathrm{DM} 54) \end{aligned}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{LL}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				27	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$				Units
		DM54LS		DM74LS		
				$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	30		30		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		24		24	ns
$\mathrm{t}_{\text {PHL }}$	CP to Q_{n}		24		24	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{M R}$ to Q_{n}		27		27	ns

Functional Description

The 'LS273 is an 8-bit parallel register with a common Clock and common Master Reset. When the MR input is LOW, the Q outputs are LOW, independent of the other inputs. Information meeting the setup and hold time requirements of the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock input.

Truth Table

Inputs			Outputs
MR	CP	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
L	X	X	L
H	-	H	H
H	-	L	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Symbol

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$

Logic Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS273J
Package Number J20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Wide Small Outline Molded Package (M) Order Number DM74LS273M Package Number M20B

20-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS273N
Package Number N20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Flat Package (W)
Order Number DM54LS273W
Package Number W20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) $180-5308586$	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) $8141-35-0$	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specification

Absolute Maximum Ratings (Note 3)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS279			DM74LS279			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.5		V
			DM74	2.7	3.5		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 5) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 6)			3.8	7	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 6: I_{CC} is measured with all $\overline{\mathrm{R}}$ inputs grounded, all $\overline{\mathrm{S}}$ inputs at 4.5 V and all outputs open.

Switching Characteristics

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \overline{\mathrm{S}} \text { to } \\ \mathrm{Q} \end{gathered}$		22		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \overline{\mathrm{S}} \text { to } \\ \mathrm{Q} \end{gathered}$		15		23	ns

Switching Characteristics (Continued)
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \overline{\mathrm{R}} \text { to } \\ \mathrm{Q} \end{gathered}$		27		33	ns

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS279FMQB or DM54LS279W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

DM74LS283

4－Bit Binary Adders with Fast Carry

General Description

These full adders perform the addition of two 4－bit binary numbers．The sum (Σ) outputs are provided for each bit and the resultant carry（C4）is obtained from the fourth bit．These adders feature full internal look ahead across all four bits． This provides the system designer with partial look－ahead performance at the economy and reduced package count of a ripple－carry implementation．
The adder logic，including the carry，is implemented in its true form meaning that the end－around carry can be accom－ plished without the need for logic or level inversion．

Features
－Full－carry look－ahead across the four bits

Connection Diagram

Order Number 54LS283DMQB，54LS283FMQB，54LS283LMQB， DM54LS283J，DM54LS283W，DM74LS283M or DM74LS283N See Package Number E20A，J16A，M16A，N16E or W16A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS283			DM74LS283			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}= \\ & \mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}= \\ & \mathrm{Min} \end{aligned}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=7 \mathrm{~V} \end{aligned}$	A, B			0.2	mA
			C0			0.1	
I_{H}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	A, B			40	$\mu \mathrm{A}$
			C0			20	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	A, B			-0.8	mA
			C0			-0.4	
$\mathrm{I}_{\text {OS }}$	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			19	34	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 5)			22	39	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 4: $\mathrm{I}_{\mathrm{CC} 1}$ is measured with all outputs open, all B inputs low and all other inputs at 4.5 V , or all inputs at 4.5 V . Note 5: $\mathrm{I}_{\mathrm{CC} 2}$ is measured with all outputs open and all inputs grounded.

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \Sigma 1, \Sigma 2 \end{gathered}$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \mathrm{C} 0 \text { to } \\ \Sigma 1, \Sigma 2 \end{gathered}$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \Sigma 3 \end{gathered}$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { C0 to } \\ \Sigma 3 \end{gathered}$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \Sigma 4 \end{gathered}$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \mathrm{C} 0 \text { to } \\ \Sigma 4 \end{gathered}$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A_{i} or B_{i} to \sum_{i}		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{A}_{\mathrm{i}} \text { or } \mathrm{B}_{\mathrm{i}} \\ & \text { to } \Sigma_{\mathrm{i}} \end{aligned}$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \mathrm{C} 4 \end{gathered}$		17		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{C} 0 \text { to } \\ \mathrm{C} 4 \end{gathered}$		17		25	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & A_{i} \text { or } B_{i} \\ & \text { to } C 4 \end{aligned}$		17		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{A}_{\mathrm{i}} \text { or } \mathrm{B}_{\mathrm{i}} \\ \text { to } \mathrm{C} 4 \end{gathered}$		17		26	ns

Function Table
(

H = High Level, L = Low Level
Note 6: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs $\Sigma 3, \Sigma 4$, and C4.

Logic Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DM74LS283 4-Bit Binary Adders with Fast Carry
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

detail A
16-Lead Ceramic Flat Package (W) Order Number 54LS283FMQB or DM54LS283W Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| Fairchild Semiconductor | Fairchild Semiconductor | | Fairchild Semiconductor |
| :--- | :--- | :--- | :--- |\quad| National Semiconductor |
| :--- |
| Corporation |

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM74LS290			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
IOH	High Level Output Current				-0.4	mA
lOL	Low Level Output Current				8	mA
$f_{C L K}$	Clock Freq. (Note 1)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
${ }_{\text {f CLK }}$	Clock Freq. (Note 2)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
tw	Pulse Width (Note 6)	A	15			ns
		B	30			
		Reset	15			
$t_{\text {REL }}$	Reset Release Time (Note 6)		25			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.7	3.4		V
V OL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	Reset			0.1	mA
			A			0.2	
			B			0.4	
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			80	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	Reset			-0.4	mA
			A			-2.4	
			B			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 4) } \end{aligned}$		-20		-100	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 5)			9	15	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{array}{r} \mathrm{A} \text { to } \\ \mathrm{Q}_{\mathrm{A}} \end{array}$		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { A to } \\ Q_{A} \end{gathered}$		18		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		48		60	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50		68	ns
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{B} \text { to } \\ \mathrm{Q}_{\mathrm{B}} \end{gathered}$		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{B} \text { to } \\ \mathrm{Q}_{\mathrm{B}} \\ \hline \end{gathered}$		21		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{B} \text { to } \\ & \mathrm{Q}_{\mathrm{C}} \\ & \hline \end{aligned}$		32		48	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		53	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} B \text { to } \\ Q_{D} \end{gathered}$		32		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		35		53	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30		38	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-9 to Q_{B}, Q_{C}		40		53	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		53	ns

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5 : $I_{C C}$ is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM74LS293			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.4	mA
lOL	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 1)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
tw	Pulse Width (Note 6)	A	15			ns
		B	30			
		Reset	15			
$t_{\text {REL }}$	Reset Release Time (Note 6)		25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V} \end{aligned}$	Reset			0.1	mA
			A			0.2	
			B			0.2	
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			40	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	Reset			-0.4	mA
			A			-2.4	
			B			-1.6	
Ios	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 4) } \end{aligned}$		-20		-100	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 5)			9	15	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		23	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		87	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		93	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		35	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		48	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		53	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		71	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		71	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		53	ns

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 5: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$.

