Part Number Color Code Legend

 NEW
 SALE
 REFURBISHED
 CLOSEOUT

Integrated Circuits

Call for pricing on quantities over 500 - we carry major manufacturer

			IC Test Clip Series			
 For to Heav 	emporary co y-duty sprir	onnec ng loa	tions to DIP package components ded hinge provides positive contact		40	in an
• 20 A	WG insulate	d gol	d contacts · Color: white	22103		
Part No.	Product No	. Des	pin (for 9, 14 and 16 pin ICs)	\$4.05	\$1.40	\$2.05
22103	JTC18	20-	pin (for 18 and 20-pin ICs)	\$4.95	\$4.49 6.25	\$3.95 5.59
22162	JTC28	28-	pin	8.95	7.95	6.49
22189	JTC40	40-	pin	9.95	8.95	7.95
740	0 Serie	S	Dual-In-	Line Pack	age	WWW
Part No.	Product No.	Pins	Description	1	10	100
48979	7400	14	Quad 2-input NAND gate	\$.59	\$.49	\$.45
49007	7401	14	Quad 2-input NAND gate (O.C.)		.45	.39
49015	7402	14	Quad 2-input NOR gate		.49	.45
49040	7404	14	Hex inverter (O.C.)		.49	.45
49091	7406	14	Hex inverter buffer/driver (O.C.)		.25	.35
49120	7407	14	Hex buffer/driver (O.C.)		.49	.45
49146	7408	14	Quad 2-input AND gate		.49	.45
49189	7410	14	Triple 3-input NAND gate		.22	.15
49269	7411	14	Triple 3-input AND gate	3.95	3.59	3.25
49402	7413	14	Dual 4-input NAND gate Schmitt trigger		.25	.19
49437	7414	14	Hex inverter buffer/driver (0, 0,)		.39	.35
49728	7410	14	Hex buffer/driver (Q.C. hi-voltage)		.69	. 10
50008	7420	14	Dual 4-input NAND gate		.45	.39
50024	7421	14	Dual 4-input AND gate	2.95	2.75	2.49
50083	7425	14	Dual 4-input NOR gate with strobe	1.09	.99	.89
50139	7427	14	Triple 3-input NOR gate		.45	.39
50198	7428	14	Quad 2-input NOR buffer		.35	.25
50227	7430	14 14	8-Input NAND gate		.22	.12
50235	7432	14	Quad 2-input OK gate		.49	.45
50358	7440	14	Dual 4-input NAND buffer		.11	.09
50374	7442	16	BCD-to-decimal decoder		.79	.69
50403	7445	16	BCD-to-decimal decoder/driver (30V)		.89	.79
50411	7446	16	BCD-to-7 segment decoder/driver (30V)	1.29	1.19	1.09
50420	7447	16	BCD-to-7 segment decoder/driver (15V)	1.09	.99	.89
50518	7470	14	Edge-triggered JK flip-flop		.45	.35
50534	7472	14	Dual IK flip-flop with clear		.45	.35
50554	7474	14	Dual D flip-flop		.39	.29
50577	7475	16	4-bit bi-stable latch	2.95	2.75	2.49
50593	7476	16	Dual JK flip-flop with preset and clear	1.19	1.09	.99
50631	7483	16	4-bit binary full adder		.79	.69
<mark>50657</mark>	7485	16	4-bit magnitude comp.		.29	.22
50665	7486	14	Quad EXCLUSIVE-OR gate		.69	.59
50681	/489 7/90	16 17	04-DIT KAIVI P 5UNS	2.95 00	2.75	2.49
50737	7490	14	Divide-by-12 counter		1.09	.07
50745	7493	14	4-bit binary counter	1.29	1.19	1.09
50770	7495	14	4-bit parallel-access shift register (K155N)		.59	.39
50788	7496	16	5-bit parallel-in, parallel-out shift register		.39	.29
50796	7497	16	Synch. 6-bit binary rate multipliers	3.49	3.29	2.95
49234	74107	14	Dual JK flip-flop with clear		.35	.25
49251 40202	74109	16	Dual positive edge triggered JK filp-flop		.34	.31
47293	74121	24 14	Monostable multivibrator		.09	.79
49349	74122	14	Retriggerable mono. multivibrator with clea	r69	.59	.45
49357	74123	16	Dual retriggerable mono. multivibrator		.79	.69
49373	74125	14	Quad bus buffer tri-state (DM8093N)		.89	.79
49381	74126	14	Quad bus buffer tri-state (DM8094N)		.69	.59
49411	74132	14	Quad 2-input NAND Schmitt trigger		.59	.35
49496	74148	16	 8 to 3 line octal priority encoder 16 to 1 line multipleyer 		.79	.69
49009	74150	24 16	8-input multiplexer	1.95	1.75	1.55
49550	74153	16	Dual 4/1 data selector/multiplexer		.23	.15
49568	74154	24	4 to 16 line decoder/demultiplexer	2.25	1.95	1.75

740	0 Serie	es (c	Dual-In-Line	Packa	ge	1111
Part No.	Product No.	Pins	Description	1	10	100
49648	74160	16	Decade counter with asynch. clear	\$.35	\$.29	\$.19
49664	74161	16	Synchronous 4-bit counter	39	.35	.25
49672	/4163	16	Synchronous 4-bit counter	29	.22	.12
49681	/4164	14	8-bit serial shift register		.29	.25
49099	74100	16	8-bit Serial Shift register, parallel load	49	.45	.29
47775	74174	16	Ouad D-type flip-flop with clear	/10	.45	.35
49824	74179	16	4-bit parallel-access shift register	13	.43	.00
49832	74180	14	9-bit odd/even parity generator/checker		.23	.21
49841	74181	24	Arithmetic logic unit/function generator	1.95	1.75	1.55
49883	74189	16	64-bit RAM tri-state (DM8599N)	3.59	3.25	2.95
49904	74191	16	Binary up/down counter	99	.89	.79
49912	74192	16	Decade up/down counter with clear	3.95	3.59	3.25
49939	74193	16	Binary up/down counter with clear	1.39	1.19	1.09
49955	74194	16	4-bit bi-directional shift register	1.25	.99	.79
49963	74195	16	4-bit parallel-access shift register	13	.11	.09
50041	74221	16	Dual mono. multiv. Schmitt trigger	15	.13	.11
50104	74259	16	8-Dit addressable latch (9334)	. 15	.13	.12
501/1	14219	16	UUUU SET-FESET IATCO		.35	.29
30280 88225	74307 SDI D001A	10	Texas Instruments TTL Data Rook 2		31 /0	20 05
00220	JULUUUIA			ч.7 0	31.47	27.7J
Part No.	Description		See page 62 for details		1	10
84953	360 pc. 7400	series	IC cabinet kit	\$	129.95 \$	116.95
74C	00 Ser	ies	Dual-In-Line	Packa	ge Nivi	THIT
Part No	Product No	Pins	Description		1	10
44222	74C00	14	Quad 2-input NAND gate		. \$.49	\$.39
63538	74C02	14	Quad 2-input NOR gate			.22
44231	74C04	14	Hex inverter (CD4069)			.35
44257	74C14	14	Hex inverter Schmitt trigger (CD40106)			.35
44441	74C74	14	Dual D flip-flop		1.29	1.19
44329	74C174	16	Hex flip-flop (CD40174/MC14174BPC)			.15
44345	74C193	16	Binary up/down counter w/ clear (40193)		1.49	1.29
44361	74C221	16	Dual monostable multivibrator		3.95	3.59
13469	74C367	16	Hex buffer tri-state (80C97/CD4503)			.45
44396	740373	20	Octal D-type flip-flop with clear tri-state		3.95	3.59
44409	740374	20 10	Uctal D Tip-Top IT-State (INS82C06N)		1.49	1.25
44304	740922	20	20 key keyboard apcoder (INS8245N)		0.90	6.25
44572	740925	20 16	A-digit CTR with MUX D segment driver		6 95	5.95
44599	740926	18	4-digit CTR with MUX D segment driver		7 95	6 95
					A	
/4L	<u> 500 Se</u>	ries	Dual-In-Line	Packa	ge 🎢	TTTT.
Part No						100
14252	Product No.	Pins	Description	1 ¢ 25	10	¢ 1E
46252 46297	Product No. 74LS00	Pins 14	Description Quad 2-input NAND gate Quad 2 input NOP gate	1 \$.25	10 \$.19	\$.15
46252 46287 46308	Product No. 74LS00 74LS02 74LS02	Pins 14 14 14	Description Quad 2-input NAND gate Quad 2-input NOR gate Quad 2-input NOR gate Quad 2-input NAND gate (Q C)	1 \$.25 25 25	10 \$.19 .19 10	\$.15 .17
46252 46287 46308 46316	Product No. 74LS00 74LS02 74LS03 74LS04	Pins 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NOR gate Quad 2-input NOR gate (O.C.) Hex inverter	1 \$.25 25 25 29	10 \$.19 .19 .19 25	\$.15 .17 .17 19
46252 46287 46308 46316 46341	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05	Pins 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NOR gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.)	1 \$.25 25 25 29 29	10 \$.19 .19 .19 .25 .25	\$.15 .17 .17 .19 .19
46252 46287 46308 46316 46341 46359	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS06	Pins 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NOR gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex inverter buffer/driver (O.C.)	1 \$.25 25 25 29 29 29 29	10 \$.19 .19 .25 .25 .45	\$.15 .17 .17 .19 .19 .39
46252 46287 46308 46316 46341 46359 46367	Product No. 74LS00 74LS03 74LS04 74LS05 74LS05 74LS06 74LS07	Pins 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NOR gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex inverter buffer/driver (O.C.) Hex buffer/driver (O.C.)	1 \$.25 25 25 29 29 29 29 29	10 \$.19 .19 .25 .25 .45 .79	\$.15 .17 .17 .19 .19 .39 .69
46252 46287 46308 46316 46341 46359 46359 46367 46375	Product No. 74LS00 74LS03 74LS04 74LS05 74LS06 74LS07 74LS08	Pins 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NOR gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex inverter buffer/driver (O.C.) Hex buffer/driver (O.C.) Hex buffer/driver (O.C.) Hex buffer/driver (O.C.)	1 \$.25 25 29 29 29 29 29 49 89 29	10 \$.19 .19 .25 .25 .45 .79 .25	\$.15 .17 .17 .19 .19 .39 .69 .19
46252 46287 46308 46316 46341 46359 46367 46375 46375	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS06 74LS07 74LS08 74LS08	Pins 14	Description Quad 2-input NAND gate Quad 2-input NOR gate Quad 2-input NAND gate (0.C.) Hex inverter Hex inverter (0.C.) Hex inverter buffer/driver (0.C.) Hex buffer/driver (0.C. hi-voltage) Quad 2-input AND gate Quad 2-input AND gate	1 \$.25 25 29 29 29 29 49 89 29 25	10 \$.19 .19 .25 .25 .45 .79 .25 .25 .19	\$.15 .17 .17 .19 .19 .39 .69 .19 .15
46252 46287 46308 46316 46341 46359 46367 46375 46391 46404	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS05 74LS06 74LS07 74LS08 74LS08 74LS09 74LS09	Pins 14 14 14 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NOR gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex inverter buffer/driver (O.C.) Hex buffer/driver (O.C. hi-voltage) Quad 2-input AND gate Quad 2-input AND gate (O.C.)	1 \$.25 25 29 29 29 29 49 49 89 29 25 25	10 \$.19 .19 .25 .25 .45 .79 .25 .19 .25	\$.15 .17 .17 .19 .19 .39 .69 .19 .15 .19
46252 46287 46308 46316 46341 46359 46359 46367 46375 46391 46404 46409	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS06 74LS07 74LS08 74LS08 74LS09 74LS10 74LS10 74LS11	Pins 14 14 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex buffer/driver (O.C.) Hex buffer/driver (O.C.) Quad 2-input AND gate Quad 2-input AND gate Quad 2-input AND gate Triple 3-input NAND gate	1 \$.25 .25 .29 .29 .29 .29 .29 .29 .29 .29	10 \$.19 .19 .25 .25 .45 .79 .25 .19 .25 .25	\$.15 .17 .17 .19 .19 .39 .69 .19 .19 .19 .19
46252 46287 46308 46316 46341 46359 46367 46375 46391 46404 46439 46640	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS06 74LS07 74LS08 74LS09 74LS10 74LS10 74LS10 74LS11 74LS14	Pins 14 14 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate (O.C.) Hex inverter (O.C.) Hex inverter buffer/driver (O.C.) Hex buffer/driver (O.C.) Quad 2-input AND gate Quad 2-input AND gate Quad 2-input AND gate Triple 3-input NAND gate Triple 3-input AND gate	1 \$.25 .25 .29 .29 .29 .29 .29 .29 .29 .29	10 \$.19 .19 .25 .25 .45 .79 .25 .19 .25 .25 .25 .25 .19	\$.15 .17 .17 .19 .19 .39 .69 .19 .19 .19 .19 .19 .19
46252 46287 46308 46316 46341 46359 46367 46375 46391 46404 46439 46640 47095	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS06 74LS07 74LS08 74LS09 74LS10 74LS11 74LS14 74LS20	Pins 14 14 14 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex buffer/driver (O.C.) Hex buffer/driver (O.C.) Quad 2-input AND gate Quad 2-input AND gate Triple 3-input NAND gate Triple 3-input AND gate Hex inverter Schmitt trigger Dual 4-input NAND gate	1 \$.25 .25 .29 .29 .29 .49 .29 .29 .29 .25 .25 .25 .25	10 \$.19 .19 .25 .25 .45 .79 .25 .19 .25 .25 .19 .19 .19	\$.15 .17 .17 .19 .19 .39 .69 .19 .19 .19 .19 .19 .17 .17
46252 46287 46308 46316 46341 46359 46367 46375 46391 46404 46439 46640 47095 47108	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS07 74LS08 74LS09 74LS10 74LS11 74LS20 74LS20 74LS14 74LS21 74LS2	Pins 14 14 14 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter buffer/driver (O.C.) Hex buffer/driver (O.C.) Quad 2-input AND gate Quad 2-input AND gate Cuad 2-input AND gate Triple 3-input AND gate Hex inverter Schmitt trigger Dual 4-input AND gate Dual 4-input AND gate Dual 4-input AND gate Cuad 2-input AND gate Dual 4-input AND gate Dual 4	1 \$.25 .25 .29 .29 .29 .29 .29 .29 .25 .25 .25 .25 .25 .25	10 \$.19 .19 .25 .25 .45 .79 .25 .19 .25 .25 .19 .19 .19 .19 .19	\$.15 .17 .17 .19 .19 .39 .69 .19 .19 .19 .19 .17 .17 .17
46252 46287 46308 46316 46341 46359 46367 46375 46391 46404 46439 46640 47095 47108 47378	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS06 74LS07 74LS08 74LS09 74LS10 74LS11 74LS20 74LS21 74LS22 74LS22	Pins 14 14 14 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex buffer/driver (O.C.) Hex buffer/driver (O.C.) Quad 2-input AND gate Quad 2-input AND gate Triple 3-input NAND gate Hex inverter Schmitt trigger Dual 4-input NAND gate Triple 3-input NAND gate Dual 4-input NAND gate Cuad	1 \$.25 .25 .29 .29 .29 .29 .29 .29 .29 .25 .25 .25 .25 .25 .25 .25	10 \$.19 .19 .25 .25 .45 .79 .25 .19 .25 .25 .19 .19 .19 .19 .19 .19	\$.15 .17 .17 .19 .19 .39 .69 .19 .19 .19 .19 .19 .19 .17 .17 .17 .17
46252 46287 46308 46316 46341 46359 46367 46375 46375 46391 46404 46439 46640 47095 47108 47378 47378	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS06 74LS07 74LS08 74LS09 74LS10 74LS11 74LS20 74LS21 74LS22 74LS23	Pins 14 14 14 14 14 14 14 14 14 14 14 14 14	Description Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex buffer/driver (O.C.) Hex buffer/driver (O.C.) Quad 2-input AND gate Quad 2-input AND gate Quad 2-input AND gate Triple 3-input NAND gate Hex inverter Schmitt trigger Dual 4-input NAND gate Triple 3-input NOR gate B-input NAND gate Duad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NOR gate B-input NAND gate Quad 2-input NAND gate Councept C	1 \$.25 .25 .29 .29 .29 .29 .29 .29 .29 .29	10 \$.19 .19 .25 .25 .45 .79 .25 .19 .25 .19 .19 .19 .19 .19 .19 .19 .19	117 117 119 119 119 119 119 119
46252 46287 46308 46308 46316 46341 46359 46367 46375 46391 46404 46439 46640 47095 47108 47378 47378 47458	Product No. 74LS00 74LS02 74LS03 74LS04 74LS05 74LS06 74LS07 74LS08 74LS08 74LS01 74LS02 74LS04 74LS10 74LS14 74LS20 74LS21 74LS27 74LS32 74LS32 74LS32	Pins 14	Description Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate Quad 2-input NAND gate (O.C.) Hex inverter Hex inverter (O.C.) Hex buffer/driver (O.C.) Hex buffer/driver (O.C.) Quad 2-input AND gate Quad 2-input AND gate Quad 2-input AND gate Triple 3-input NAND gate Hex inverter Schmitt trigger Dual 4-input NAND gate Triple 3-input NAND gate Quad 2-input NAND gate Quad	1 \$.25 25 29 29 29 29 29 29 29 25 25 25 25 25 25 25 25 25 25 29 25	10 \$.19 .19 .25 .25 .79 .25 .19 .25 .19 .19 .19 .19 .19 .19 .19 .19	\$.15 .17 .17 .19 .19 .39 .69 .19 .19 .19 .19 .19 .17 .17 .17 .17 .17 .17 .29

16 BCD to 7-seg. decoder/driver 4.95

16

Quad 2/1 data selector

49605 74157

.35

47773 74LS42

47790 74LS47

.29 47811 74LS48

.49

.69

3.95

.59

.79

4.49

SA555F,N,N-14 * SE555F,T,N,N-14 * SE555C,F,T,N,N-14 * NE555F,T,N,N-14

GAID 1

FEATURES

- Turn off time less than 2µs
- Maximum operating frequency greater than 500kHz
- Timing from microseconds to hours
- Operates in both astable and monostable modes
- High output current
- Adjustable duty cycle
- TTL compatible
- Temperature stability of 0.005% per °C
- SE555 Mill etd 883A,B,C available M38510 (JAN) approved, M38510 processing available.

PIN CONFIGURATIONS

APPLICATIONS

- Precision timing
- Pulse generation
- Sequential liming
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Missing pulse detector

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	ŲNIT
Supply voltage		1
SE555	1 +16	V V
NE555, SE555C, SA555	+16	V I
Power dissipation	600	mW
Operating temperature range		
NE555	0 to +70	°C
SA555	_ 40 to +85	°C
SE555, SE555C	-55 to +125	°C
Storage temperature range	-65 to +150	- C
Load temperature isoldering. 60sect	300	۰¢

EQUIVALENT SCHEMATIC

F,N-14 PACKAGE

14

Vec

BLOCK DIAGRAM

SA555F.N.N-14 • SE555F.T.N.N-14 • SE555C.F.T.N.N-14 • NE555F.T.N.N-14

DC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{CC} = +5V$ to +15 unless otherwise specified.

		İ	SE555		NE555/SE555C (SA555			LINIT
PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	
Supply voltage		4.5		18	4.5		16	V
Supply current (low state)1	V _{CC} = 5V R _L = 10		3	5		3	6	Am
	V _{CC} = 15V H _L = ∞		10	; 12		' 10	15	mA.
Timing error (monostable)	$H_A = 2K\Omega$ to $100K\Omega$!					, , , , ,	
Initial accuracy2	F C = 0.1		0.5	2.0		1.D	. 3.0	
Drift with temperature		1	: 30 A 06		1	. 50	0.6	i ppm/°C.
Drift with supply voltage			0.05	0.2	;	0.1	0.0	735 V
Timing error tastable	H_{A} , $H_{B} = 1k\Omega$ to 100kD		1 1 6		•	0.05		a.
Initial accuracy2	י (j = U,1µלי ארב – 16W		00			150		nnm/°C
Drift with temperature	ACC = 12A		10 15		ļ	0.3		%/V
Drift with supply voltage	151		10.10	10.4	80	10.0	1110	
Control voltage level	$v_{CC} = 15v$ $V_{CC} = 5V$	9.0	3 33	- 3 A	2.6	10.0	4 11	: v I V
	$V_{\rm CC} = 5V$	1 Q T	10.0	110.6	8.8	10.0	112	v
Thespold vonage	$V_{CC} = 5V$	2.7	3.33	4.0	2.4	3.33	4.2	j v
Threshold current3			0.1	0.25	· · · -·	0.1	0.25	μA
	Vcc = 15V	4.B	· 5.0	5.2	4.5	5.0	5.6	V
Thyger voltage	$V_{CC} = 5V$, 1.45	; 1.67	1.9	1.1	1.67	2.2	V
Trigger current	VTRIG = 0V		0.5	0.9		0.5	2.0	Au
Beset voltage4		0.4	0.7	1.0	: 0.4	0.7	1.0	l v
Peret current			Q.1	! 0.4	1	0.1	0.4	, mA
Reset current	VRESET = DV		0.4	5.0		0.4	1.5	mA
Ourout voltage linw	V _{CC} = 15V	-			<u> </u> -	-		
Cathot terrado your	$I_{SINK} = 10 \text{mA}$		0.1	0.15		D.1	0.25	V
	$I_{SINK} = 50 m A$		0.4	0.5	ļ	0.4	0.75	V
	$I_{SINK} = 100 \text{mA}$		2.0	2.2	ĺ	2.0	. 2.5	
	ISENK = 200mA		2.5		:	2.5	İ	V I
	$V_{CC} = 5V$		1 0.1	0.25		03	04	v
	$I_{SINK} = 500A$		1 0.05	10.2		0.25	0.35	i v
Output voltage (high)	Vcc = 15V			1	•			1
Ou(pp) voitage (righ)	Isounce = 200mA		12.5	i		12.5		' v
	JSOURCE = 100mA	13.0	13.3		12.75	13.3		V
	Vcc = 5V							
	ISOURCE - 100mA	30	. 3.3	1	2.75	3.3		; V .
Turn off times	VRESET - VCC		0.5	2.0		0.5	<u> </u>	μS
Rise time of output			100	200		100	300	: ns
Fali time of output			100	200			100	ns s
Discharge leakage current			20	100		20	100	na l
			;					
			i					

NOTES

. .

; !

L

Supply current when output high typically 1mA less

Tested at Vcc = 5V and Vcc = 16V.

 This will determine the maximum value of Rain Rel for 15V operation, the MEX total R = 10 (negohin), and for 5V operation, the max total R = 3.4 mag.ohm.

4 Specified with trigger (noat high

Specified with higgs to bar high
 Time measured from a positive going input bulse from U to 0.8xVcc into the threshold,
 In the area from high to row of the autput. Trigger is find to threshold.

NE78 55578 555673A555

SA555F,N,N-14 • SE555F,T,N,N-14 • SE555C,F,T,N,N-14 • NE555F,T,N,N-14

TYPICAL PERFORMANCE CHARACTERISTICS

TMER

signetics

ORIGINAL 38957 7 38981

MM2114, MM2114L Family

MM2114, MM2114L Family 4096-Bit (1024 × 4) Static RAMs

National Semiconductor

General Description

The MM2114 family of 1024-word by 4-bit static random access memories is febricated using N-channel silicon-gate technology. All internal circults are fully static and therefore require no clocks or refreshing for operation. The data is read our nondestructively and has the same polarity as the input data. Common Input/output pins are provided.

The separate chip select input (\overline{CS}) allows easy memory expansion by OR-tying individual devices to a data bus,

NMOS RAMs

Features

- All inputs and outputs directly TTL compatible.
- Static operation—no clocks or refreshing required.

W01

1/02

1/03

W0 ^{W04}

Low power-225 mW typical

÷.,

Logic Symbol....

- High speed-down to 200 ns access time.
- TRI-STATE® output for bus interface
- Common Data In and Data Out pins

Let at a

- Single 6V supply
- Standard 18-pin dual-in-line package

.....

AD.

A1

A2-

A3

A4

Аб

A5

Α7

A8

AB

A10

Truth Table

A11 GS

MM2114J-2L, MM2114J-2, MM2114J, MM2114J-L, MM2114J-3L or MM2114J-3 See NS Package J18A

Order Number MM2114N-2L, MM2114N-2, MM2114N, MM2114N-L, MM2114N-3L or MM2114N-3 See NS Package N18A

CS WE 1/0 x HI-Z н н L L L L L L

MODE Not Selected Write 1 Write D Read н DOUT

1-6

DRIGINAL

Functional Description

Two pins control the operation of the MM2114, Chip Sofact (CSI enables write and read operations and controls TAI-STATING of the data-output buffer. Write Enable (WE) chooses between READ and WRITE modes and also controls output TRI-STATING. The truth table details the states produced by combinations of the \overline{CS} and \overline{WE} controls.

READ-cycle timing is shown in the section on Switching Time Waveforms, WE is kept high. Independent of CS, any change in address code causes new data to be fatched and brought to the output buffer. CS must be low, however, for the output buffer to be enabled and transfer the data to the output pin.

Address access time, $\tau_{A_{r}}$ is the time required for an address change to produce new date at the output pin, assuming \overline{CS} has enabled the output buffer prior to date arrivet. Chip Select-to-output delay, τ_{CO} , is the time

required for \overline{CS} to enable the output buffer and transfer previously fetched data to the output pin. Operation with \overline{CS} continuously held low is permissible.

WRITE-cycle timing is shown in the section on Switching Time Waveforms. Writing occurs only during the time both CS and WE are low. Minimum write pulse width, twp, refers to this simultaneous low region. Data set-up and hold times are measured with respect to whichever control first rises. Successive write operations may be performed with CS continuously held low. WE then is used to terminate WRITE between address changes, Alternatively, WE may be held low for successive WRITES and CS used for WRITE interruption between address change,

In any event, either \overline{WE} or \overline{CS} (or both) must be high during address transitions to prevent erroneous WRITE.

Block Diagram

1

Absolute Maximum Ratings **Operating Conditions** MIN j (i). Supply Volgee (V_{CC}) UNITS MAX Voltage at Aity Pin -0.5V to+7V 4.75 Ş.26 v Storage Temperature -65°C to +150°C Ambiant Temperature (T_A) -70 °C 0 Power Dissipation 1W TIRA . Lead Temperature (Soldering, 1D seconds) 300° C . / mj •• . --,

DC Electrical Characteristics TA = 0°C to +70°C, VCC = 6V ±5%

MM2114, MM2114L Family

Symbûl	PARAMETER	PARAMETER CONDITIONS		114 F14-2 14-25 I14-3	MM2114-L MM2114-2L MM2114-25L AM2114-25L		ידואיט
F			MIN +.	MAX	XNN	MAX	Ι
Уін	Logical "1" Input Voltage		2.0	Vcc	20	Vcc	V
VeL	Logical "0" Input Volvage		-40.6	38	65	0.8	
ΫѺΗ	Logeal "1" Output Vallage	Am D I - I O mA	24		- 20		4
Vol	Logical "0" Output Voltage	lgt = 2.1 mA		¢4		04	V V
lL1	Input Load Current	VIN * 0 to 5.25V	-10	10	10	10	Αμ
IL0	Ourpur Leakage Corcent	VO * 4V to 0.4V, CS * VrH	-10	10)6	10	un
lcc1	Power Supply Current	All Inputs = 5.25V, TA + 25 C	·	95	<u>i</u>	. 55	0.4
1002	Power Supply Current	All Inputs = 5.25V, TA = 0°C	1	103	1	7b	. п.А

AC Electrical Characteristics TA = 0°C to +70°C, VCC = 5V ±5%, [Note 2]

PARAMETER	1/9/12 1/9/121	MBM2114-2 MBM2114-2L		MM2114-28 MM2114-26L		61M2114-3 MM2114-31		MM2114 MM2114-L	
	MIN	MAX	MEN	MAX	MIN	MAX	MiN	MAX	
CYCLE									
Read Cyste Time (WE = Vije)	200	1	250	· ••• ·	300		350	i	 П 5
Access Time		200		250		3%		450	1
Chip Select to Output Valid		70	1	90		(90)		120	
Chip Select to Output Active	20		20	· ·	20		200	{	
Ohip Select to Output TRI-STATE	D	40	a	. 60	0	80	0	i DO I	γ.
Oviout Hald from Address Change	:0		10		10		16	Ì.	
CYCLE									
Write Cycle Time	200		250	· .	.30D		150	-	- 14
Write Putte Wickle	100		125		160		20 00		76
Write Recovery Time	0	· ·	o		a		0	1	n
Data Sat-Up Time	:00		129		150		200		пs
Data Hold Time	0		0		a	1	6		115
Write Enable to Output TRI-STATE	D	40	ů.	60 - ••*	0	90	0	100	ra I
Illuine Costate on Oursey Value	1	an		90 1		100		120	
	PARAMETER CVCLE Read Cycle Time (WE = V4H) Access Time Chip Select to Output Valid Chip Select to Output Active Chip Select to Output Active Chip Select to Output TRI-STATE Output Hald from Address Change CVCLE Write Cycle Time Write Cycle Time Write Recovery Time Data Hold Time Write Enable to Output TRI-STATE	MM2 MIN CYCLE Read Cycle Time (WE > V(H)) Access Time Chip Select to Output Valid Chip Select to Output Valid Chip Select to Output Active 20 Chip Select to Output TRI-STATE D Output Hald from Address Change CVCLE Write Cycle Time 200 Write Cycle Time 200 Write Cycle Time 200 Write Cycle Time 0 Oata Hold Time 0 Write Enable to Cutput TRI-STATE 0	MM2114-2 MM2114-2L MM2114-2L MM2114-2L MIN MAX CYCLE MIN MAX Read Cyste Time (WE > V(H)) 200 200 Access Time 200 200 Chip Select to Output Valid 70 70 Chip Select to Output Active 20 40 Output Hald from Address Change 10 40 Output Hald from Address Change 10 40 Write Cyste Time 200 200 Write Recovery Time 0 200 Data Hold Time 0 40 Write Enable to Cutput TRI-STATE D 40	PARAMETERMM2114-2 MM2114-2LMM21 MM21CYCLEMINMAXMINCYCLERead Cycle Time (WE + VAH)200250Access Time200200Chip Select to Output Valid7070Chip Select to Output Valid70200Chip Select to Output Valid7020Chip Select to Output TRI-STATED40Output Hald from Address Change1010CVCLE200250Write Cycle Time200250Write Cycle Time00Output Recovery Time00Data Hold Time00Write Enable to Cutput TRI-STATED40O00	PARAMETERM8M2114-2 MM2114-2LMM2114-26 MM2114-2LCVOLERead Cycle Time (WE + V1H)200250Access Time200250Access Time200250Chip Select to Output Valid7030Chip Select to Output Valid7030Chip Select to Output Active2020Chip Select to Output TRI-STATE040Output Hald from Address Change1010CYCLEWrite Cycle Time200250Write Cycle Time00Obtal Set-Up Time00Data Hold Time00Write Enable to Output TRI-STATE040O table Set-Up Time00Obtal Set-Up Time00Output TRI-STATE00Write Enable to Output TRI-STATE040O table Set-Up Time00Output TRI-STATE00Output TRI-STATE00Output TRI-STATE00Output TRI-STATE00Output TRI-STATE00Output TRI-STATE00Output TRI-STATE040Output TRI-STATE040	MM2114-2 MM2114-2L MM2114-26 MM2114-26L MM2114-26 MM2114-26L MM2114-26 MM2 QYOLE MIN MAX MIN MAX MIN QYOLE Read Cycle Time (WE > V(H)) 200 250 300 Access Time 200 250 300 300 Access Time 200 200 250 300 Chip Select to Output Valid 70 90 20 20 Chip Select to Output Valid 70 90 20 20 Chip Select to Output Active 20 20 20 20 Chip Select to Output TRI-STATE D 40 0 60 0 Output Hald from Address Change 10 10 10 10 10 CYCLE	MM2114-2 MM2114-2L MM2114-2E MM2114-26L MM2114-3 MM2114-31, MIN MAX MIN MAX MMX MAX MAX	MARAMETER MAR2114-2 MM2114-2L MM2114-26 MM2114-26L MM2114-3 MM2114-31, MM CYCLE MIN MAX MIN MAX MIN CYCLE Read Cycle Time (WE = Vite) 200 250 300 350 Access Time 200 200 250 300 350 Access Time 200 200 250 300 350 Chip Select to Output Valid 70 300 400 66 0 800 100 Chip Select to Output Active 20	MM2114-2 IMM2114-2L MM2114-2 IMM2114-2L MM2114-2 IMM2114-2L MM2114-2 IMM2114-2L MM2114-2 IMM2114-2L MM2114-2 IMM2114-2L MM2114-2 IMM2114-2L CYOLE MIN MAX MIN MAX MIN MAX MIN MAX Access Time 200 250 300 350 450 Access Time 200 250 300 350 450 Access Time 200 250 300 350 450 Chip Select to Output Valid 70 90 660 0 \$0 200<