DM74LS293 4-Bit Binary Counter
Physical Dimensions inches (millimeters) (Continued)

OPTION 1

OPTION 02

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS293N
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS295A			DM74LS295A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {a }}$	High Level Output Current			-1.0			-2.6	mA
lOL	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\mathrm{D}_{\mathrm{S}}, \mathrm{P}_{\mathrm{n}} \text { to } \overline{\mathrm{CP}}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time HIGH or LOW $\mathrm{D}_{\mathrm{S}}, \mathrm{P}_{\mathrm{n}}$ to $\overline{\mathrm{CP}}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW PE to $\overline{\mathrm{CP}}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW PE to $\overline{\mathrm{CP}}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			ns
$t_{w}(L)$	$\overline{\text { CP Pulse Width LOW }}$	20			20			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.4			V
			DM74	2.4			
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	V
			DM74			0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=10 \mathrm{~V}(\mathrm{DM} 54) \end{aligned}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current Outputs ON	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{P}_{\mathrm{n}}=\mathrm{GND} \\ & \mathrm{PE}, \mathrm{DS}, \mathrm{OE}=4.5 \mathrm{~V}, \overline{\mathrm{CP}}= \end{aligned}$				23	mA
	Outputs OFF	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{PE}, \mathrm{DS}=4.5 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{n}}, \mathrm{OE}, \overline{\mathrm{CP}}=\mathrm{GND} \end{aligned}$				25	mA

Electrical Characteristics (Continued)

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Typ (Note 1)	Max	Units
IOZH	Off-State Output Current with High Level Output Voltage Applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$		20	$\mu \mathrm{~A}$
IOZL	Off-State Output Current with Low Level Output Voltage Applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$			$\mu \mathrm{A}$

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{aligned} & \mathbf{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Shift Frequency	30		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{C P}$ to Q_{n}		$\begin{aligned} & 30 \\ & 26 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 18 \\ & 20 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 24 \\ & 20 \\ & \hline \end{aligned}$	ns

Functional Description

This device is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial Data (D_{S}) and four Parallel Data (PO-P3) inputs and four parallel TRISTATE output buffers ($\mathrm{O} 0-\mathrm{O} 3$). When the Parallel Enable (PE) input is HIGH, data is transferred from the Parallel Data inputs (PO-P3) into the register synchronous with the HIGH-to-LOW transition of the Clock ($\overline{\mathrm{CP}}$). When the PE is LOW, a HIGH-to-LOW transition on the clock transfers the serial data on the D_{S} input to the register Q0, and shifts data from Q0 to Q1, Q1 to Q2 and Q2 to Q3. The input data and parallel enable are fully edge-triggered and must be stable only one setup time before the HIGH-to-LOW clock transition.

The TRI-STATE output buffers are controlled by an active HIGH Output Enable input (OE). When the OE is HIGH, the four register outputs appear at the $\mathrm{O} 0-\mathrm{O} 3$ outputs. When OE is LOW, the outputs are forced to a high impedance OFF state. The TRI-STATE output buffers are completely independent of the register operation, i.e., the input transitions on the OE input do not affect the serial or parallel data transfers of the register. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRISTATE devices whose outputs are tied together are designed so there is no overlap.

Mode Select Table

Operating Mode	Inputs				Outputs			
	PE	$\overline{\mathbf{C P}}$	$\mathrm{D}_{\text {S }}$	P_{n}	Q0	Q1	Q2	Q3
Shift Right		\checkmark	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Parallel Load	h	入	X	p_{n}	p0	p1	p2	p3

*The indicated data appears at the Q outputs when OE is HIGH. When OE is LOW, the indicated data is loaded into the register, but the outputs are all forced to the high impedance OFF state.
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.
I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.
$\mathrm{h}=$ HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L $=$ LOW Voltage Level
X = Immaterial

Logic Diagram

Physical Dimensions inches (millimeters) (Continued)

14-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS295AN NS Package Number N14A

14-Lead Ceramic Flat Package (W)
Order Number DM54LS295AW
NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS298			DM74LS298			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW S to $\overline{\mathrm{CP}}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			ns
$\begin{aligned} & t_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW S to $\overline{\mathrm{CP}}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW 10_{x} or 11_{x} to $\overline{C P}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW 10_{x} or 11_{x} to $\overline{C P}$	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	$\overline{\mathrm{CP}}$ Pulse Width HIGH or LOW	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$			ns

ot 1. The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{1}=10 \mathrm{~V} \end{aligned}$	DM74			0.1	mA
			DM54				
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
l OS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{Cc}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, I \mathrm{IO}_{\mathrm{n}}, \mathrm{I} 1_{\mathrm{n}}, \\ & \mathrm{~S}=\mathrm{GND}, \overline{\mathrm{CP}}=乙 \end{aligned}$				21	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output $\overline{\mathrm{CP}}$ to Q_{n}		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output $\overline{\mathrm{CP}}$ to Q_{n}		25	ns

Functional Description

This device is a high speed quad 2-port register. It selects four bits of data from two sources (ports) under the control of a Common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input ($\overline{\mathrm{CP}}$). The 4 -bit output register is fully edge-triggered. The Data inputs (I_{nx}) and Select input (S) need be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predictable operation.

Truth Table

Inputs			Output
\mathbf{S}	$\mathbf{I O}_{\mathbf{x}}$	$\mathbf{I 1}_{\mathbf{x}}$	$\mathbf{Q}_{\boldsymbol{x}}$
I	I	X	L
I	h	X	H
h	X	I	L
h	X	h	H

I = LOW Voltage Level one setup time prior to the HIGH-to-LOW clock tran-
sition.
$h=$ HIGH Voltage Level one setup time prior to the HIGH-to-LOW clock transition
H = HIGH Voltage Leve
L = LOW Voltage Level
X = Immaterial

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS298J
Package Number J16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

FAIRCHILD

SEMICロNロபCTロR тм $_{\text {м }}$

DM74LS299

8－Input Universal Shift／Storage Register with Common

 Parallel I／O Pins
General Description

The＇LS299 is an 8－bit universal shift／storage register with 3－STATE outputs．Four modes of operation are possible： hold（store），shift left，shift right and load data．The parallel load inputs and flip－flop outputs are multiplexed to reduce the total number of package pins．Separate outputs are pro－ vided for flip－flops Q0 and Q7 to allow easy cascading．A separate active LOW Master Reset is used to reset the reg－ ister．

Features

－Common I／O for reduced pin count
－Four operation modes：shift left，shift right，load and store
－Separate shift right serial input and shift left serial input for easy cascading
－3－STATE outputs for bus oriented applications