Capacitance T_A = 25°C, f = 1 MHz, (Note 3)

SYMBOL	PARAMETER	CONDITIONS	. MM2 AM221 AM21 8/17/21	114 14-2- 14-25 14-3	MM2 MM21 MM21 MM21 MM2	1 14-L 14-2L 14-2DL 14-3L	UNITS
			MIN 1	MAX	MIN	MAX	
CIN	Insur Capacitance	Alt Inputs VIN • QV		5		5	۵F
¢оот	Output Cepacitance	V0+0V		10		10	۵É

Note 1: Typical values at $T_{\rm A}=25^{\circ}\,{\rm G}_{\star}$

New 2: All input transitions ≤ 10 ns, Tinking relationed to $V_{[L]MAX}$ or $V_{[H]M[N]}$ for impute, 0.8V and 2V for output. For test purposes, laput levels should using between 0V and 3V. Output load = 1 TFL gate and $C_{L} = 100$ pP.

٦

• •

Note 3: This parameter is guaranteed by periodic testing.

- 2

i.

-

dense tete

. •

•

March 1998

DM74LS00 Quad 2-Input NAND Gates

© 1998 Fairchild Semiconductor Corporation DS006439

FAIRCHILD

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS00)	Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	•			0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max	•		0.8	1.6	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			2.4	4.4	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	C _L =	15 pF	C _L =	50 pF	Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	3	10	4	15	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	3	10	4	15	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

DM74LS02 Quad 2-Input NOR Gates

General Description

This device contains four independent gates each of which performs the logic NOR function.

Features

 Alternate Military/Aerospace device (54LS02) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications

Connection Diagram

Order Number 54LS02DMQB, 54LS02FMQB, 54LS02LMQB, DM54LS02J, DM54LS02W, DM74LS02M or DM74LS02N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

 $Y = \overline{A + B}$

Inp	Output	
Α	В	Y
L	L	н
L	Н	L
н	L	L
н	н	L

H = High Logic Level L = Low Logic Level

March 1998

© 1998 Fairchild Semiconductor Corporation DS006441

Absolute Maximum Ratings (Note 1)

Supply Voltage Input Voltage	7V 7V
Operating Free Air Temperature Range	
DM54LS and 54LS	–55°C to +125°C
DM74LS	0°C to +70°C

Storage Temperature Range -65°C to +150°C Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS02		DM74LS02			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4]
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.40	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			1.6	3.2	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			2.8	5.4	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	C _L = 15 pF		C _L =	50 pF	Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time		13		18	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time		10		15	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

March 1998

DM74LS03 Quad 2-Input NAND Gates with Open-Collector Outputs

FAIRCHILD

DM74LS03

© 1998 Fairchild Semiconductor Corporation DS006344

Absolute Maximum	Ratings (Note 1)
------------------	------------------

Supply Voltage	7V
Input Voltage	7V
Output Voltage	7V

Operating Free Air Temperature Range	
DM54LS and 54LS	–55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS03		DM74LS03			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 5.5V,				100	μA
	Current	V _{IL} = Max					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4]
l _i	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.36	mA
I _{CCH}	Supply Current with	V _{CC} = Max			0.8	1.6	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			2.4	4.4	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	C _L = 15 pF		C _L =	Units	
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	6	20	20	45	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	3	15	4	20	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

FAIRCHILD

SEMICONDUCTOR TM

DM74LS04 Hex Inverting Gates

General Description

This device contains six independent gates each of which performs the logic INVERT function.

Features

 Alternate Military/Aerospace device (54LS04) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS04DMQB, 54LS04FMQB, 54LS04LMQB, DM54LS04J, DM54LS04W, DM74LS04M or DM74LS04N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

Input	Output			
Α	Y			
L	н			
H L				
H = High Logic Level				

L = Low Logic Level

March 1998

© 1998 Fairchild Semiconductor Corporation DS006345

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS04			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	•			0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max	•		1.2	2.4	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			3.6	6.6	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	C _L = 15 pF		C _L = 15 pF C _L = 50 pF		Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	3	10	4	15	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	3	10	4	15	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

DM74LS05 Hex Inverters with Open-Collector Outputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. The open-collector outputs require external pull-up resistors for proper logical operation.

Features

 Alternate Military/Aerospace device (54LS05) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

 $\mathsf{R}_{\mathsf{MAX}} = \frac{\mathsf{V}_{\mathsf{CC}}\left(\mathsf{Min}\right) - \mathsf{V}_{\mathsf{OH}}}{\mathsf{N}_{1}\left(\mathsf{I}_{\mathsf{OH}}\right) + \mathsf{N}_{2}\left(\mathsf{I}_{\mathsf{IH}}\right)}$

 $\mathsf{R}_{\mathsf{MIN}} = \frac{\mathsf{V}_{\mathsf{CC}}\left(\mathsf{Max}\right) - \mathsf{V}_{\mathsf{OL}}}{\mathsf{I}_{\mathsf{OL}} - \mathsf{N}_{\mathsf{3}}\left(\mathsf{I}_{\mathsf{IL}}\right)}$

Where: N₁ (I_{OH}) = total maximum output high current for all outputs tied to pull-up resistor

 $N_2 \; (I_{1H})$ = total maximum input high current for all inputs tied to pull-up resistor

 N_3 (I_{IL}) = total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Function Table

 $Y = \overline{A}$

Input	Output				
A	Y				
L	н				
н	L				
H = High Logic Level					

Absolute Maximum	Ratings (Note 1)
------------------	------------------

Supply Voltage	7V
Input Voltage	7V
Output Voltage	7V

Operating Free Air Temperature Range	
DM54LS and 54LS	–55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS05			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 5.5V				100	μA
	Current	V _{IL} = Max					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Max Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
I _{CCH}	Supply Current with	V _{CC} = Max			1.2	2.4	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			3.6	6.6	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	C _L = 15 pF		C _L = 50 pF		Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	6	20	20	45	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	3	15	4	20	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25° C.

FAIRCHILD

DM7406 Hex Inverting Buffers with High Voltage Open-Collector **Outputs**

General Description

This device contains six independent buffers each of which performs the logic INVERT function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

 $\mathsf{R}_{\mathsf{MAX}} = \frac{\mathsf{V}_{\mathsf{O}}\left(\mathsf{Min}\right) - \mathsf{V}_{\mathsf{OH}}}{\mathsf{N}_{1}\left(\mathsf{I}_{\mathsf{OH}}\right) + \mathsf{N}_{2}\left(\mathsf{I}_{\mathsf{IH}}\right)}$

$$\mathsf{R}_{\mathsf{MIN}} = \frac{\mathsf{V}_{\mathsf{O}}\left(\mathsf{Max}\right) - \mathsf{V}_{\mathsf{OL}}}{\mathsf{I}_{\mathsf{OL}} - \mathsf{N}_{\mathsf{3}}\left(\mathsf{I}_{\mathsf{IL}}\right)}$$

outputs tied to pull-up resistor $\rm N_2~(I_{\rm IH})$ = total maximum input high current for all inputs tied to pull-up resistor

> $N_3 (I_{IL})$ = total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Absolute Maximum Ratings (Note 1)		Operating Free Air Temperature Range		
Supply Voltage	7\/	DM54	–55°C to +125°C	
Supply Voltage	7 V	DM74	0°C to +70°C	
Input Voltage	5.5V	Storage Temperature Range	_65°C to ±150°C	
Output Voltage	30V	Storage remperature Mange	-03 0 10 +130 0	

Recommended Operating Conditions

Symbol	Parameter	DM5406			DM7406			Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.8			0.8	V
V _{OH}	High Level Output Voltage			30			30	V
I _{OL}	Low Level Output Current			30			40	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -12 mA			-1.5	V
ICEX	High Level Output	$V_{CC} = Min, V_O = 30V$			250	μA
	Current	V _{IL} = Max				
V _{OL}	Low Level Output	V_{CC} = Min, I_{OL} = Max			0.7	
	Voltage	V _{IH} = Min				V
		I_{OL} = 16 mA, V_{CC} = Min			0.4]
I,	Input Current @ Max	$V_{CC} = Max, V_I = 5.5V$			1	mA
	Input Voltage					
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.4V$			40	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V			-1.6	mA
I _{CCH}	Supply Current with	V _{CC} = Max		30	48	mA
	Outputs High					
I _{CCL}	Supply Current with	V _{CC} = Max		27	51	mA
	Outputs Low					

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time	C _L = 15 pF		15	ns
	Low to High Level Output	$R_L = 110\Omega$			
t _{PHL}	Propagation Delay Time			23	ns
	High to Low Level Output				

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM7407 Hex Buffers with High Voltage Open-Collector Outputs

General Description This device contains six independent gates each of which performs a buffer function. The open-collector outputs require external pull-up resistors for proper logical operation.

$$R_{MAX} = \frac{V_{O} (Min) - V_{OH}}{N_{1} (I_{OH}) + N_{2} (I_{IH})}$$

$$\mathsf{R}_{\mathsf{MIN}} = \frac{\mathsf{V}_{\mathsf{O}}\left(\mathsf{Max}\right) - \mathsf{V}_{\mathsf{OL}}}{\mathsf{I}_{\mathsf{OL}} - \mathsf{N}_{\mathsf{3}}\left(\mathsf{I}_{\mathsf{IL}}\right)}$$

A1

A6

¥6

Å2

Input

Α

L

Н

H = High Logic Level L = Low Logic Level

Ý2

Υ

L

н

12

Α5

11

Connection Diagram

DM7407

FAIRCHILD

© 1998 Fairchild Semiconductor Corporation DS006497

Function Table

Y = A

Absolute Maximum Ratings (Note 1)		Operating Free Air Temperature Range		
Supply Voltage	7\/	DM54	–55°C to +125°C	
Supply Voltage	7 V	DM74	0°C to +70°C	
Input Voltage	5.5V	Storage Temperature Range	_65°C to ±150°C	
Output Voltage	30V	Storage remperature Mange	-03 0 10 +130 0	

Recommended Operating Conditions

Symbol	Parameter	DM5407			DM7407			Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.8			0.8	V
V _{OH}	High Level Output Voltage			30			30	V
I _{OL}	Low Level Output Current			30			40	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -12 mA			-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 30V			250	μA
	Current	V _{IH} = Min				
V _{OL}	Low Level Output	V_{CC} = Min, I_{OL} = Max			0.7	
	Voltage	V _{IL} = Max				V
		I_{OL} = 16 mA, V_{CC} = Min			0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 5.5V$			1	mA
	Input Voltage					
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.4V$			40	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-1.6	mA
I _{CCH}	Supply Current with	V _{CC} = Max		29	41	mA
	Outputs High					
I _{CCL}	Supply Current with	V _{CC} = Max		21	30	mA
	Outputs Low					

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time	C _L = 15 pF		10	ns
	Low to High Level Output	$R_L = 110\Omega$			
t _{PHL}	Propagation Delay Time			30	ns
	High to Low Level Output				

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
	Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
	Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
	Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
	Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
		English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
		Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www	v.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM74LS08 Quad 2-Input AND Gates

March 1998

© 1998 Fairchild Semiconductor Corporation DS006347

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS08		DM74LS08			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IL} = Max	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	•			0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.36	mA
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	1
I _{CCH}	Supply Current with	V _{CC} = Max			2.4	4.8	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			4.4	8.8	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	C _L =	15 pF	C _L =	50 pF	Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	4	13	6	18	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	3	11	5	18	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

H = High Logic Level L = Low Logic Level

Quad 2-Input AND Gates with Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic AND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Features

 Alternate Military/Aerospace device (54LS09) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

 N_2 (I_{IH}) = total maximum input high current for all

 $N_3 (I_{IL})$ = total maximum input low current for all in-

Connection Diagram

Absolute Maximum	Ratings (Note 1)
------------------	------------------

Supply Voltage	7V
Input Voltage	7V
Output Voltage	7V

Operating Free Air Temperature Range	
DM54LS and 54LS	–55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS09		DM74LS09			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{он}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 5.5V				100	μA
	Current	V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4]
l _i	Input Current @Max	$V_{CC} = Max, V_I = 7V$	•			0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.36	mA
I _{CCH}	Supply Current With	V _{CC} = Max			2.4	4.8	mA
	Outputs High						
I _{CCL}	Supply Current With	V _{CC} = Max			4.4	8.8	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		R _L = 2		2 k Ω		
Symbol	Parameter	C _L =	15 pF	C _L =	50 pF	Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	5	20	8	45	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	4	15	6	27	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = $\overline{25^{\circ}C}$.

FAIRCHILD

SEMICONDUCTOR TM

DM74LS10 Triple 3-Input NAND Gates

General Description

This device contains three independent gates each of which performs the logic NAND function.

Features

 Alternate Military/Aerospace device (54LS10) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS10DMQB, 54LS10FMQB, 54LS10LMQB, DM54LS10J, DM54LS10W, DM74LS10M or DM74LS10N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

	Inputs	Output	
Α	В	С	Y
Х	Х	L	Н
Х	L	х	Н
L	х	Х	Н
Н	н	Н	L

H = High Logic Level

L = Low Logic Level X = Either Low or High Logic Level

© 1998 Fairchild Semiconductor Corporation DS006349

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS10		DM74LS10			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	•			0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			0.6	1.2	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			1.8	3.3	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	C _L = 15 pF		C _L = 15 pF		C _L =	50 pF	Units
		Min	Max	Min	Max			
t _{PLH}	Propagation Delay Time	3	10	4	15	ns		
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	3	10	4	15	ns		
	High to Low Level Output							

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

DM74LS11 Triple 3-Input AND Gates

General Description

This device contains three independent gates each of which performs the logic AND function.