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS299			DM74LS299			Units
			Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current	Q0, Q7			-0.4			-0.4	mA
		I/O0-I/O7			-2.6			-2.6	mA
$\mathrm{I}_{\text {OL }}$	Low Level Output Current	Q0, Q7			4			8	mA
		I/O0-I/O7			12			24	mA
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW S0 or S1 to CP		$\begin{aligned} & 24 \\ & 24 \end{aligned}$			$\begin{aligned} & 24 \\ & 24 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L} \end{aligned}$	Hold Time HIGH or LOW S0 or S1 to CP		$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{D}_{\mathrm{S} 0}, \mathrm{D}_{\mathrm{S} 7}$ to CP		$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{D}_{\mathrm{S} 0}, \mathrm{D}_{\mathrm{S} 7}$ to CP		$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW		$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR }}$ Pulse Width LOW		15			15			ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP		10			10			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		DM54	2.5			
			Q0, Q7	DM74	2.7	3.4		V
			I/O0-I/O7		2.4			
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		DM54			0.4	
				DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=10 \mathrm{~V}(\mathrm{DM} 54) \\ & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}(\mathrm{DM} 74) \end{aligned}$		Inputs			0.1	mA
				Sn			0.2	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$		Sn			40	$\mu \mathrm{A}$
				Inputs			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		Sn			-0.8	mA
				Inputs			-0.4	mA

Electrical Characteristics (Continued)

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{l}_{\text {OS }}$	Short Circuit	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	-20		-100	mA
	Output Current	(Note 3)	$\mathrm{l} / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{7}$	-30		-130	
I_{Cc}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{OE}}=4.5 \mathrm{~V}$				60	mA
$\mathrm{l}_{\text {OZH }}$	3-STATE Output Off Current High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \end{aligned}$				40	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OzL }}$	3-STATE Output Off Current Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$				-400	$\mu \mathrm{A}$

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Input Frequency	35		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q0 or Q7		$\begin{aligned} & 26 \\ & 28 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to I/On		$\begin{aligned} & 25 \\ & 35 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q0 or Q7		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$		35	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time		$\begin{aligned} & 18 \\ & 25 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time		$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	ns

Logic Symbol

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$

Functional Description

The 'LS299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by the S0 and S1, as shown in the Mode Select Table. All flip-flop outputs are brought out through 3-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q0 and Q7 are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{\mathrm{MR}}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.
A HIGH signal on either $\overline{\mathrm{OE}} 1$ or $\overline{\mathrm{OE}} 2$ disables the 3-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-STATE buffers are also disabled by HIGH signals on both S0 and S1 in preparation for a parallel load operation.

Mode Select Table

Inputs			Response
$\overline{\mathrm{MR}}$	S1 S0	CP	
L	X X	X	Asynchronous Reset; Q0-Q7 = LOW
H	H H	\checkmark	Parallel Load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L H	\sim	Shift Right; $\mathrm{D}_{\text {s0 }} \rightarrow \mathrm{Q0}, \mathrm{Q} 0 \rightarrow \mathrm{Q} 1$, etc.
H	H L	\sim	Shift Left; $\mathrm{D}_{\text {S7 }} \rightarrow$ Q7, Q7 \rightarrow Q6, etc.
H	L L	X	Hold

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Detail A
Ceramic Leadless Chip Carrier Package (E)
Order Number DM54LS299E Package Number E20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS299J
Package Number J20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Flat Package (W)
Order Number DM54LS299W Package Number W20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.suppor@ @sc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
7 V
Operating Free Air Temperature Range
54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS322			DM74LS322			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\overline{R E}$ to CP	$\begin{aligned} & 24 \\ & 24 \end{aligned}$			$\begin{aligned} & 24 \\ & 24 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $\overline{R E}$ to CP	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW D0, D1 or I/On to CP	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW D0, D1 or I/On to CP	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW SE to CP	$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$			$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW SE to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $S \bar{P}$ to $C P$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$			$\begin{aligned} & 24 \\ & 24 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW S to CP	$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW S or S \bar{P} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$t_{w}(\mathrm{H})$	CP Pulse Width HIGH	15			15			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width LOW	15			15			ns
$t_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	15			15			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions			Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		2.5			V
			DM74		2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54				0.4	V
			DM74			0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x, V_{1}=7 V \\ & V_{1}=10 V(D M 54) \end{aligned}$	Others				0.1	mA
			S Input				0.2	
			SE Input				0.3	
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	Others				20	$\mu \mathrm{A}$
			S Input				40	
			SE Input				60	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Others				-0.4	mA
			S Input				-0.8	
			SE Input				-1.2	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	DM54	I/On	-30		-130	mA
				Qn	-20		-100	
			DM74		-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$					60	mA
lozh	TRI-STATE Output Off Current HIGH	$\begin{aligned} & V_{C C}=M a x \\ & V_{O}=2.7 V \end{aligned}$					40	$\mu \mathrm{A}$
${ }^{\text {IOzL }}$	TRI-STATE Output Off Current LOW	$\begin{aligned} & V_{C C}=M a x \\ & V_{O}=0.4 V \end{aligned}$					-0.4	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Switching Characteristics
$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$				Units
		DM54LS		DM74LS		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	35		35		MHz
$t_{\text {tL }}$	Propagation Delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}{ }^{* *}$		$\begin{aligned} & 25 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 34 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q0		$\begin{aligned} & 26 \\ & 28 \end{aligned}$		$\begin{aligned} & 26 \\ & 29 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}{ }^{* *}$		35		34	ns
$t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q0		28		28	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}{ }^{* *}$		$\begin{aligned} & 18 \\ & 25 \end{aligned}$		$\begin{aligned} & 21 \\ & 23 \end{aligned}$	ns

[^1]| Switching Characteristics$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | | | | Units |
| | | DM54LS | | DM74LS | | |
| | | Min | Max | Min | Max | |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$ | Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}{ }^{*}$ | | $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$ | Output Enable Time $\mathrm{S} / \overline{\mathrm{P}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}{ }^{* *}$ | | $\begin{aligned} & 22 \\ & 30 \end{aligned}$ | | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$ | Output Disable Time $\mathrm{S} \overline{\mathrm{P}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}{ }^{*}$ | | $\begin{array}{r} 23 \\ 23 \\ \hline \end{array}$ | | $\begin{aligned} & 40 \\ & 26 \end{aligned}$ | ns |

${ }^{*} \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
${ }^{*}{ }^{*} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Functional Description

The 'LS322 contains eight D-type edge triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on $\overline{R E}$ enables shifting or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on S/ \bar{P} enables shift right, while a LOW signal disables the TRI-STATE output buffers and enables parallel loading. In the shift right mode a HIGH signal
on SE enables serial entry from either D0 or D1, as determined by the S input. A LOW signal on SE enables shift right but Q7 reloads its contents, thus performing the sign extend function required for the '384 Twos Complement Multiplier. A HIGH signal on $\overline{O E}$ disables the TRI-STATE output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