Features

 Alternate military/aerospace device (54LS11) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS11DMQB, 54LS11FMQB, 54LS11LMQB, DM54LS11J, DM54LS11W, DM74LS11M or DM74LS11N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

Y = ABC

	Output		
Α	В	С	Y
Х	Х	L	L
X	L	х	L
L	X	х	L
н	н	н	н

H = High Logic Level L = Low Logic Level

X = Either Low or High Logic Level

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS11		DM74LS11			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	1
I _{CCH}	Supply Current with	V _{CC} = Max			1.8	3.6	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			3.3	6.6	mA
	Outputs Low						

Switching Characteristics at V_{cc} = 5V and T_A = 25°C (See for Test Waveforms and Output Load)							
	$R_L = 2 k\Omega$						
Symbol	Parameter	C _L = 15 pF		C _L = 50 pF		Units	
		Min	Max	Min	Max]	
t _{PLH}	Propagation Delay Time	4	13	6	18	ns	
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	3	11	5	18	ns	
	High to Low Level Output						

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM54LS12/DM74LS12 Triple 3-Input NAND Gates with Open-Collector Outputs

General Description

This device contains three independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

June 1989

DM54LS12/DM74LS12 Triple 3-Input NAND Gates with Open-Collector Outputs

Pull-Up Resistor Equations

 $\mathsf{R}_{MAX} = \frac{\mathsf{V}_{CC}\left(\mathsf{Min}\right) - \mathsf{V}_{OH}}{\mathsf{N}_{1}\left(\mathsf{I}_{OH}\right) + \mathsf{N}_{2}\left(\mathsf{I}_{IH}\right)}$

 $R_{MIN} = rac{V_{CC} (Max) - V_{OL}}{.}$ $I_{OL} - N_3$ (I_{IL})

Where: N_1 (I_{OH}) = total maximum output high current for all

outputs tied to pull-up resistor

 N_2 (I_{IH}) = total maximum input high current for all inputs tied to pull-up resistor

 N_3 (I_{IL}) = total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Order Number DM54LS12J, DM54LS12W, DM74LS12M or DM74LS12N See NS Package Number J14A, M14A, N14A or W14B

Function Table

$\mathbf{Y} = \mathbf{A}\mathbf{B}$								
	Inputs	Output						
A	в	С	Y					
х	х	L	Н					
Х	L	Х	Н					
L	Х	Х	Н					
Н	н	н	L					

H = High Logic Level L = Low Logic Level

X = Either Low or High Logic Level

©1995 National Semiconductor Corporation TL/F/6351 RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Output Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS12			DM74LS12			Unite
		Min	Nom	Max	Min	Nom	Max	Onits
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_{I} = -18 \text{ mA}$				-1.5	V
ICEX	High Level Output Current	$V_{CC} = Min, V_O = 5.5$ $V_{IL} = Max$				100	μΑ
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	v
		$V_{IH} = Min$	DM74		0.35	0.5	
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_1 = 7V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
۱ _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
ICCH	Supply Current with Outputs High	V _{CC} = Max			0.7	1.4	mA
ICCL	Supply Current with Outputs Low	V _{CC} = Max			1.8	3.3	mA

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

	Parameter					
Symbol		C _L = 15 pF		C _L =	Units	
		Min	Мах	Min	Мах	
t _{PLH}	Propagation Delay Time Low to High Level Output	6	20	20	45	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	3	15	4	20	ns
Note 1: All typicals	s are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.					

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

DM74LS13 Dual 4-Input Schmitt Trigger

General Description

This device contains two independent gates each of which perform the logic NAND function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing jitter free output.

Connection Diagram

Function Table

 $\mathbf{Y} = \overline{\mathbf{ABCD}}$

	Output			
Α	В	с	D	Y
х	Х	х	L	н
Х	Х	L	Х	н
Х	L	X	Х	н
L	Х	X	Х	н
н	н	н	н	1

H = High Level Logic

L = Low Level Logic

X = Either Low or High Level Logic

©1995 National Semiconductor Corporation TL/F/10166

RRD-B30M105/Printed in U. S. A.

DM74LS13 Dual 4-Input Schmitt Trigger

September 1992

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to $+150^\circ\text{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Unito		
Symbol	Faranieter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-0.4	mA
I _{OL}	Low Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.7			V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max, V_{IH} = Min$			0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$			0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$			20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	-20		-100	mA
Іссн	Supply Current with Outputs High	V _{CC} = Max V _{IN} = GND			6.0	mA
ICCL	Supply Current with Outputs Low	V _{CC} = Max V _{IN} = OPEN			7.0	mA
v_{T+}	Positive-Going Threshold Voltage	$V_{CC} = +5.0V$	1.5		2.0	v
v_{T-}	Negative-Going Threshold Voltage	$V_{CC} = +5.0V$	0.6		1.1	V
$V_{T+} - V_{T-}$	Hysteresis Voltage	$V_{CC} = +5.0V$	0.4			V
I _T +	Input Current at Positive- Going Threshold	$V_{CC} = +5.0V, V_{IN} = V_{T+}$		-0.14*		mA
I _T -	Input Current at Negative- Going Threshold	$V_{CC} = +5.0V, V_{IN} = V_{T-}$		-0.18*		mA

*Typical Value

Note 1: All typicals are at V_{CC}\,=\, 5V, $T_{A}\,=\,$ 25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

DM74LS14 Hex Inverters with Schmitt Trigger Inputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. Each input has hyster-

esis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Connection Diagram

Order Number 54LS14DMQB, 54LS14FMQB, 54LS14LMQB, DM74LS14M or DM74LS14N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

 $Y = \overline{A}$

Input	Output
Α	Y
L	Н
Н	L

H = High Logic Level L = Low Logic Level

© 1998 Fairchild Semiconductor Corporation DS006353

www.fairchildsemi.com

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	/mbol Parameter		54LS14			DM74LS14			
		Min	Nom	Max	Min	Nom	Max		
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V	
V _{T+}	Positive-Going Input	1.5	1.6	2.0	1.4	1.6	1.9	V	
	Threshold Voltage (Note 2)								
V _{T-}	Negative-Going Input	0.6	0.8	1.1	0.5	0.8	1	V	
	Threshold Voltage (Note 2)								
HYS	Input Hysteresis (Note 2)	0.4	0.8		0.4	0.8		V	
I _{он}	High Level Output Current			-0.4			-0.4	mA	
IOL	Low Level Output Current			4			8	mA	
T _A	Free Air Operating Temperature	-55		125	0		70	°C	

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 3)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	54LS	2.5	3.4		V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	54LS		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		$V_{\rm CC}$ = Min, $I_{\rm OL}$ = 4 mA	DM74		0.25	0.4	
I _{T+}	Input Current at	$V_{CC} = 5V, V_I = V_{T+}$	DM74		-0.14		mA
	Positive-Going Threshold						
I _{T-}	Input Current at	$V_{\rm CC}$ = 5V, $V_{\rm I}$ = $V_{\rm T-}$	DM74		-0.18		mA
	Negative-Going Threshold						
I _I	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$	DM74			0.1	mA
	Input Voltage	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 10.0V	54LS				
I _{IH}	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
IIL	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
los	Short Circuit	V _{CC} = Max	54LS	-20		-100	mA
	Output Current	(Note 4)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			8.6	16	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			12	21	mA
	Outputs Low						

Note 2: $V_{CC} = 5V$.

Note 3: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

			R, =	2 k Ω		
Symbol	Parameter	C _L =	15 pF	C _L =	50 pF	Unit
-		Min	Max	Min	Max	1
PLH	Propagation Delay Time	5	22	8	25	ns
	Low to High Level Output					
۲HL	Propagation Delay Time	5	22	10	33	ns
	High to Low Level Output					

Г

www.fairchildsemi.com

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions at $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$

Symbol	Parameter	DM54LS15			DM74LS15			Unite
Cymbol	i arameter	Min	Nom	Max	Min	Nom	Max	Onits
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Voltage			5.5			5.5	V
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
			1		1	I	1	1

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

			•	•	•		,
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				- 1.5	V
ICEX	High Level Output Current	$\begin{array}{l} V_{CC}=\text{Min}, V_{O}=5.5V\\ V_{IH}=\text{Min} \end{array}$				100	μΑ
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	DM54			0.4	
	Voltage	V _{IH} = Min	DM74			0.5	V
	$I_{OL} = 4 \text{ m/}$	$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$	DM74			0.4	
lj	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$ $V_I = 10V$ (for DM54)				0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
Іссн	Supply Current with Outputs High	$V_{CC} = Max, V_{IN} = OPEN$				3.6	mA
ICCL	Supply Current with Outputs Low	$V_{IN} = GND$				6.6	mA

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Symbol	Parameter	R _L = C _L =	linite	
o y inizor	- uranotor	Ма	ax	
		DM54	DM74	
PLH	Propagation Delay Time Low to High Level Output	24	20	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	18	15	ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

DM74LS20 Dual 4-Input NAND Gates

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS20 Dual 4-Input NAND Gates

General Description

This device contains two independent gates each of which performs the logic NAND function.

Features

 Alternate Military/Aerospace device (54LS20) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications

Connection Diagram

Order Number 54LS20DMQB, 54LS20FMQB, 54LS20LMQB, DM54LS20J, DM54LS20W, DM74LS20M or DM74LS20N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

$Y = \overline{ABCD}$

	Output			
Α	В	С	D	Y
Х	Х	Х	L	н
Х	Х	L	х	н
Х	L	Х	х	н
L	х	Х	Х	н
Н	Н	Н	Н	L

H = High Logic Level L = Low Logic Level

X = Either Low or High Logic Level

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS20			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
l _l	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.36	mA
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			0.4	0.8	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			1.2	2.2	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

			R _L = 2 kΩ				
Symbol	Parameter	C _L = 15 pF		C _L =	Units		
		Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time	3	10	4	15	ns	
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	3	10	4	15	ns	
	High to Low Level Output						

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

www.fairchildsemi.com

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

54LS21/DM54LS21/DM74LS21 Dual 4-Input AND Gates

General Description

Features

This device contains two independent gates each of which performs the logic AND function.

 Alternate Military/Aerospace device (54LS21) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

TL/F/6356-1

Connection Diagram

Order Number 54LS21DMQB, 54LS21FMQB, 54LS21LMQB, DM54LS21J, DM54LS21W, DM74LS21M or DM74LS21N See NS Package Number E20A, J14A, M14A, N14A or W14B

Function Table

I = ABCD								
	Output							
Α	В	С	D	Y				
Х	x	Х	L	L				
х	X	L	Х	L				
х	L	Х	Х	L				
L	X	Х	Х	L				
н	н	н	Н	н				

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

©1995 National Semiconductor Corporation TL/F/6356

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS and 54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS21				Unite		
Gymbol	i arameter	Min	Nom	Max	Min	Nom	Max	onito
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max,$	DM54	2.5	3.4		V
	Voltage	$V_{IH} = Min$	DM74	2.7	3.4		v
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	DM54		0.25	0.4	
	Voltage	V _{IL} = Max	DM74		0.35	0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$	DM74		0.25	0.4	
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
IOS	Short Circuit	V _{CC} = Max	DM54	-20		-100	m۸
	Output Current	(Note 2)	DM74	-20		-100	
ICCH	Supply Current with Outputs High	V _{CC} = Max			1.2	2.4	mA
I _{CCL}	Supply Current with	V _{CC} = Max			2.2	4.4	mA

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	C _L = 15 pF		C _L =	Units	
		Min	Мах	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	4	13	6	18	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	3	11	5	18	ns
Note 1: All typical	s are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.	•	•			

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

DM74LS22 Dual 4-Input NAND Gate with Open-Collector Output

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to $+150^\circ\text{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Units		
	i di di la contra	Min	Nom	Max	onno
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
V _{OH}	High Level Output Voltage			5.5	mA
I _{OL}	Low Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units	
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V
ICEX	High Level Output Current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = \mbox{Min}, \mbox{V}_{O} = 5.5 \mbox{V}, \\ V_{IL} = \mbox{Max} \end{array}$				100	μΑ
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, } I_{OL} = \text{Max,} \\ V_{IH} &= \text{Min} \end{split}$	DM74			0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74			0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
ICCH	Supply Current Outputs High	$V_{CC} = Max, V_{IN} = GND$				0.8	mA
I _{CCL}	Supply Current Outputs Low	$V_{CC} = Max, V_{IN} = Open$				2.2	mA

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

DM74LS26 Quad 2-Input NAND Gates with High Voltage Open-Collector Outputs

March 1998

FAIRCHILD

DM74LS26 Quad 2-Input NAND Gates with High Voltage Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

These gates feature high-voltage output ratings (up to 15V) for interfacing with 12V systems. Although the outputs are rated for 15V, the device supply is still rated for 5V.

Pull-Up Resistor Equations

 $\mathsf{R}_{\mathsf{MAX}} = \frac{\mathsf{V}_{\mathsf{O}}\left(\mathsf{Min}\right) - \mathsf{V}_{\mathsf{OH}}}{\mathsf{N}_{\mathsf{1}}\left(\mathsf{I}_{\mathsf{OH}}\right) + \mathsf{N}_{\mathsf{2}}\left(\mathsf{I}_{\mathsf{IH}}\right)}$

$$\mathsf{R}_{\mathsf{MIN}} = \frac{\mathsf{V}_{\mathsf{O}}\left(\mathsf{Max}\right) - \mathsf{V}_{\mathsf{OL}}}{\mathsf{I}_{\mathsf{OI}} - \mathsf{N}_{\mathsf{3}}\left(\mathsf{I}_{\mathsf{IL}}\right)}$$

Where: N_1 (I_{OH}) = total maximum output high current for all outputs tied to pull-up resistor

 $N_2 \; (I_{\rm IH})$ = total maximum input high current for all inputs tied to pull-up resistor

 $N_3 \left(I_{\text{IL}} \right)$ = total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Order Number DM54LS26J, DM74LS26M, DM74LS26N or DM54LS26W See Package Number J14A, M14A, N14A or W14B

Function Table

$Y = \overline{AB}$

Inp	Inputs						
A B		Y					
L	L	Н					
L	н	н					
н	L	н					
н	L						
H = High L	H = High Logic Level						

L = Low Logic Level

Absolute	Maximum	Ratings	(Note 1)
----------	---------	---------	----------

Absolute Maximum Ratin	GS (Note 1)	Operating Free Air Temperature Rar	ige
Supply Voltage		DM54LS	–55°C to +125°C
Supply Voltage	7 V	DM74LS	0°C to +70°C
Input Voltage	7V	Storage Temperature Range	_65°C to ±150°C
Output Voltage	15V	Storage Temperature Mange	-05 C 10 +150 C

Recommended Operating Conditions

Symbol	Parameter	DM54LS26				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Voltage			15			15	V
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
I _{CEX}	High Level Output	V _{CC} = Min	V _O = 15V			1000	μA
	Current	V _{IL} = Max	V _O = 12V			50	1
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	V _I = 5.5V	DM54			1	
IIH	High Level Input Current	V _{CC} = Max, V _I = 2.7V				20	μA
I _{IL}	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V	DM54			-0.40	mA
			DM74			-0.36	1
I _{CCH}	Supply Current with	V _{CC} = Max			0.8	1.6	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			2.4	4.4	mA
	Outputs Low						

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		DM54		DM74				
Symbol	Parameter	R _L = 2 kΩ		R _L = 2 kΩ				Units
		С _L = 15 рF		C _L = 15 pF		C _L = 50 pF		1
		Min	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time		27		20		45	ns
	Low to High Level Output							
t _{PHL}	Propagation Delay Time		18		15		20	ns
	High to Low Level Output							
Note 2: All t	hypicals are at $V_{00} = 5V$, $T_{1} = 25^{\circ}$ C							

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Tel: 1-888-522-5372

www.fairchildsemi.com

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

0.005 MIN TYP

0.370

0.260

0.370 0.250

0.045 MAX

0.012

W14B (REV J)

DETAIL A

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS27 Triple 3-Input NOR Gates

General Description

This device contains three independent gates each of which performs the logic NOR function.

Connection Diagram

Order Number DM54LS27J, DM54LS27W, DM54LS27E, DM74LS27M or DM74LS27N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

 $Y = \overline{A + B + C}$

I	Output		
Α	В	С	Y
L	L	L	Н
X	Х	н	L
X	н	X	L
н	Х	Х	L

H = High Logic Level

L = Low Logic Level X = Either Low or High Logic Level

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		DM54LS2	7		DM74LS27	7	Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	•			0.1	mA
	Input Voltage						
IIH	High Level Input Current	V _{CC} = Max, V _I = 2.7V				20	μA
I	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.36	mA
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	1
I _{CCH}	Supply Current with	V _{CC} = Max			2	4	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			3.4	6.8	mA
	Outputs Low						

Switching Characteristics at V_{cc} = 5V and T_A = 25°C

at v _{CC} -	3° and $1^{\circ}_{A} = 23^{\circ}$							
Symbol	Parameter	DM54		DM74				Units
			R _L = 2 kΩ					
		C _L =	15 pF	C _L =	15 pF	C _L =	50 pF	1
		Min	Max	Min	Max	Min	Max	1
t _{PLH}	Propagation Delay Time	3	13	3	13	5	18	ns
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	3	13	3	10	4	15	ns
	High to Low Level Output						1	

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

© 1998 Fairchild Semiconductor Corporation DS010169

Absolute Maximum Ratings (Note 1)

Supply Voltage Input Voltage Operating Free Air Temperature Range Storage Temperature Range 0°C to +70°C –65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.7	V
I _{он}	High Level Output Current			-1.2	mA
IOL	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA			-1.5	V
V _{OH}	High Level Output Voltage	V_{CC} = Min, I_{OH} = Max, V_{IL} = Max	2.7			V
V _{OL}	Low Level Output Voltage	V_{CC} = Min, I_{OL} = Max, V_{IH} = Min			0.5	V
		I_{OL} = 12 mA, V_{CC} = Min			0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$			0.1	mA
	Input Voltage					
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V			20	μA
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$			-0.4	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3)	-30		-130	mA
I _{CCH}	Supply Current with	V _{CC} = Max			3.6	mA
	Outputs High					
I _{CCL}	Supply Current with	V _{CC} = Max			13.8	mA
	Outputs Low					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

 $V_{CC} = +5.0V, T_{A} = +25^{\circ}C$

Symbol	Parameter	R _L = C _L =	: 2 kΩ 15 pF	Units
		Min	Max	
t _{PLH}	Propagation Delay Time		20	ns
	Low to High Level Output			
t _{PHL}	Propagation Delay Time		20	ns
	High to Low Level Output			

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

SEMICONDUCTOR

DM74LS30 8-Input NAND Gate

General Description

This device contains a single gate which performs the logic NAND function.

Features

 Alternate Military/Aerospace device (54LS30) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS30DMQB, 54LS30FMQB, 54LS30LMQB, DM54LS30J, DM54LS530W, DM74LS30M or DM74LS30N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

$Y = \overline{ABCDEFGH}$

Inputs	Output			
A thru H	Y			
All Inputs H	L			
One or More	н			
Input L				
H = High Logic Level				

L = Low Logic Level

DM74LS30 8-Input NAND Gate

March 1998

© 1998 Fairchild Semiconductor Corporation DS006360

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS30				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max	•		0.35	0.5	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			0.6	1.1	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

	Parameter					
Symbol		C _L =	15 pF	C _L =	Units	
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	4	12	5	18	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	4	15	5	20	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

FAIRCHILD

SEMICONDUCTOR TM

DM74LS32 Quad 2-Input OR Gates

General Description

This device contains four independent gates each of which performs the logic OR function.

Features

 Alternate Military/Aerospace device (54LS32) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS32DMQB, 54LS32FMQB, 54LS32LMQB, DM54LS32J, DM54LS32W, DM74LS32M or DM74LS32N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

Y = A + B

Inp	Output						
Α	В	Y					
L	L	L					
L	Н	н					
н	L	н					
н	н	н					

H = High Logic Level L = Low Logic Level March 1998

© 1998 Fairchild Semiconductor Corporation DS006361

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS32			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IH} = Min	DM74	2.7	3.4]
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.36	mA
Ios	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			3.1	6.2	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			4.9	9.8	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

	Parameter					
Symbol		C _L =	15 pF	C _L =	Units	
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	3	11	4	15	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	3	11	4	15	ns
	High to Low Level Output					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

© 1998 Fairchild Semiconductor Corporation DS010170

Absolute Maximum Ratings (Note 1))	Operating Free Air Temperature Range	
Supply Voltage	7\/	54LS	–55°C to +125°C
	7 V	DM74LS	0°C to +70°C
input voltage	7.V	Storage Temperature Range	-65° C to $+150^{\circ}$ C
Output Voltage	7V	etolage remperature hange	00 0 10 1 100 0

Recommended Operating Conditions

Symbol	Parameter	DM54LS33			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation .

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 5.5V,				100	μA
	Current	V _{IL} = Max					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54			0.4	
	Voltage	V _{IH} = Min	DM74			0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74			0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.4	mA
I _{CCH}	Supply Current with	V _{CC} = Max				3.6	mA
	Outputs High	V _{IN} = GND					
I _{CCL}	Supply Current with	V _{CC} = Max				13.8	mA
	Outputs Low	V _{IN} = Open					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol	Parameter	R _L = C _L =	$R_L = 2 k\Omega$ $C_L = 15 pF$			
		Min	Max			
t _{PLH}	Propagation Delay Time		22	ns		
	Low to High Level Output					
t _{PHL}	Propagation Delay Time		22	ns		
	High to Low Level Output					

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM74LS37 Quad 2-Input NAND Buffers

General Description

This device contains four independent buffer gates each of which performs the logic NAND function.

Connection Diagram

©1995 National Semiconductor Corporation TL/F/6362

RRD-B30M105/Printed in U. S. A.

DM74LS37 Quad 2-Input NAND Buffers

February 1992

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaran-teed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-1.2	mA
I _{OL}	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

Ele	ectrical Chara	cteristics	over recommended operating free air temperature range (unless otherwise noted)
-----	----------------	------------	--

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max$	2.7	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min$		0.35	0.5	v
		$I_{OL} = 12 \text{ mA}, V_{CC} = Min$		0.25	0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.36	mA
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	-20		-100	mA
ICCH	Supply Current with Outputs High	V _{CC} = Max		0.9	2	mA
ICCL	Supply Current with Outputs Low	V _{CC} = Max		6	12	mA

Switching Characteristics at V_{CC} = 5V and T_A = 25^{\circ}C

Symbol	Parameter	$f C_L=50~pF, \ R_L=667\Omega$		$\begin{array}{l} \textbf{C_L}=~\textbf{150 pF}\\ \textbf{R_L}=~\textbf{667}\Omega \end{array}$		Units
		Min	Max	Min	Мах	
t _{PLH}	Propagation Delay Time Low to High Level Output	3	15	4	18	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	3	15	4	21	ns

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

Connection Diagram

Office/Distributor for specifications.

FAIRCHILD

DM74LS38

eration.

Features

General Description

This device contains four independent gates, each of which performs the logic NAND function. The open-collector out-

puts require external pull-up resistors for proper logical op-

Alternate Military/Aerospace device (54LS38) is

available. Contact a Fairchild Semiconductor Sales

DM54LS38J, DM74LS38M or DM74LS38N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

$Y = \overline{AB}$

Inputs		Output				
Α	A B					
L	L	Н				
L	Н	н				
н	L	н				
н	н	L				
H = High Logic Level						

L = Low Logic Level

Absolute	Maximum	Ratings	(Note 1)
----------	---------	---------	----------

Supply Voltage	7V
Input Voltage	7V
Output Voltage	7V

Operating Free Air Temperature Range	
DM54LS and 54LS	–55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS38				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 5.5V				250	μA
	Current	V _{IL} = Max					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.36	mA
I _{CCH}	Supply Current with	V _{CC} = Max			0.9	2	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			6	12	mA
	Outputs Low						

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

	R _L = 667Ω						
Symbol	Parameter	C _L = 45 pF		C _L =	Units		
		Min	Max	Min	Max]	
t _{PLH}	Propagation Delay Time		22		48	ns	
	Low to High Level Output						
t _{PHL}	Propagation Delay Time		22		29	ns	
	High to Low Level Output						

Note 2: All typicals are at V_{CC} = 5V, T_A = 25° C.

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to $+150^\circ\text{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM74LS40				
Symbol	Farameter	Min	Nom	Max	Units		
V _{CC}	Supply Voltage	4.75	5	5.25	V		
V _{IH}	High Level Input Voltage	2			V		
VIL	Low Level Input Voltage			0.8	V		
I _{OH}	High Level Output Current			-1.2	mA		
I _{OL}	Low Level Output Current			24	mA		
T _A	Free Air Operating Temperature	0		70	°C		

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			- 1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.7			v
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, I}_{OL} = \text{Max,} \\ V_{IH} &= \text{Min} \end{split}$			0.5	v
		$I_{OL} = 12 \text{ mA}, V_{CC} = Min$			0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$			20	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$			-0.4	mA
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	-30		-130	mA
ICCH	Supply Current with Outputs High	$V_{CC} = Max, V_{IN} = GND$			1.0	mA
I _{CCL}	Supply Current with Outputs Low	$V_{CC} = Max, V_{IN} = OPEN$			6.0	mA

Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.

Note 2: Note more than one output should be shorted at a time, and the duration should not exceed one second.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

National Semiconductor

June 1989

54LS42/DM54LS42/DM74LS42 BCD/Decimal Decoders

TI /F/6365-1

General Description

Features

- Diode clamped inputs
- Also for applications as 4-line-to-16-line decoders; 3line-to-8-line decoders
- All outputs are high for invalid input conditions
- Alternate Military/Aerospace device (54LS42) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

Connection Diagram

tions.

These BCD-to-decimal decoders consist of eight inverters

and ten, four-input NAND gates. The inverters are connect-

ed in pairs to make BCD input data available for decoding

by the NAND gates. Full decoding of input logic ensures

that all outputs remain off for all invalid (10-15) input condi-

Order Number 54LS42DMQB, 54LS42FMQB, DM54LS42J, DM54LS42W, DM74LS42M or DM74LS42N See NS Package Number J16A, M16A, N16E or W16A

© 1995 National Semiconductor Corporation TL/F/6365 RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS and 54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Bange	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS42				Unite		
		Min	Nom	Max	Min	Nom	Max	Onits
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Parameter Conditions Mi		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
łj	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
۱ _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
I _{OS}	Short Circuit	V _{CC} = Max	DM54	-20		-100	
	Output Current	(Note 2)	DM74	-20		-100	mA
ICC	Supply Current	V _{CC} = Max (Note 3)	•		7	13	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: $I_{\mbox{CC}}$ is measured with all outputs open and all inputs grounded.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)									
				RL =	2 k Ω				
Symbol	Parameter	From (Input)	C _L =	15 pF	C _L =	Units			
			Min	Мах	Min	Мах			
t _{PHL}	Propagation Delay Time High to Low Level Output	A, B, C, or D (2 Levels of Logic) to Output		25		30	ns		
t _{PHL}	Propagation Delay Time High to Low Level Output	A, B, C, or D (3 Levels of Logic) to Output		30		35	ns		
t _{PLH}	Propagation Delay Time Low to High Level Output	A, B, C, or D (2 Levels of Logic) to Output		25		30	ns		
t _{PLH}	Propagation Delay Time Low to High Level Output	A, B, C, or D (3 Levels of Logic) to Output		30		35	ns		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

March 1998

DM74LS47 BCD to 7-Segment Decoder/Driver with Open-Collector Outputs

FAIRCHILD

SEMICONDUCTOR IM

DM74LS47 BCD to 7-Segment Decoder/Driver with Open-Collector Outputs

General Description

The 'LS47 accepts four lines of BCD (8421) input data, generates their complements internally and decodes the data with seven AND/OR gates having open-collector outputs to drive indicator segments directly. Each segment output is guaranteed to sink 24 mA in the ON (LOW) state and withstand 15V in the OFF (HIGH) state with a maximum leakage current of 250 μ A. Auxiliary inputs provided blanking, lamp test and cascadable zero-suppression functions.

Features

- Open-collector outputs
- Drive indicator segments directly
- Cascadable zero-suppression capability
- Lamp test input

Connection Diagram

Order Number DM54LS47J, DM54LS47W, DM74LS47M or DM74LS47N See Package Number J16A, M16A, N16E or W16A

Pin Names	Description
A0-A3	BCD Inputs
RBI	Ripple Blanking Input (Active LOW)
LT	Lamp Test Input (Active LOW)
BI/RBO	Blanking Input (Active LOW) or
	Ripple Blanking Output (Active LOW)
ā —g	*Segment Outputs (Active LOW)

Note 1: *OC-Open Collector

www.fairchildsemi.com

© 1998 Fairchild Semiconductor Corporation DS009817

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		DM54LS47	M54LS47		DM74LS47	7	Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current a – g			-50			-250	μA
	@ 15V = V _{OH} (Note 3)							
I _{OH}	High Level Output Current BI / RBO						-50	μA
IOL	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: OFF state at a-g.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level	V _{CC} = Min, I _{OH} = Max,	DM54	2.4			V
	Output Voltage	$V_{IL} = Max, \overline{BI} / \overline{RBO}$	DM74	2.7	3.4		
IOFF	Output High Current	$V_{CC} = 5.5V, V_O = 15V \overline{a} - \overline{g}$				250	μA
	Segment Outputs						
V _{OL}	Low Level	V _{CC} = Min, I _{OL} = Max,	DM54			0.4	
	Output Voltage	$V_{IH} = Min, \overline{a} - \overline{g}$	DM74		0.35	0.5	
		I _{OL} = 3.2 mA, BI /RBO	DM74			0.5	V
		$I_{OL} = 12 \text{ mA}, \overline{a} - \overline{g}$	DM74		0.25	0.4	
		I _{OL} = 1.6 mA, BI /RBO	DM74			0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$	DM74			100	μA
	Input Voltage	$V_{CC} = Max, V_I = 10V$	DM54				
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				-0.4	mA
l _{os}	Short Circuit	V _{CC} = Max	DM54	-0.3		-2.0	mA
	Output Current	(Note 5) , I _{OS} at BI/RBO	DM74	-0.3		-2.0	1
I _{CC}	Supply Current	V _{CC} = Max				13	mA

Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $V_{CC} = +5.0V$, $T_{A} = +25^{\circ}C$

at $v_{CC} = +3.0$	$V, T_A = +25 C$				
			R _L =	665 Ω	
Symbol	Parameter	Conditions	C _L =	Units	
			Min	Max	1
t _{PLH}	Propagation Delay			100	ns
t _{PHL}	An to $\overline{a} - \overline{g}$			100	
t _{PLH}	Propagation Delay			100	ns
t _{PHL}	\overline{RBI} to \overline{a} $-\overline{g}$ (Note 6)			100	

Note 6: LT = HIGH, A0-A3 = LOW

Functional Description

The 'LS47 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the RBI blanks the display and causes a multidigit display. For example, by grounding the $\overline{\text{RBI}}$ of the highest order decoder and connecting its $\overline{\text{BI/RBO}}$ to $\overline{\text{RBI}}$ of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding RBI of the lowest order decoder and connecting its BI/RBO to RBI of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, i.e.: by driving RBI of a intermediate decoder from an OR gate whose inputs are BI/RBO of the next highest and lowest order decoders. BI/RBO also serves as an unconditional blanking input. The internal NAND gate that generates the RBO signal has a resistive pull-up, as opposed to a totem pole, and thus BI/RBO can be forced LOW by external means, using wired-collector logic. A LOW signal thus applied to BI/RBO turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to LT turns on all segment outputs, provided that BI/RBO is not forced LOW.