Mode Table																
Mode	Inputs							Outputs								
	$\overline{\text { MR }}$	$\overline{\mathrm{RE}}$	$\mathbf{S} / \overline{\mathbf{P}}$	$\overline{\mathbf{S E}}$	S	$\overline{\mathbf{O E}}{ }^{*}$	CP	I/07	I/06	1/05	I/O4	I/O3	1/02	I/01	1/00	Q0
Clear	L	X	X	X	X	L	X	L	L	L	L	L	L	L	L	L
	L	X	X	X	X	H	X	Z	Z	Z	Z	Z	Z	Z	Z	L
Parallel Load	H	L	L	X	X	X	\checkmark	17	16	15	14	13	12	11	10	10
Shift	H	L	H	H	L	L	\sim	D0	07	06	05	O4	O3	O2	01	01
Right	H	L	H	H	H	L	\checkmark	D1	07	06	05	O4	O3	O2	01	01
Sign Extend	H	L	H	L	X	L	\checkmark	07	07	06	O5	O4	O3	O2	O1	01
Hold	H	H	X	X	X	L	$\widetilde{ }$	NC								

*When the $\overline{\mathrm{OE}}$ input is HIGH , all I/O O_{n} terminals are at the high-impedance state; sequential operation or clearing of the register is not affected.
$17-10=$ The level of the steady-state input at the respective I/O terminal is loaded into the flip-flop while the flip-flop outputs (except Q0) are isolated from the I/O terminal.
D0, D1 = The level of the steady-state inputs to the serial multiplexer input.
O7-O0 = The level of the respective Q_{n} flip-flop prior to the last Clock LOW-to-HIGH transition.
NC = No Change $Z=$ High-Impedance Output State $H=H I G H$ Voltage Level $L=$ LOW Voltage Level

DM54LS322/DM74LS322 8-Bit Serial/Parallel Register with Sign Extend
Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

CNational semiconductor
DM54LS323/DM74LS323
8-Bit Universal Shift/Storage Register
with Synchronous Reset and Common I/O Pins

General Description

The 'LS323 is an 8-bit universal shift/storage register with TRI-STATE ${ }^{\circledR}$ outputs. Its function is similar to the 'LS299 with the exception of Synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin count. Separate inputs and outputs are provided for flipflops Q0 and Q7 to allow easy cascading. Four operation modes are possible: hold (store), shift left, shift right, and parallel load. All modes are activated on the LOW-to-HIGH transition of the Clock.

Connection Diagram

TL/F/9829-1
Order Number DM54LS323J, DM54LS323W, DM74LS323WM or DM74LS323N See NS Package Number J20A, M20B, N20A or W20A

Pin Names	Description
CP	Clock Pulse Input (Active Rising Edge)
$\mathrm{DSO}_{\mathrm{S}}$	Serial Data Input for Right Shift
Ds^{2}	Serial Data Input for Left Shift
$\mathrm{S0}, \mathrm{~S} 1$	Mode Select Inputs
$\overline{\mathrm{SR}}$	Synchronous Reset Input (Active LOW)
$\overline{\mathrm{OE} 1, \overline{O E} 2}$	TRI-STATE Output Enable Inputs (Active LOW)
I/O0-I/O7	Parallel Data Inputs or TRI-STATE Parallel Outputs
$\mathrm{Q0}, \mathrm{Q7}$	Serial Outputs

[^2]Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS323			DM74LS323			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW S0 or S1 to CP	$\begin{aligned} & 24 \\ & 24 \end{aligned}$			$\begin{array}{r} 24 \\ 24 \\ \hline \end{array}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW S0 or S1 to CP	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{D}_{\mathrm{S}} 0, \mathrm{D}_{\mathrm{S}} 7$ to CP	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{D}_{\mathrm{S}} 0, \mathrm{D}_{\mathrm{S}} 7$ to CP	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{array}{r} 30 \\ 20 \\ \hline \end{array}$			$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$			ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=10 \mathrm{~V}(\mathrm{DM} 54) \end{aligned}$	Others			0.1	mA
			S_{n} Inputs			0.2	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	Others			20	$\mu \mathrm{A}$
			S_{n} Inputs			40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Others			-0.4	mA
			S_{n} Inputs			-0.8	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$				60	mA
lozh	TRI-STATE Output Off Current HIGH	$\begin{aligned} & V_{C C}=M a x \\ & V_{O}=2.7 V \end{aligned}$				40	$\mu \mathrm{A}$
lozL	TRI-STATE Output Off Current LOW	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$				-400	$\mu \mathrm{A}$

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Switching Characteristics $\mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{aligned} & \text { DM54LS323 } \\ & \hline C_{L}=15 \mathrm{pF} \\ & \hline \end{aligned}$		DM74LS323		Units
				$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Input Frequency	35		35		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q0 or Q7		$\begin{array}{r} 26 \\ 28 \\ \hline \end{array}$		$\begin{aligned} & 23 \\ & 25 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to I/On		$\begin{aligned} & 25 \\ & 35 \end{aligned}$		$\begin{aligned} & 25 \\ & 29 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\begin{array}{r} 18 \\ 25 \\ \hline \end{array}$		$\begin{aligned} & 18 \\ & 23 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\begin{aligned} & 15 \\ & 20 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns

Functional Description

The 'LS323 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S 0 and S 1 as shown in the Mode Select Table. All flip-flop outputs are brought out through TRI-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q0 and Q7 are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{\mathrm{SR}}$ overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP , are observed.
A HIGH signal on either $\overline{\mathrm{OE}} 1$ or $\overline{\mathrm{OE}} 2$ disables the TRISTATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The TRI-STATE buffers are also disabled by HIGH signals on both S0 and S1 in preparation for a parallel load operation.

Mode Select Table				
Inputs				Response
$\overline{\text { SR}}$	S1	SO	CP	
L	X	X	ת	Synchronous Reset; Q0-Q7 = LOW
H	H	H	\checkmark	Parallel Load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	H	\checkmark	Shift Right; DSO \rightarrow Q0, Q0 \rightarrow Q1, etc.
H	H	L	\checkmark	Shift Left; DS7 \rightarrow Q7, Q7 \rightarrow Q6, etc.
H	H	H	X	Hold

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

Logic Symbol

Physical Dimensions inches (millimeters)

DM54LS323/DM74LS323 8-Bit Universal Shift/Storage Register

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS
DM74LS
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS347			DM74LS347			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Voltage			-50			-50	$\mu \mathrm{A}$
lOL	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	V
			DM74			0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} V_{C C}=M a x, & V_{1} \end{aligned}=7 \mathrm{~V}, V_{1}=10 \mathrm{~V} .$	DM74			0.1	mA
			DM54				
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Other Input			-0.4	mA
			$\mathrm{BI} / \overline{\mathrm{RBO}}$ Input			-1.2	mA
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-0.3		-2.0	mA
			DM74	-0.3		-2.0	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				13	mA
IOFF		Segment Outputs, $\mathrm{V}_{\mathrm{O}}=7 \mathrm{~V}$				250	$\mu \mathrm{A}$