Logic Symbol

V_{CC} = Pin 16 GND = Pin 8

Truth Table

Decimal				Input	s					C	Dutput	s			
or															Note
Function	LT	RBI	A3	A2	A1	A0	BI/RBO	a	b	c	d	ē	Ī	g	
0	н	н	L	L	L	L	Н	L	L	L	L	L	L	н	(Note 7)
1	н	X	L	L	L	н	н	н	L	L	н	н	н	н	(Note 7)
2	н	X	L	L	н	L	н	L	L	н	L	L	н	L	
3	н	X	L	L	н	н	н	L	L	L	L	н	н	L	
4	н	X	L	н	L	L	н	н	L	L	Н	н	L	L	
5	н	X	L	н	L	Н	н	L	н	L	L	н	L	L	
6	н	X	L	н	н	L	н	н	н	L	L	L	L	L	
7	н	x	L	н	н	Н	н	L	L	L	н	н	н	н	
8	н	x	н	L	L	L	н	L	L	L	L	L	L	L	
9	н	x	н	L	L	н	н	L	L	L	н	н	L	L	
10	н	x	н	L	н	L	н	н	н	н	L	L	н	L	
11	н	x	н	L	н	Н	н	н	н	L	L	н	н	L	
12	н	x	н	н	L	L	н	н	L	н	н	н	L	L	
13	н	x	н	н	L	н	н	L	н	н	L	н	L	L	
14	н	x	н	н	н	L	н	н	н	н	L	L	L	L	
15	н	x	н	н	н	н	н	н	н	н	н	н	н	н	
BI	x	x	x	Х	Х	Х	L	н	н	н	н	н	н	н	(Note 8)
RBI	н	L	L	L	L	L	L	н	н	н	н	н	н	н	(Note 9)
LT	L	x	x	Х	Х	х	н	L	L	L	L	L	L	L	(Note 10)

Note 7: BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking out (BI) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking or a decimal 0 is not desired. X = input may be HIGH or LOW.

Note 8: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.

Note 9: When ripple-blanking input (RBI) and inputs A0, A1, A2 and A3 are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition).

Note 10: When the blanking input/ripple-blanking output (BI/RBO) is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
ww.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM74LS48 BCD to 7-Segment Decoder

General Description

The 'LS48 translates four lines of BCD (8421) input data into the 7-segment numeral code and provides seven corresponding outputs having pull-up resistors, as opposed to totem pole pull-ups. These outputs can serve as logic signals, with a HIGH output corresponding to a lighted lamp segment, or can provide a 1.3 mA base current to npn lamp driver transistors. Auxiliary inputs provide lamp test, blanking and cascadable zero-suppression functions.

The 'LS48 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration.

Connection Diagram

DM74LS48 BCD to 7-Segment Decoder

January 1992

©1995 National Semiconductor Corporation TL/F/10172

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Parameter		Unite		
i aranieter	Min	Nom	Max	onita
Supply Voltage	4.75	5	5.25	v
High Level Input Voltage	2			V
Low Level Input Voltage			0.8	v
High Level Output Current			-50	μΑ
Low Level Output Current			6.0	mA
Free Air Operating Temperature	0		70	°C
	Parameter Supply Voltage High Level Input Voltage Low Level Input Voltage High Level Output Current Low Level Output Current Free Air Operating Temperature	Parameter Min Supply Voltage 4.75 High Level Input Voltage 2 Low Level Input Voltage 2 High Level Output Voltage 2 Low Level Output Current 2 Free Air Operating Temperature 0	Parameter DM74LS48 Min Nom Supply Voltage 4.75 5 High Level Input Voltage 2 Low Level Input Voltage 1 High Level Output Voltage 2 Low Level Output Current 1 Low Level Output Current 0	ParameterDM74LS48MinNomMaxSupply Voltage4.7555.25High Level Input Voltage2Low Level Input Voltage20.80.8High Level Output CurrentLow Level Output Current6.06.0Free Air Operating Temperature070

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	V_{CC} Min, $I_{OH} =$ Max, $V_{IL} =$ Max	2.4			v
I _{OFF}	Output High Current Segment Outputs	$V_{CC} = Min, V_O = 0.85V$	-1.3			mA
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OL} = \text{Max}, \\ V_{IH} &= \text{Min} \end{split}$			0.5	v
		$I_{OL} = 2.0 \text{ mA}, V_{CC} = \text{Min}$			0.4	
lj	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
I _{OS}	Short Circuit Output Current	$V_{CC} = Max, V_O = 0V$ at BI/RBO (Note 2)	-0.3		-2	mA
Іссн	Supply Current	$V_{CC} = Max. V_{IN} = 4.5V$			38	mA

Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol	Parameter	C _L =	$C_L = 15 pF$			
Cymbol	i arameter	Min	Max	- Onits		
t _{PLH} t _{PHL}	Propagation Delay Time A _n to a−g		100 100	ns		
tplh tphl	Propagation Delay Time RBI to a−f		100 100	ns		
Note: $\overline{LT} = HIGH, A_0 - A_3 =$	= HIGH.					

Numerical Designations—Resultant Displays

UL

12 13 14

15 TL/F/10172-4

Truth Table

Decimal			Inpu	uts						c	Output	s		
Or Function	LT	RBI	A3	A ₂	A1	Αŋ	BI/RBO	а	b	с	d	е	f	q
0 (Noto 1)	ц	ц	, j				Ц	ц	ц	ц	ц	ц	Ц	
1 (Note 1)				L 1	L 1	ц Ц			и Ц	и Ц			1	1
		Ŷ		L 1	ц Ц				и Ц		ᆸ	ц Ц	L 1	L
2				L 1		L			п	ц Ц	п			п
3		^	L L	L	п	п	п		п	п	п	L	L	п
4	н	x	L	н	L	L	н	L	н	н	L	L	н	н
5	н	x	L	н	L	н	н	н	L	н	н	L	н	н
6	н	X	L	н	н	L	н	L	L	Н	Н	н	н	н
7	н	X	L	н	н	н	н	н	Н	Н	L	L	L	L
8	н	x	н	L	L	L	н	н	Н	н	н	н	н	н
_				-	-	-								
9	н	x	н	L	L	н	н	н	н	н	L	L	н	н
10	н	X	н	L	н	L	н	L	L	L	Н	Н	L	Н
11	н	х	н	L	н	н	н	L	L	н	н	L	L	н
12	н	x	н	н	L	L	н	L	Н	L	L	L	н	н
13	н	х	н	н	L	н	н	н	L	L	н	L	н	н
14	н	x	н	Н	Н	L	н	L	L	L	н	н	н	н
15	н	X	н	н	н	н	н	L	L	L	L	L	L	L
BI (Note 2)	X	Х	X	Х	Х	Х	L	L	L	L	L	L	L	L
RBI (Note 3)	н	L	L	L	L	L	L	L	L	L	L	L	L	L
LT (Note 4)	L	Х	X	Х	Х	Х	н	н	Н	н	Н	н	Н	Н

Note 1: BI/RBO is wired-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking out (BI) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking of a decimal 0 is not desired. X = input may be HIGH or LOW.

Note 2: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a LOW level, regardless of the state of any other input condition.

Note 3: When ripple-blanking input (RBI) and inputs A₀, A₁, A₂, and A₃ are at LOW level, with the lamp test input at HIGH level, all segment outputs go to a LOW level and the ripple-blanking output (RBO) goes to a LOW level (response condition).

Note 4: When the blanking input/ripple-blanking output (BI/RBO) is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a HIGH level.

Logic Symbol

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

March 1998

Each package contains one 2-wide 2-input and one 2-wide

3-input AND-OR-INVERT gates.

DM74LS51 Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-INVERT Gates

FAIRCHILD

SEMICONDUCTOR IM

DM74LS51 Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-INVERT Gates

General Description

This device contains two independent combinations of gates each of which performs the logic AND-OR-INVERT function.

Connection Diagram

Order Number 54LS51DMQB, 54LS51FMQB, 54LS51LMQB, DM74LS51M or DM74LS51N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

 $Y1 = \overline{(A1) (B1) (C1) + (D1) (E1) (F1)}$

	Output					
A1	B1	C1	D1	E1	F1	Y1
Н	н	н	Х	Х	Х	L
Х	X	Х	н	н	н	L
	Н					

$Y2 = \overline{((A2) (B2) + (C2) (D2))}$

	Output					
A2	B2	C2	D2	Y2		
Н	н	Х	Х	L		
Х	X	н	н	L		
	Other combinations					

H = High Logic Level

L = Low Logic Level X = Either Low or High Logic Level

© 1998 Fairchild Semiconductor Corporation DS006369

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	54LS51 DM74LS51			l	Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	54LS	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	54LS			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	•		0.25	0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_{I} = 10V (54L)$			0.1	mA	
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V	54LS			-0.40	mA
			DM74			-0.36	
l _{os}	Short Circuit	V _{CC} = Max	54LS	-20		-100	mA
	Output Current	(Note 2)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			0.8	1.6	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			1.4	2.8	mA
	Outputs Low						

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		54L	.S51	DM74			
Symbol	Parameter	$C_{L} = 15 \text{ pF},$ $C_{L} = 50 \text{ p}$		Units			
		R _L =	$R_L = 2 k\Omega$		R _L = 2 kΩ		
		Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time		20	4	18	ns	
	Low to High Level Output						

Switching Characteristics (Continued)

at V_{CC} = 5V and T_A = 25°C

		54L	S51	DM74		
Symbol	Parameter	$C_L = 15 \text{ pF},$ $R_L = 2 \text{ k}\Omega$		C _L = 5 R _L =	Units	
		Min	Max	Min	Max]
t _{PHL}	Propagation Delay Time		20	3	15	ns
	High to Low Level Output					

DM54LS54/DM74LS54 4-WIDE, 2-Input AND-OR-INVERT Gate

General Description

This device contains a combination of four, two input AND gates whose outputs are connected to a four input NOR Gate.

Connection Diagram

TL/F/10173-1 Order Number DM54LS54J, DM54LS54W, DM74LS54M or DM74LS54N See NS Package Number J14A, M14A, N14A or W14B

Function Table

$\mathbf{Y} = \overline{\mathbf{AB} + \mathbf{CDE} + \mathbf{FGH} + \mathbf{IJ}}$

Inputs									Output	
Α	в	С	D	Е	F	G	н	I	J	Y
н	н	Х	Х	Х	Х	х	х	Х	х	L
X	X	н	н	н	X	X	X	X	X	L
X	X	X	X	X	н	н	н	Х	X	L
X	X	X	X	X	X	X	Х	н	X	L
	All Other Combinations								н	

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

RRD-B30M105/Printed in U. S. A.

© 1995 National Semiconductor Corporation TL/F/10173

DM54LS54/DM74LS54 4-WIDE, 2-Input AND-OR-INVERT Gate

January 1993

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS54			DM74LS54			Units
Cymbol .	i arameter	Min	Nom	Max	Min	Nom	Max	onno
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Voltage			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max,$	DM54LS	2.5			v
	Voltage	V _{IL} = Max	DM74LS	2.7			•
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	DM54LS			0.4	
	Voltage	V _{IH} = Min	DM74LS			0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74LS			0.4	
Ц	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74LS			0.1	mΔ
	Input Voltage	$V_{I} = 10V$	DM54LS				
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
los	Short Circuit	V _{CC} = Max	DM54LS	-20		-100	mΑ
	Output Current	(Note 2)	DM74LS	-20		-100	
ICCH	Supply Current with Outputs High	V _{CC} = Max V _{IN} = GND				1.6	mA
ICCL	Supply Current with Outputs Low	V _{CC} = Max V _{IN} = Open				2.0	mA

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol	Parameter	C _L = 15 p	Unite	
Cymbol	i arameter	Min	Max	onita
telh	Propagation Delay Time Low to High Level Output		15	ns
tPHL	Propagation Delay Time High to Low Level Output		15	ns
Note 1: All typicals are at V	$V_{\rm CC} = 5V, T_{\rm A} = 25^{\circ}{\rm C}.$			

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

DM54LS55/DM74LS55 2-Wide, 4-Input AND-OR-INVERT Gate

General Description

This device contains a combination of AND-OR-INVERT functions. The internal gates are configured as two, four-input AND gates with their outputs connected to a two-input NOR gate.

Connection Diagram

Order Number DM54LS55J, DM54LS55W, DM74LS55M or DM74LS55N See NS Package Number J14A, M14A, N14A or W14B

Function Table

$\mathbf{Y} = \overline{\mathbf{ABCD} + \mathbf{EFGH}}$

	Output							
Α	в	С	D	Е	F	G	н	Y
н	н	н	н	Х	Х	Х	X	L
Х	х	Х	х	Н	н	Н	н	L
	All Other Combinations							Н

H = High Logic Level

L = Low Logic LevelX = Either Low or High Logic Level

© 1995 National Semiconductor Corporation TL/F/10174

RRD-B30M105/Printed in U. S. A.

DM54LS55/DM74LS55 2-Wide, 4-Input AND-OR-INVERT Gate

April 1992

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS55			DM74LS55			Units
- Cymbol	i didiliotoi	Min	Nom	Max	Min	Nom	Max	onno
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics o	over recommended operating free air temperature range (unless otherwise noted)
------------------------------	--

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V	
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max,$	DM54	2.5			V	
		$V_{IL} = Max$	DM74	2.7				
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max,$	DM54			0.4		
		$V_{IH} = Min$				0.5	l v	
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74			0.4	1	
lj	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$ $V_I = 10V (DM54)$				0.1	mA	
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ	
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA	
los	Short Circuit	V _{CC} = Max	DM54	-20		- 100	m۸	
	Output Current	(Note 2)	DM74	-20		- 100	1 104	
ICCH	Supply Current with Outputs High	$V_{CC} = Max, V_{IN} = GND$	•			0.8	mA	
ICCL	Supply Current with Outputs Low	V _{CC} = Max, V _{IN} = Open				1.3	mA	

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics $v_{CC}=\,+\,5.0V,\, T_{A}=\,+\,25^{\circ}C$

Symbol	Parameter	C _L = 15 pl	Unite	
Symbol	Farameter	Min	Max	onits
t _{PLH} t _{PHL}	Propagation Delay Time		15 15	ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS73A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flops with Clear and Complementary Outputs

General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the tran-

sition time of the negative going edge of the clock pulse. The data on the J and K inputs is allowed to change while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the clear input will reset the outputs regardless of the levels of the other inputs.