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$:

Symbol	Parameter	$C_{L}=15 \mathrm{pF}$		Units
		Min	Max	
$t_{\text {PLH }}$	Propagation Delay		100	ns
$t_{\text {PHL }}$	A_{n} to $\overline{\mathrm{a}}-\overline{\mathrm{g}}$		100	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay		100	ns
$t_{\text {PHL }}$	$\overline{\mathrm{RBI}}$ to $\overline{\mathrm{a}}-\overline{\mathrm{g}}$		100	ns

DM54LS347/DM74LS347 BCD to 7-Segment Decoder/Driver

Physical Dimensions inches (millimeters) (Continued)

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

54LS

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The 'Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS352			DM74LS352			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			12			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	54LS	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	54LS			0.4	V
			DM74		0.35	0.5	
		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=$ Max,	54LS			0.1	mA
		$V_{C C}=$ Max,	DM74				
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	54LS	-20		-100	mA
			DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			6.2	10	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: I_{CC} is measured with all outputs open and all other inputs at ground.

Symbol	Parameter	From (Input) To (Output)	54LS		DM74LS		Units
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		12		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		12		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		22		33	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		38		47	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		15		29	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		20		41	ns

Logic Diagram

TL/F/6425-2

Physical Dimensions inches (millimeters) (Continued)

detail A

16-Lead Ceramic Flat Package (W) Order Number 54LS352FMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
$\mathrm{IOH}_{\mathrm{OH}}$	High Level Output Current			-2.6	mA
I_{OL}	Low Level Output Current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.7			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	-30		-130	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current Outputs HIGH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{In}, \mathrm{Sn}, \overline{\mathrm{OEn}}=\mathrm{GND} \end{aligned}$			12	mA
ICCZ	Supply Current Outputs OFF	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{OEn}}=4.5 \mathrm{~V} \\ & \mathrm{In}, \mathrm{Sn}=\mathrm{GND} \end{aligned}$			14	mA
lozh	TRI-STATE Output OFF Current HIGH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCH}} \\ & \mathrm{~V}_{\mathrm{OZH}}=2.7 \mathrm{~V} \end{aligned}$			20	$\mu \mathrm{A}$
IOZL	TRI-STATE Output OFF Current LOW	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCH}} \\ & \mathrm{~V}_{\mathrm{OZL}}=0.4 \mathrm{~V} \end{aligned}$			-20	$\mu \mathrm{A}$

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		Units
		Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Sn to $\bar{Z} n$		$\begin{aligned} & 24 \\ & 32 \\ & \hline \end{aligned}$	ns
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay In to $\bar{Z} n$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to Zn		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to Zn		$\begin{array}{r} 18 \\ 18 \\ \hline \end{array}$	ns

Functional Description

The 'LS353 contains two identical 4-input multiplexers with TRI-STATE outputs. They select two bits from four sources selected by common Select inputs (S0, S1). The 4-input multiplexers have individual Output Enable ($\overline{\mathrm{OE}}_{\mathrm{a}}$), $\overline{\mathrm{OE}}_{\mathrm{b}}$) inputs which when HIGH, force the outputs to a high impedance (high Z) state. The logic equations for the outputs are shown below:

If the outputs of TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRISTATE devices whose outputs are tied together are designed so that there is no overlap.

$$
\begin{aligned}
& \left.\overline{\overline{\mathrm{Z}}_{\mathrm{a}}=\overline{\mathrm{OEa}} \bullet(\mathrm{IOa} \bullet \overline{\mathrm{~S}} 1 \bullet \overline{\mathrm{~S}} 0+\mathrm{I} \mathrm{a} \bullet \overline{\mathrm{~S}} 1 \bullet \mathrm{~S} 0+\mathrm{I} 2 \mathrm{a} \bullet \mathrm{~S} 1 \bullet \overline{\mathrm{~S}} 0+\mathrm{I} 3 \mathrm{a} \bullet \mathrm{~S} 1 \bullet \mathrm{~S} 0}\right) \\
& \overline{\mathrm{Z}_{\mathrm{b}}}=\overline{\mathrm{O} \mathrm{E}_{\mathrm{b}}} \bullet(\mathrm{IOb} \bullet \overline{\mathrm{~S}} 1 \bullet \overline{\mathrm{~S}} 0+\mathrm{I} 1 \mathrm{~b} \bullet \overline{\mathrm{~S}} 1 \bullet \mathrm{~S} 0+\mathrm{I} 2 \mathrm{~b} \bullet \mathrm{~S} 1 \bullet \overline{\mathrm{~S}} 0+\mathrm{I} 3 \mathrm{~b} \bullet \mathrm{~S} 1 \bullet \mathrm{~S} 0)
\end{aligned}
$$

Truth Table

Select Inputs		Data Inputs				Output Enable	Output
S0	S1	I0	I1	I2	I3	OE	Z
X	X	X	X	X	X	H	(Z)
L	L	L	X	X	X	L	H
L	L	H	X	X	X	L	L
H	L	X	L	X	X	L	H
H	L	X	H	X	X	L	L
L	H	X	X	L	X	L	H
L	H	X	X	H	X	L	L
H	H	X	X	X	L	L	H
H	H	X	X	X	H	L	L

Address inputs S 0 and S 1 are common to both sections.
H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$X=$ Immaterial
$(Z)=$ High Impedance

Physical Dimensions inches (millimeters)

16-Lead Small Outline Molded Package (M)
Order Number DM74LS353M
NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS and 54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS365A			DM74LS365A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-1			-2.6	mA
I_{OL}	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=0.5 \mathrm{~V}$ (Note 5)	A Input			-20	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=0.4 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	A Input			-0.4	mA
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	$\overline{\mathrm{G}}$ Input			-0.4	
$\mathrm{I}_{\text {OzH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\operatorname{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			14	24	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 4: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5 V .
Note 5: Both $\overline{\mathrm{G}}$ inputs are at 2 V .
Note 6: Both $\overline{\mathrm{G}}$ inputs at 0.4 V .

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		16		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		16		25	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output		30		40	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output		30		40	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 7)		20			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 7)		20			ns

Note 7: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W)
Order Number 54LS365AFMQB or DM54LS365AW
Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS366A			DM74LS366A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-1			-2.6	mA
I_{OL}	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$	DM74			0.1	mA
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=10.0 \mathrm{~V}$	DM54				
I_{IH}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{~V}_{1}=0.5 \mathrm{~V}$ (Note 5)	A Input			-20	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=0.4 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	A Input			-0.4	mA
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	$\overline{\mathrm{G}}$ Input			-0.4	
$\mathrm{I}_{\text {OZH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Short Circuit	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)	DM54	-30		-130	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			12	21	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.
Note 5: Both $\overline{\mathrm{G}}$ inputs are at 2 V .
Note 6: Both $\overline{\mathrm{G}}$ inputs at 0.4 V .