Connection Diagram

Order Number DM54LS73AJ, DM54LS73AW, DM74LS73AM or DM74LS73AN See Package Number J14A, M14A, N14A or W14B

Function Table

	Input	S		Out	puts
CLR	CLK	J	ĸ	Q	Q
L	Х	Х	Х	L	Н
Н	\downarrow	L	L	Qo	\overline{Q}_{O}
н	\downarrow	н	L	н	L
Н	\downarrow	L	н	L	н
Н	\downarrow	н	н	Toggle	
Н	Н	Х	Х	Qo	\overline{Q}_{o}

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

 \downarrow = Negative going edge of pulse. Q_0 = The output logic level before the indicated input conditions were established.

Toggle = Each output changes to the complement of its previous level on each falling edge of the clock pulse.

DM74LS73A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flops with Clear and Complementary Outputs

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Para		DM54LS73	BA		OM74LS73	A	Units	
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input \	/oltage	2			2			V
V _{IL}	Low Level Input V	oltage			0.7			0.8	V
I _{он}	High Level Output	Current			-0.4			-0.4	mA
I _{OL}	Low Level Output	Current			4			8	mA
f _{CLK}	Clock Frequency	Clock Frequency (Note 3)			30	0		30	MHz
f _{CLK}	Clock Frequency (Note 4)		0		25	0		25	MHz
t _w	Pulse Width	Clock High	20			20			
	(Note 3)	Preset Low	25			25			ns
		Clear Low	25			25			
t _w	Pulse Width	Clock High	25			25			
	(Note 4)	Preset Low	30			30			ns
		Clear Low	30			30			
t _{su}	Setup Time (Notes 2, 3)		20↓			20↓			ns
t _{su}	Setup Time (Notes 2, 4)		25↓			25↓			ns
t _H	Hold Time (Notes 2, 3)		0↓			0↓			ns
t _H	Hold Time (Notes	2, 4)	5↓			5↓			ns
T _A	Free Air Operating	g Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.

Note 3: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Note 4: C_L = 50 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 5)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		1
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	1
I,	Input Current @ Max	V _{CC} = Max	J, K			0.1	
	Input Voltage	$V_1 = 7V$	Clear			0.3	mA
			Clock			0.4]
I _{IH}	High Level Input	V _{CC} = Max	J, K			20	
	Current	V ₁ = 2.7V	Clear			60	μΑ
			Clock			80	1

Electrical Characteristics (Continued)

over reco	mmended operating free air	temperature range (unless c	therwise note	d)			
Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 5)		
I _{IL}	Low Level Input	V _{CC} = Max	J, K			-0.4	
	Current	$V_1 = 0.4V$	Clear			-0.8	mA
			Clock			-0.8	
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 6)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 7)		•	4	6	mA

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input)					
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock		30		25		MHz
	Frequency						
t _{PHL}	Propagation Delay Time	Clear		20		28	ns
	High to Low Level Output	to Q					
t _{PLH}	Propagation Delay Time	Clear		20		24	ns
	Low to High Level Output	to Q					
t _{PLH}	Propagation Delay Time	Clock to		20		24	ns
	Low to High Level Output	Q or \overline{Q}					
t _{PHL}	Propagation Delay Time	Clock to		20		28	ns
	High to Low Level Output	Q or \overline{Q}					

Note 5: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 6: Not more than one outputs hould be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state, an equivalent test may be performed where V₀ = 2.25V and 2.125V for DM54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment. Note 7: With all outputs open, I_{CC} is measured with the Q and Q outputs high in turn. At the time of measurement, the clock is grounded.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
	Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
	Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
	Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
	Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
		English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
		Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www	fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

SEMICONDUCTOR IM

DM74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

General Description

This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is low or high without affecting the outputs as long as the data setup and

hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

 Alternate military/aerospace device (54LS74) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS74DMQB, 54LS74FMQB, 54LS74LMQB, DM54LS74AJ, DM54LS74AW, DM74LS74AM or DM74LS74AN See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

Inputs				Out	outs
PR	CLR	CLK	D	Q	Q
L	н	Х	Х	н	L
н	L	X	X	L	н
L	L	X	X	H (Note 1)	H (Note 1)
Н	н	↑	н	н	L
н	н	↑	L	L	н
н	н	1	x	0,	\overline{O}_{α}

H = High Logic Level

X = Either Low or High Logic Level L = Low Logic Level

↑ = Positive-going Transition

Q0 = The output logic level of Q before the indicated input conditions were established.

Note 1: This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to their inactive (high) level.

DM74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	

DM54LS and 54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Pa	rameter	1	DM54LS7	4A		Units		
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input V	oltage	2			2			V
VIL	Low Level Input Vo	oltage			0.7			0.8	V
I _{OH}	High Level Output	Current			-0.4			-0.4	mA
I _{OL}	Low Level Output	Current			4			8	mA
f _{CLK}	Clock Frequency (Note 4)		0		25	0		25	MHz
f _{CLK}	Clock Frequency (Note 5)		0		20	0		20	MHz
t _w	Pulse Width	Clock High	18			18			
	(Note 4)	Preset Low	15			15			ns
		Clear Low	15			15			
t _w	Pulse Width	Clock High	25			25			
	(Note 5)	Preset Low	20			20			ns
		Clear Low	20			20			
t _{su}	Setup Time (Notes 3, 4)		20↑			20↑			ns
t _{su}	Setup Time (Notes 3, 5)		25↑			25↑			ns
t _H	Hold Time (Notes	3, 6)	0↑			0↑			ns
T _A	Free Air Operating	Temperature	-55		125	0		70	°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.

Note 4: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C, and V_{CC} = 5V.

Note 5: C_L = 50 pF, R_L = 2 k Ω , T_A = 25°C, and V_{CC} = 5V.

Note 6: T_A = 25°C and V_{CC} = 5V.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 7)	Max	Units
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
Ч	Input Current @Max	V _{CC} = Max	Data			0.1	
	Input Voltage	$V_1 = 7V$	Clock			0.1	mA
			Preset			0.2	
			Clear			0.2	
IIH	High Level Input	V _{CC} = Max	Data			20	
	Current	V ₁ = 2.7V	Clock			20	μA
			Clear			40	
			Preset			40	1

Electrical	Characteristics	(Continued)
------------	-----------------	-------------

Symbol	Parameter	Conditions	5	Min	Тур	Max	Units
					(Note 7)		
I _{IL}	Low Level Input	V _{CC} = Max	Data			-0.4	
	Current	$V_{I} = 0.4V$	Clock			-0.4	mA
			Preset			-0.8	
			Clear			-0.8	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 8)	DM74	-20		-100	
I _{CC}	Supply Current	V _{CC} = Max (Note 9)			4	8	mA

Note 7: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $V_0 = 2.25V$ and 2.125V for DM54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment. Note 9: With all outputs open, I_{CC} is measured with CLOCK grounded after setting the Q and \overline{Q} outputs high in turn.

Switching Characteristics at V_{CC} = 5V and T_A = 25 $^\circ\text{C}$

		From (Input)					
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time	Clock to		25		35	ns
	Low to High Level Output	Q or \overline{Q}					
t _{PHL}	Propagation Delay Time	Clock to		30		35	ns
	High to Low Level Output	Q or \overline{Q}					
t _{PLH}	Propagation Delay Time	Preset		25		35	ns
	Low to High Level Output	to Q					
t _{PHL}	Propagation Delay Time	Preset		30		35	ns
	High to Low Level Output	to Q					
t _{PLH}	Propagation Delay Time	Clear		25		35	ns
	Low to High Level Output	to Q					
t _{PHL}	Propagation Delay Time	Clear		30		35	ns
	High to Low Level Output	to Q					

4

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

DM74LS75 Quad Latches

DM74LS75 Quad Latches

FAIRCHILD

General Description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable is high, and the Q output will follow the data input as long as

Connection Diagram

the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occured) is retained at the Q output until the enable is permitted to go high.

These latches feature complementary Q and $\overline{\mathsf{Q}}$ outputs from a 4-bit latch, and are available in 16-pin packages.

Function Table

(Each Latch)

In	outs	Outputs			
D	Enable	Q	Q		
L	н	L	Н		
н	н	н	L		
Х	L	Q ₀	\overline{Q}_{0}		

H = High Level, L = Low Level, X = Don't Care Q_0 = The Level of Q Before the High-to-Low Transition of ENABLE

ō

DS006374-2

www.fairchildsemi.com

© 1998 Fairchild Semiconductor Corporation DS006374

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS75			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
t _{vv}	Enable Pulse Width (Note 5)	20			20			ns
t _{su}	Setup Time (Note 5)	20			20			ns
t _H	Hold Time (Note 5)	0			0			ns
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA			(1010 2)	-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.5		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.5		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	D			0.1	mA
	Input Voltage		Enable			0.4	
I _{IH}	High Level Input	V_{CC} = Max, V_{I} = 2.7V	D			20	μA
	Current		Enable			80	
I	Low Level Input	V_{CC} = Max, V_{I} = 0.4V	D			-0.4	mA
	Current		Enable			-1.6	
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 2)	DM74	-20		-100	
Icc	Supply Current	V _{CC} = Max (Note 3)	•		6.3	12	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs open and all inputs grounded.

Note 5: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

at V	/ =	5V	and	T₄	=	25°C	
	CC	۰.		• A			

		From (Input)	n (Input) $R_L = 2 k\Omega$					
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L = 50 pF		Units	
			Min	Max	Min	Max		
	Propagation Delay Time	D to		27		30	ns	
	Low to High Level Output	Q						
t _{PHL}	Propagation Delay Time	D to		17		25	ns	
	High to Low Level Output	Q						
t _{PLH}	Propagation Delay Time	D to		20		25	ns	
	Low to High Level Output	Q						
t _{PHL}	Propagation Delay Time	D to		15		20	ns	
	High to Low Level Output	Q						
t _{PLH}	Propagation Delay Time	Enable to		27		30	ns	
	Low to High Level Output	Q						
t _{PHL}	Propagation Delay Time	Enable to		25		30	ns	
	High to Low Level Output	Q						
t _{PLH}	Propagation Delay Time	Enable to		30		30	ns	
	Low to High Level Output	Q						
t _{PHL}	Propagation Delay Time	Enable to		15		20	ns	
	High to Low Level Output	Q						

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor	
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.	
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175	
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179	
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon		
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong		
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200		
www.fairchildsemi.com		Fax: +852 2314-0061		

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS83A 4-Bit Binary Adders with Fast Carry

General Description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Features

Full-carry look-ahead across the four bits

Connection Diagram

- Systems achieve partial look-ahead performance with the economy of ripple carry
- Typical add times
 Two 8-bit words 25 ns
 - Two 16-bit words 45 ns
- Typical power dissipation per 4-bit adder 95 mW
- Alternate Military/Aerospace device (54LS83A) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Dual-In-Line Package Β4 Σ4 C4 CO GND В1 Σ1 A 1 16 15 14 13 12 10 9 Σ4 C4 C0 **B1** A 1 Σ^{-} R4 Α4 A2 в3 Σ2 B2 Σ3 A3 2 з 6 Å4 Σ3 ÅЗ В3 Σ2 В2 Å2 ٧cc DS006378-1

Order Number 54LS83ADMQB, 54LS83AFMQB, DM54LS83AJ, DM54LS83AW, DM74LS83AWM or DM74LS83AN See Package Number J16A, M16B, N16E or W16A

© 1998 Fairchild Semiconductor Corporation DS006378

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS83A				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V_{CC} = Min, I_{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	V _{CC} = Max	A or B			0.2	mA
	Input Voltage	V ₁ = 7V	C0			0.1	
IIH	High Level Input	V _{CC} = Max	A or B			40	μA
	Current	V ₁ = 2.7V	C0			20	
I	Low Level Input	V _{CC} = Max	A or B			-0.8	mA
	Current	$V_{I} = 0.4V$	C0			-0.4	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CC1}	Supply Current	V _{CC} = Max (Note 4)			19	34	mA
I _{CC2}	Supply Current	$V_{CC} = Max$ (Note 5)			22	39	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC1} is measured with all outputs open, all B inputs low and all other inputs at 4.5V, or all inputs at 4.5V.

Note 5: I_{CC2} is measured with all outputs open and all inputs grounded.

		From (Input)					
Symbol	Parameter	To (Output)	C _L =	15 pF	С _L = 50 рF		Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	C0 to		24		28	ns
	Low to High Level Output	$\Sigma 1 \text{ or } \Sigma 2$					
t _{PHL}	Propagation Delay Time	C0 to		24		30	ns
	High to Low Level Output	$\Sigma 1 \text{ or } \Sigma 2$					
t _{PLH}	Propagation Delay Time	C0 to		24		28	ns
	Low to High Level Output	Σ3					
t _{PHL}	Propagation Delay Time	C0 to		24		30	ns
	High to Low Level Output	Σ3					
t _{PLH}	Propagation Delay Time	C0 to		24		28	ns
	Low to High Level Output	Σ4					
t _{PHL}	Propagation Delay Time	C0 to		24		30	ns
	High to Low Level Output	Σ4					
t _{PLH}	Propagation Delay Time	A _i , B _i		24		28	ns
	Low to High Level Output	to Σ_i					
t _{PHL}	Propagation Delay Time	A _i , B _i		24		30	ns
	High to Low Level Output	to Σ_i					
t _{PLH}	Propagation Delay Time	C0 to		17		24	ns
	Low to High Level Output	C4					
t _{PHL}	Propagation Delay Time	C0 to		17		25	ns
	High to Low Level Output	C4					
t _{PLH}	Propagation Delay Time	A _i , B _i		17		24	ns
	Low to High Level Output	to C4					
t _{PHL}	Propagation Delay Time	A _i , B _i		17		26	ns
	High to Low Level Output	to C4					

				Outputs						
Inputs				When C0 = L When C0 = H						
					WI	nen C2 = L	When C2 =			
A1 A3	B1 B3	A2 A4	B2 B4	Σ1 Σ3	Σ2 Σ4	C2 C4	Σ1 Σ3	Σ2 Σ4	C2 C4	
L	L	1					н	1		
н	Ē	L L	L	Ĥ			1	н		
L	н	L	Ĺ	н	l ī	L	L	н		
н	н	L	L	L	н	L	н	н	Ĺ	
L	L	н	L	L	н	L	н	н	L	
н	L	н	L	н	н	L	L	L	н	
L	н	н	L	н	н	L	L	L	н	
н	н	н	L	L	L	н	н	L	н	
L	L	L	н	L	н	L	н	н	L	
н	L	L	н	н	н	L	L	L	н	
L	н	L	н	н	н	L	L	L	н	
н	н	L	н	L	L	н	н	L	н	
L	L	Н	н	L	L L	н	н	L	н	
н	L	н	н	н	L L	н	L	н	н	
L	н	н	н	н	L	н	L	н	н	
н	н	н	н	L	н	н	н	н	н	

H = High Level, L = Low Level

Note 6: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs Σ 1 and Σ 2 and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs Σ 3, Σ 4, and C4.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM74LS85 4-Bit Magnitude Comparators

FAIRCHILD

DM74LS85 4-Bit Magnitude Comparators

General Description

These 4-bit magnitude comparators perform comparison of straight binary or BCD codes. Three fully-decoded decisions about two, 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have

a high-level voltage applied to the A = B input. The cascading path is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

Features

- Typical power dissipation 52 mW
- Typical delay (4-bit words) 24 ns
- Alternate Military/Aerospace device (54LS85) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS85DMQB, 54LS85FMQB, 54LS85LMQB, DM54LS85J, DM54LS85W, DM74LS85M or DM74LS85N See Package Number E20A, J16A, M16A, N16E or W16A

© 1998 Fairchild Semiconductor Corporation DS006379

Functi	on Table								
	Comparing			Cascading			Outputs		
	Inp	uts			Inputs				
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B
A3 > B3	X	Х	Х	Х	Х	Х	Н	L	L
A3 < B3	X	X	х	Х	Х	Х	L	н	L
A3 = B3	A2 > B2	X	х	Х	Х	Х	н	L	L
A3 = B3	A2 < B2	X	х	Х	Х	Х	L	н	L
A3 = B3	A2 = B2	A1 > B1	х	Х	Х	Х	н	L	L
A3 = B3	A2 = B2	A1 < B1	х	Х	Х	Х	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	Х	Х	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Х	Х	Х	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Х	Х	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	н	L	L	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	н	Н	L

H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note 1)

Note 1) DM54LS and 54LS 7V DM74LS 7V Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Operating Free Air Temperature Range

Supply Voltage

Input Voltage

Recommended Operating Conditions

Symbol	Parameter	DM54LS85			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA			, ,	-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
l,	Input Current @ Max	V _{CC} = Max	A < B			0.1	
	Input Voltage	V ₁ = 7V	A > B			0.1	mA
			Others			0.3	
IIH	High Level Input	V _{CC} = Max	A < B			20	
	Current	V ₁ = 2.7V	A > B			20	μA
			Others			60	1
I	Low Level Input	V _{CC} = Max	A < B			-0.4	
	Current	$V_{I} = 0.4V$	A > B			-0.4	mA
			Others			-1.2	1
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	1
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			10	20	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs open, A = B grounded and all other inputs at 4.5V.