Switching Characteristics:

for test waveforms and output load. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\frac{\text { DM54LS }}{C_{L}=50 \mathrm{pF}}$		$\begin{gathered} \text { DM74LS } \\ \mathrm{R}_{\mathrm{L}}=667 \Omega \\ \hline \end{gathered}$				Units
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		12		15		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		22		16		25	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output		24		30		35	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output		30		30		40	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 7)		25		20			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 7)		20		20			ns

Note 7: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W)
Order Number DM54LS366AW Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor		Fairchild Semiconductor
Corporation	Europe	Hong Kong Ltd.	National Semiconductor
Americas		Fax: $+49(0) 180-5308586$	13th Floor, Straight Block,

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS367A			DM74LS367A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-1			-2.6	mA
I_{OL}	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=0.5 \mathrm{~V}$ (Note 5)	A Input			-20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$ (Note 6)	A Input			-0.4	mA
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	$\overline{\mathrm{G}}$ Input			-0.4	
$\mathrm{I}_{\text {OzH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
l OS	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)			14	24	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5 V .
Note 5: Both $\overline{\mathrm{G}}$ inputs are at 2 V .
Note 6: Both $\overline{\mathrm{G}}$ inputs at 0.4 V .

Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		16		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		16		25	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output		30		40	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output		30		40	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 7)		20			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 7)		20			ns

Note 7: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flat Package (W)
Order Number 54LS367AFMQB or DM54LS367AW
Package Number W16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7 V
Input Voltage
Operating Free Air Temperature Range
DM54LS and 54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS368A			DM74LS368A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-1			-2.6	mA
lOL	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
IIH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}=0.5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	A Input			-20	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \\ & \text { (Note 5) } \end{aligned}$	A Input			-0.4	mA
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	$\overline{\mathrm{G}}$ Input			-0.4	
l OZH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				20	$\mu \mathrm{A}$
IOZL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			12	21	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: ICC is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5 V . Note 4: Both $\overline{\mathrm{G}}$ inputs are at 2 V . Note 5: Both $\overline{\mathrm{G}}$ inputs at 0.4 V .							

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output		15		25	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		18		25	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output		30		35	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output		30		40	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 6)		20			ns
$t_{P L Z}$	Output Disable Time from Low Level Output (Note 6)		20			ns

54LS368A/DM54LS368A/DM74LS368A Hex TRI-STATE Inverting Buffers
Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W)
Order Number 54LS368AFMQB or DM54LS368AW
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

DM74LS373／DM74LS374

3－STATE Octal D－Type Transparent Latches and Edge－Triggered Flip－Flops

General Description

These 8－bit registers feature totem－pole 3－STATE outputs designed specifically for driving highly－capacitive or rela－ tively low－impedance loads．The high－impedance state and increased high－logic level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus－organized system without need for inter－ face or pull－up components．They are particularly attractive for implementing buffer registers，I／O ports，bidirectional bus drivers，and working registers．
The eight latches of the DM54／74LS373 are transparent D－type latches meaning that while the enable (G) is high the Q outputs will follow the data（ D ）inputs．When the enable is taken low the output will be latched at the level of the data that was set up．
The eight flip－flops of the DM54／74LS374 are edge－triggered D－type flip flops．On the positive transition of the clock，the Q outputs will be set to the logic states that were set up at the D inputs．

A buffered output control input can be used to place the eight outputs in either a normal logic state（high or low logic levels） or a high－impedance state．In the high－impedance state the outputs neither load nor drive the bus lines significantly．
The output control does not affect the internal operation of the latches or flip－flops．That is，the old data can be retained or new data can be entered even while the outputs are off．

Features

－Choice of 8 latches or 8 D－type flip－flops in a single package
－3－STATE bus－driving outputs
－Full parallel－access for loading
－Buffered control inputs
－P－N－P inputs reduce D－C loading on data lines
Connection Diagrams

Order Number DM54LS373J，DM54LS373W，DM74LS373N or DM74LS373WM See Package Number J20A，M20B，N20A or W20A

Connection Diagrams (Continued)

Order Number DM54LS374J, DM54LS374W, DM74LS374WM or DM74LS374N See Package Number J20A, M20B, N20A or W20A
Function Tables
DM54/74LS373

Output Control	Enable G	D	Output
L	H	H	H
L	H	L	L
L	L	X	Q $_{0}$
H	X	X	Z

$\mathrm{H}=$ High Level (Steady State), L = Low Level (Steady State), $\mathrm{X}=$ Don't Care $\uparrow=$ Transition from low-to-high level, Z = High Impedance State
$Q_{0}=$ The level of the output before steady-state input conditions were established.

DM54/74LS374

Output Control	Clock	D	Output
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q_{0}
H	X	X	Z

Logic Diagrams

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS373			DM74LS373			
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Votage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
I_{OH}	High Level Output Current				-1			-2.6	mA
I_{OL}	Low Level Output Current				12			24	mA
t_{w}	Pulse Width (Note 3)	Enable High	15			15			ns
		Enable Low	15			15			
$t_{\text {su }}$	Data Setup Time (Notes 2, 3)		5 \downarrow			5 \downarrow			ns
t_{H}	Data Hold Time (Notes 2, 3)		20 \downarrow			20 \downarrow			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.
Note 3: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$.

'LS373 Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$	DM54	2.4	3.4		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM74	2.4	3.1		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	DM74			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
$\mathrm{I}_{\text {OzH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
I_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & (\text { Note } 5) \end{aligned}$	DM54	-20		-100	mA
	Output Current		DM74	-50		-225	

'LS373 Electrical Characteristics (Continued) over recommended operating free air temperature range (unless otherwise noted)						
Symbol	Parameter	Conditions	Min	Typ (Note 4)	Max	Units
I_{Cc}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{OC}=4.5 \mathrm{~V}, \\ & \mathrm{D}_{\mathrm{n}}, \text { Enable }=\mathrm{GND} \end{aligned}$		24	40	mA

'LS373 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Q		18		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Q		18		27	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Q		30		38	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Q		30		36	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output	Output Control to Any Q		28		36	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output	Output Control to Any Q		36		50	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 6)	Output Control to Any Q		20			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 6)	Output Control to Any Q		25			ns

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Recommended Operating Conditions

Symbol	Parameter	DM54LS374			DM74LS374			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-1			-2.6	mA
l_{OL}	Low Level Output Current			12			24	mA

Recommended Operating Conditions (Continued)

Symbol	Parameter		DM54LS374			DM74LS374			Units
			Min	Nom	Max	Min	Nom	Max	
$t_{\text {w }}$	Pulse Width (Note 8)	Clock High	15			15			ns
		Clock Low	15			15			
$\mathrm{t}_{\text {su }}$	Data Setup Time (Notes 7, 8)		$20 \uparrow$			$20 \uparrow$			ns
t_{H}	Data Hold Time (Notes 7, 8)		$1 \uparrow$			$1 \uparrow$			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 7: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 8: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$.

'LS374 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.4	3.4		
			DM74	2.4	3.1		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	DM74		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{LL}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
$\mathrm{I}_{\text {OzH }}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Max} \\ & \text { (Note 10) } \end{aligned}$	DM54	-50		-225	mA
	Output Current		DM74	-50		-225	
I_{cc}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{D}_{\mathrm{n}}= \\ & \mathrm{GND}, \mathrm{OC}=4.5 \mathrm{~V} \end{aligned}$			27	45	mA

'LS374 Switching Characteristics
 at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	35		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		28		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		28		38	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output		28		44	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output		28		44	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 11)		20			ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 11)		25			ns

Note 9: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 10: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 11: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Ceramic Dual-In-Line Package (J) Order Number DM54LS373J or DM54LS374J Package Number J20A

20-Lead Wide Small Outline Molded Package (M)
Order Number DM74LS373WM or DM74LS374WM
Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Molded Dual-In-Line Package (N) Order Number DM74LS373N and DM74LS374N Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

Absolute Maximum Ratings (Note)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage			0.8	V
I_{OH}	High Level Output Current			-0.4	mA
I_{OL}	Low Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{S}}(H)$ $\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup Time HIGH or LOW D_{n} to E_{n}	20		ns	
$\mathrm{t}_{\mathrm{h}}(\mathrm{H})$ $\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold Time HIGH or LOW D_{n} to E_{n}	0		ns	
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	E_{n} Pulse Width HIGH	20		ns	

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\text { Max, } \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	Others			0.1	mA
			Enable Input			0.4	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	Others			20	$\mu \mathrm{A}$
			Enable Input			80	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Others			-0.4	mA
			Enable Input			-1.2	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				12	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				
Symbol	Parameter	$C_{L}=15 \mathrm{pF}$		Units
		Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } Q_{n}$		$\begin{aligned} & 27 \\ & 23 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } \bar{Q}_{n}$		$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay E_{n} to Q_{n}		$\begin{aligned} & 27 \\ & 25 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay E_{n} to \bar{Q}_{n}		$\begin{aligned} & 30 \\ & 18 \\ & \hline \end{aligned}$	ns

Truth Table (Each Latch)

$\mathbf{t}_{\mathbf{n}}$	$\mathbf{t}_{\mathbf{n}+\mathbf{1}}$
D	Q
H	H
L	L

$t_{n}=$ Bit time before Enable negative going transition.
$t_{n+1}=$ Bit time after Enable negative going transition.
H = HIGH Voltage Level
L = LOW Voltage Level
Logic Diagram (1/4 of diagram shown)

Physical Dimensions inches (millimeters)

16-Lead Small Outline Molded Package (M)
Order Number DM74LS375M NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS377			DM74LS377			Units
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW $\overline{\mathrm{E}}$ to CP	$\begin{aligned} & 10 \\ & 20 \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW $\overline{\mathrm{E}}$ to CP	$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$			ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \mathrm{~V}_{1}=10 \mathrm{~V} \end{aligned}$	DM74			0.1	mA
			DM54				
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				28	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter		$\mathbf{R}_{\mathbf{L}}=\mathbf{2} \mathbf{k} \Omega, \mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{~ p F}$	
		$\mathbf{M i n}$	Units	
		30		
$\mathrm{f}_{\max }$	Maximum Clock Frequency		$\mathbf{M H z}$	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay		25	ns
$\mathrm{t}_{\mathrm{PHL}}$	CP to Q_{n}		25	

Functional Description

The 'LS377 consists of eight edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Enable input ($\overline{\mathrm{E}}$) are common to all flip-flops.
When \bar{E} is LOW, new data is entered into the register on the next LOW-to-HIGH transition of CP. When $\overline{\mathrm{E}}$ is HIGH, the register will retain the present data independent of the CP .

Truth Table

Inputs			Output
$\overline{\mathbf{E}}$	CP	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
H	X	X	No Change
L	\sim	H	H
L	\sim	L	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Symbol

$\mathrm{V}_{\mathrm{CC}}=$ Pin 20
GND $=$ Pin 10

Logic Diagram

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Dual-In-Line Package (J)
Order Number DM54LS377J
Package Number J20A

20-Lead Wide Small Outline Molded Package (M)
Order Number DM74LS377WM
Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

N20A (REV G)
20-Lead Molded Dual-In-Line Package (N)
Order Number DM74LS377N Package Number N20A

DM74LS377 Octal D Flip-Flop with Common Enable and Clock
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

	National Semiconductor DM54LS378/DM74LS378 Parallel D Register with Enable General Description The 'LS378 is a 6-bit register with a buffered common enable. This device is similar to the 'LS174, but with common Enable rather than common Master Reset. Features - 6-bit high speed parallel register ■ Positive edge-triggered D-type inputs - Fully buffered common clock and enable inputs - Input clamp diodes limit high speed termination effects - Full TTL and CMOS compatible
	Connection Diagram Dual-In-Line Package TL/F/9832-1 Order Number DM54LS378E, DM54LS378J, DM74LS378M, DM74LS378N or DM54LS378N See NS Package Number E20A, J16A, M16A, N16E or W16A

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$7 V$
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-54^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54LS378			DM74LS378			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time HIGH, D_{n} to CP	20			20			ns
$t_{\text {h }}(\mathrm{H})$	Hold Time HIGH, D_{n} to CP	5.0			5.0			ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup Time LOW, D_{n} to CP	20			20			ns
$t_{\text {h }}(\mathrm{L})$	Hold Time LOW, D_{n} to CP	5.0			5.0			ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time HIGH, \bar{E} to CP	30			30			ns
$t_{\text {h }}(\mathrm{H})$	Hold Time HIGH, \bar{E} to CP	5.0			5.0			ns
$t_{s}(L)$	Setup Time LOW, E to CP	30			30			ns
$t_{\text {h }}(\mathrm{L})$	Hold Time LOW, E to CP	5.0			5.0			ns
$t_{w}(\mathrm{H})$	CP Pulse Width HIGH	20			20			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5			V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54			0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x, V_{1}=7 \mathrm{~V} \\ & V_{1}=10 \mathrm{~V} \end{aligned}$	DM74			0.1	mA
			DM54				
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20.0	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \mathrm{D}_{\mathrm{n}} ; \overline{\mathrm{E}}=\mathrm{GND}, \mathrm{CP}=\Omega$				22	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	$2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
		Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency	30		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Q_{n}		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	ns

Functional Description

The 'LS378 consists of eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The Clock (CP) and Enable ($\overline{\mathrm{E}}$) inputs are common to all flip-flops.
When the \bar{E} input is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input. When the $\overline{\mathrm{E}}$ input is HIGH the register will retain the present data independent of the CP input.

Truth Table

Inputs			Output
$\overline{\mathbf{E}}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
H	\nearrow	X	No change
L		H	H
L	Ω	L	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Diagram

TL/F/9832-3

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
7V
Input Voltage
$7 V$
Operating Free Air Temperature Range
54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range
Recommended Operating Conditions

Symbol	Parameter	54LS379			DM74LS379			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW Dn to CP	20			20			ns
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW Dn to CP	5			5			ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time HIGH or LOW \bar{E} to CP	25			25			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time HIGH or LOW $\overline{\mathrm{E}}$ to CP	5			5			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	CP Pulse Width LOW	17			17			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	54LS	2.5			V
			DM74	2.7			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	54LS			0.4	
			DM74			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & (\text { Note 2) } \end{aligned}$	54LS	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				18	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Note more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 1 for test waveforms and output load)

Symbol	Parameter	$\mathbf{R}_{\mathbf{L}}=\mathbf{2} \mathbf{k} \boldsymbol{\Omega}, \mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{p F}$		Units
		$\mathbf{M i n}$	$\mathbf{M a x}$	
$\mathrm{f}_{\max }$	Maximum Clock Frequency	30		$\mathbf{y y}$
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay		27	ns
$\mathrm{t}_{\mathrm{PHL}}$	CP to Qn		27	

Functional Description

The LS379 consists of four edge-triggered D-type flip-flops with individual D inputs and Q and \bar{Q} outputs. The Clock (CP) and Enable ($\overline{\mathrm{E}}$) inputs are common to all flip-flops. When the E input is HIGH, the register will retain the present data independent of the CP input. The Dn and \bar{E} inputs can change when the clock is in either state, provided that the recommended setup and hold times are observed.

Truth Table

Inputs			Outputs	
$\overline{\text { E }}$	CP	Dn	Qn	Qn
H			No	No
L		C	Change	Change
L	\sim	H	H	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

Logic Diagram

Physical Dimensions inches (millimeters)

DETAIL A

16-Lead Ceramic Flat Package (W) Order Number 54LS379FMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

DM54LS380/74LS380

 Multifunction Octal Register
General Description

The 'LS380 is an 8-bit synchronous register with parallel load, load complement, preset, clear, and hold capacity. Four control inputs ($\overline{\mathrm{LD}}, \mathrm{POL}, \overline{\mathrm{CLR}}, \overline{\mathrm{PR}}$) provide one of four operations which occur synchronously on the rising edge of the clock (CK). The LS380 combines the features of the LS374, LS377, LS273 and LS534 into a single 300 mil wide package.
The LOAD operation loads the inputs $\left(D_{7}-D_{0}\right)$ into the output register $\left(Q_{7}-Q_{0}\right)$, when POL is HIGH, or loads the compliment of the inputs when POL is LOW. The CLEAR operation resets the output register to all LOWs. The PRESET operation presets the output register to all HIGHs. The HOLD operation holds the previous value regardless of clock transitions. CLEAR overrides PRESET, PRESET overrides LOAD, and LOAD overrides HOLD.

The output register $\left(Q_{7}-Q_{0}\right)$ is enabled when $\overline{O E}$ is LOW, and disabled ($\mathrm{HI}-\mathrm{Z}$) when OE is HIGH. The output drivers will sink the 24 mA required for many bus interface standards.

Features/Benefits

- Octal Register for general purposes interfacing applications
- 8 bits match byte boundaries
- Bus-structured pinout
- 24-pin SKINNYDIP saves space
- TRI-STATE ${ }^{\circledR}$ outputs
- Low current PNP inputs reduce loading

Standard Test Load

TL/L/8339-2

Function Table

$\overline{\mathbf{O C}}$	$\mathbf{C L K}$	$\overline{\mathbf{C L R}}$	$\overline{\mathbf{P R}}$	$\overline{\mathbf{L D}}$	POL	D7-D0	Q7-Q0	Operation
H	X	X	X	X	X	X	Z	HI-Z
L	\uparrow	L	X	X	X	X	L	CLEAR
L	\uparrow	H	L	X	X	X	H	PRESET
L	\uparrow	H	H	H	X	X	Q	HOLD
L	\uparrow	H	H	L	H	D	D	LOAD true
L	\uparrow	H	H	L	L	D	$\overline{\mathrm{D}}$	LOAD comp

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage $\mathrm{V}_{\mathrm{CC}} 7 \mathrm{~V}$ Input Voltage 5.5 V

Operating Conditions

Symbol	Parameter		Military			Commercial			Units
			Min	Typ	Max	Min	Typ	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature		-55		125*	0		75	${ }^{\circ} \mathrm{C}$
$t_{\text {w }}$	Width of Clock	High	40			40			ns
		Low	35			35			
tsu	Set-Up Time		60			50			ns
$t_{\text {h }}$	Hold Time		0	-15		0	-15		

Electrical Characteristics Over Operating Conditions

Symbol	Parameter	Test Conditions			Min	Typ \dagger	Max	Units
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage						0.8	V
V_{IH}	High-Level Input Voltage				2			V
$\mathrm{V}_{\text {IC }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{I}_{1}=$				-1.5	V
IIL	Low-Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=0$				-0.25	mA
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=2$				25	$\mu \mathrm{A}$
1	Maximum Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=5$				1	mA
V_{OL}	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.5	V
			COM	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$				
V_{OH}	High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$		$\mathrm{lOH}=-2 \mathrm{~mA}$	2.4			V
			COM	$\mathrm{l}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$				
lozL	Off-State Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-100	$\mu \mathrm{A}$
lozh				$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
los	Output Short-Circuit Current*	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-30		-130	mA
ICC	Supply Current	$V_{C C}=\mathrm{MAX}$				120	180	mA

* No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Switching Characteristics Over Operating Conditions

Symbol	Parameter	Test Conditions (See Test Load)	Military			Commercial			Units
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=200 \Omega \\ & \mathrm{R}_{2}=390 \Omega \end{aligned}$	10.5			12.5			MHz
$t_{\text {PD }}$	Clock to Q			20	35		20	30	ns
tpzx	Output Enable Delay			35	55		35	45	ns
$t_{\text {PXZ }}$	Output Disable Delay			35	55		35	45	ns

DM54LS380/74LS380 Multifunction Octal Register

Physical Dimensions inches (millimeters)

24-Pin Narrow Ceramic Dual-In-Line Package (J)
Order Number DM54LS380J or DM74LS380J
NS Package Number J24F

24-Pin Narrow Plastic Dual-In-Line Package (N)
Order Number DM74LS380N
NS Package Number N24C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: $\mathrm{H}=$ High Logic Level
 L = Low Logic Level

[^1]: ${ }^{* *} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

[^2]: TRI-STATE is a registered trademark of National Semiconductor Corporation.