		From	То	Number of		R _L =	2 k Ω		
Symbol	Parameter	Input	Output	Gate Levels	C _L =	15 pF	C∟ =	50 pF	Units
					Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Any A or B	A < B,	3		36		42	
	Low-to-High Level Output	Data Input	A > B						ns
			A = B	4		40		40]
t _{PHL}	Propagation Delay Time	Any A or B	A < B,	3		30		40	
	High-to-Low Level Output	Data Input	A > B						ns
			A = B	4		30		40]
t _{PLH}	Propagation Delay Time	A < B	A > B	1		22		26	ns
	Low-to-High Level Output	or A = B							
t _{PHL}	Propagation Delay Time	A < B	A > B	1		17		26	ns
	High-to-Low Level Output	or A = B							
t _{PLH}	Propagation Delay Time	A =B	A = B	2		20		25	ns
	Low-to-High Level Output								
t _{PHL}	Propagation Delay Time	A = B	A = B	2		17		26	ns
	High-to-Low Level Output								
t _{PLH}	Propagation Delay Time	A > B	A < B	1		22		26	ns
	Low-to-High Level Output	or A = B							
t _{PHL}	Propagation Delay Time	A > B	A < B	1		17		26	ns
	High-to-Low Level Output	or A = B							

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS86 Quad 2-Input Exclusive-OR Gates

General Description

This device contains four independent gates each of which performs the logic exclusive-OR function.

Connection Diagram

Order Number DM54LS86J, DM54LS86W, DM74LS86M or DM74LS86N See Package Number J14A, M14A, N14A or W14B

Function Table

$\mathbf{Y} = \mathbf{A} \oplus \mathbf{B} = \overline{\mathbf{A}} \mathbf{B} + \mathbf{A}\overline{\mathbf{B}}$

Inp	uts	Output
Α	В	Y
L	L	L
L	н	н
н	L	н
н	н	L

H = High Logic Level L = Low Logic Level DM74LS86 Quad 2-Input Exclusive-OR Gates

© 1998 Fairchild Semiconductor Corporation DS006380

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS86				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4]
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.2	mA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				40	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.6	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	1
I _{CCH}	Supply Current with	V _{CC} = Max	•		6.1	10	mA
	Outputs High	(Note 4)					
I _{CCL}	Supply Current with	V _{CC} = Max			9	15	mA
	Outputs Low	(Note 5)					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CCH} is measured with all outputs open, one input at each gate at 4.5V, and the other inputs grounded.

Note 5: I_{CCL} is measured with all outputs open and all inputs grounded.

				R _L =	2 k Ω		
Symbol	Parameter	Conditions	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Other		18		23	ns
	Low to High Level Output	Input					
t _{PHL}	Propagation Delay Time	Low		17		21	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	Other		10		15	ns
	Low to High Level Output	Input					
t _{PHL}	Propagation Delay Time	High		12		15	ns
	High to Low Level Output						

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS90/DM74LS93 **Decade and Binary Counters**

General Description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 'LS90 and divide-by-eight for the 'LS93.

All of these counters have a gated zero reset and the LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade or four bit binary), the B input is connected to the Q_A output. The input

count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the 'LS90 counters by connecting the \mathbf{Q}_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output QA.

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz

www.fairchildsemi.com

© 1998 Fairchild Semiconductor Corporation DS006381

Absolute Maximu	m Ratings (Note 1)
-----------------	--------------------

Supply Voltage	7V
Input Voltage (Reset)	7V
Input Voltage (A or B)	5.5V

Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter			DM74LS90		Units
			Min	Nom	Max	
V _{cc}	Supply Voltage		4.75	5	5.25	V
VIH	High Level Input Voltage		2			V
V _{IL}	Low Level Input Voltage				0.8	V
I _{он}	High Level Output Current				-0.4	mA
I _{OL}	Low Level Output Current				8	mA
f _{CLK}	Clock Frequency (Note 2)	A to Q _A	0		32	MHz
		B to Q _B	0		16	
f _{CLK}	Clock Frequency (Note 3)	A to Q _A	0		20	MHz
		B to Q _B	0		10	
t _w	Pulse Width (Note 2)	A	15			
		В	30			ns
		Reset	15			
t _w	Pulse Width (Note 3)	A	25			
		В	50			ns
		Reset	25			
t _{REL}	Reset Release Time (Note 2)	•	25			ns
t _{REL}	Reset Release Time (Note 3)		35			ns
T _A	Free Air Operating Temperature		0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS90 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
	Input Clamp Valtage	$\gamma = Min l = 10 m \Lambda$			(NOLE 4)	1.5	N/
	input Clamp voltage	$v_{\rm CC}$ – IVIII, I _I – – 18 IIIA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$					
VoL	Low Level Output	V_{CC} = Min, I_{OL} = Max					
	Voltage	V _{IL} = Max, V _{IH} = Min			0.35	0.5	V
		(Note 7)					
		I_{OL} = 4 mA, V_{CC} = Min			0.25	0.4	
I _I	Input Current @ Max	V_{CC} = Max, V_{I} = 7V	Reset			0.1	
	Input Voltage	V _{CC} = Max	A			0.2	mA
		V ₁ = 5.5V	В			0.4	1
I _{IH}	High Level Input	V _{CC} = Max, V _I = 2.7V	Reset			20	
	Current		A			40	μA
			В			80	1

'LS90 Electrical Characteristics (Continued)

over recon	nmended operating free air	temperature range (unless oth	erwise notec	I)		
Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max
I _{IL}	Low Level Input	$V_{CC} = Max, V_1 = 0.4V$	Reset			-0.4
	Current		A			-2.4

Output Current I_{CC} Supply Current V_{CC} = Max (Note 4) Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Short Circuit

 I_{OS}

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

V_{CC} = Max (Note 5)

Note 7: QA outputs are tested at IOL = Max plus the limit value of IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

В

-20

9

'LS90 Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input)	t) R _L = 2 kΩ					
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units	
			Min	Max	Min	Max		
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz	
	Frequency	B to Q _B	16		10			
t _{PLH}	Propagation Delay Time	A to Q _A		16		20	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	A to Q _A		18		24	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	A to Q _D		48		52	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	A to Q _D		50		60	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	B to Q _B		16		23	ns	
	Low to High Level Output							
t _{PHI}	Propagation Delay Time	B to Q _B		21		30	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	B to Q _C		32		37	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	B to Q _C		35		44	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	B to Q _D		32		36	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	B to Q _D		35		44	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	SET-9 to		30		35	ns	
	Low to High Level Output	Q _A , Q _D						
t _{PHL}	Propagation Delay Time	SET-9 to		40		48	ns	
	High to Low Level Output	Q _B , Q _C						
t _{PHL}	Propagation Delay Time	SET-0 to		40		52	ns	
	High to Low Level Output	Any Q						
							-	

www.fairchildsemi.com

Units

mΑ

mΑ

mΑ

-3.2

-100

15

Symbol	Paramete	er		DM74LS93		Units
			Min	Nom	Max	
V _{cc}	Supply Voltage		4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			V
V _{IL}	Low Level Input Voltage				0.8	V
I _{он}	High Level Output Current				-0.4	mA
I _{ol}	Low Level Output Current				8	mA
f _{CLK} Clock Frequency	Clock Frequency (Note 8)	A to Q _A	0		32	
		B to Q _B	0		16	MHz
f _{CLK}	Clock Frequency (Note 9)	A to Q _A	0		20	
		B to Q _B	0		10	
t _{vv}	Pulse Width (Note 8)	А	15			
		В	30			ns
		Reset	15			
t _w	Pulse Width (Note 9)	А	25			
		В	50			ns
		Reset	25			
t _{REL}	Reset Release Time (Note 8)	Reset Release Time (Note 8)				ns
t _{REL}	Reset Release Time (Note 9)		35			ns
T _A	Free Air Operating Temperatu	ure	0		70	°C

Note 8: $C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$. Note 9: $C_L = 50 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$.

'LS93 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 10)	Max	Units
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max					
	Voltage	V _{IL} = Max, V _{IH} = Min			0.35	0.5	V
		(Note 13)					
		I_{OL} = 4 mA, V_{CC} = Min			0.25	0.4	
l _i	Input Current @Max	V_{CC} = Max, V_{I} = 7V	Reset			0.1	
	Input Voltage	V _{CC} = Max	A			0.2	mA
		V ₁ = 5.5V	В			0.4	
I _{IH}	High Level Input	V _{CC} = Max	Reset			20	
	Current	V ₁ = 2.7V	А			40	μA
			В			80	
I	Low Level Input	$V_{CC} = Max, V_1 = 0.4V$	Reset			-0.4	
	Current		A			-2.4	mA
			В			-1.6	
los	Short Circuit	V _{CC} = Max (Note 11)		-20		-100	mA
	Output Current						
I _{cc}	Supply Current	V _{CC} = Max (Note 12)			9	15	mA

Note 10: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 12: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 13: Q_A outputs are tested at I_{OL} = max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	16		10		
t _{PLH}	Propagation Delay Time	A to Q _A		16		20	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q _A		18		24	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	A to Q _D		70		85	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q _D		70		90	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _B		16		23	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _B		21		30	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _C		32		37	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _C		35		44	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _D		51		60	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _D		51		70	ns
	High to Low Level Output						
t _{PHL}	Propagation Delay Time	SET-0 to		40		52	ns
	High to Low Level Output	Any Q					

Function Tables LS90 BCD Count Sequence

(Note 14)							
Count	Output						
	Q _D	Qc	Q _B	Q _A			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4	L	Н	L	L			
5	L	Н	L	Н			
6	L	Н	Н	L			
7	L	Н	Н	Н			
8	н	L	L	L			
9	н	L	L	н			

LS93 Count Sequence (Note 16)

Count	Output							
	Q _D	Q_{c}	Q _B	Q_A				
0	L	L	L	L				
1	L	L	L	н				
2	L	L	н	L				
3	L	L	н	н				
4	L	н	L	L				
5	L	н	L	н				
6	L	н	н	L				
7	L	н	н	н				
8	н	L	L	L				
9	н	L	L	н				
10	н	L	н	L				
11	н	L	н	н				
12	н	н	L	L				
13	н	н	L	н				
14	н	н	н	L				
15	н	н	н	н				

LS90 Bi-Quinary (5-2)

(NOLE 15)							
Count	Output						
	Q _A	QD	Qc	Q _B			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4	L	Н	L	L			
5	н	L	L	L			
6	н	L	L	Н			
7	н	L	Н	L			
8	н	L	н	н			
9	н	н	L	L			

 Note 14:
 Output Q_A is connected to input B for BCD count.

 Note 15:
 Output Q_D is connected to input A for bi-quinary count.

 Note 16:
 Output Q_A is connected to input B.

 Note 17:
 H = High Level, L = Low Level, X = Don't Care.

LS90 Reset/Count Truth Table

Reset Inputs					Out	put		
R0(1)	R0(2)	R9(1)	R9(2)	Q_{D}	Q_{c}	Q_B	$\mathbf{Q}_{\mathbf{A}}$	
н	Н	L	Х	L	L	L	L	
н	Н	Х	L	L	L	L	L	
x	Х	н	н	н	L	L	н	
X	L	Х	L	COUNT				
L	Х	L	Х	COUNT				
L	Х	Х	L	COUNT				
x	L	L	х		COI	JNT		

LS93 Reset/Count Truth Table

Reset	Output							
R0(1)	R0(2)	Q _D Q _C Q _B Q _A						
Н	Н	L	L	L	L			
L	Х		COUNT					
Х	L		CO	UNT				

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS90/DM74LS93 **Decade and Binary Counters**

General Description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 'LS90 and divide-by-eight for the 'LS93.

All of these counters have a gated zero reset and the LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade or four bit binary), the B input is connected to the Q_A output. The input

count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the 'LS90 counters by connecting the \mathbf{Q}_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output QA.

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz

www.fairchildsemi.com

© 1998 Fairchild Semiconductor Corporation DS006381

Absolute Maximu	m Ratings (Note 1)
-----------------	--------------------

Supply Voltage	7V
Input Voltage (Reset)	7V
Input Voltage (A or B)	5.5V

Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter			DM74LS90			
			Min	Nom	Max		
V _{cc}	Supply Voltage		4.75	5	5.25	V	
VIH	High Level Input Voltage		2			V	
V _{IL}	Low Level Input Voltage				0.8	V	
I _{он}	High Level Output Current				-0.4	mA	
I _{OL}	Low Level Output Current				8	mA	
f _{CLK}	CLK Clock Frequency (Note 2)	A to Q _A	0		32	MHz	
		B to Q _B	0		16		
f _{CLK}	Clock Frequency (Note 3)	A to Q _A	0		20	MHz	
		B to Q _B	0		10		
t _w	Pulse Width (Note 2)	A	15				
		В	30			ns	
		Reset	15				
t _w	Pulse Width (Note 3)	A	25				
		В	50			ns	
		Reset	25				
t _{REL}	Reset Release Time (Note 2)	•	25			ns	
t _{REL}	Reset Release Time (Note 3)		35			ns	
T _A	Free Air Operating Temperature		0		70	°C	

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS90 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
	Input Clamp Valtage	$\gamma = Min l = 10 m \Lambda$			(NOLE 4)	1.5	N/
	input Clamp voltage	$v_{\rm CC}$ – IVIII, I _I – – 18 IIIA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$					
VoL	Low Level Output	V_{CC} = Min, I_{OL} = Max					
	Voltage	V _{IL} = Max, V _{IH} = Min			0.35	0.5	V
		(Note 7)					
		I_{OL} = 4 mA, V_{CC} = Min			0.25	0.4	
I _I	Input Current @ Max	V_{CC} = Max, V_{I} = 7V	Reset			0.1	
	Input Voltage	V _{CC} = Max	A			0.2	mA
		V ₁ = 5.5V	В			0.4	1
I _{IH}	High Level Input	V _{CC} = Max, V _I = 2.7V	Reset			20	
	Current		A			40	μA
			В			80	1

'LS90 Electrical Characteristics (Continued)

over recon	nmended operating free air	temperature range (unless oth	erwise notec	I)		
Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max
I _{IL}	Low Level Input	$V_{CC} = Max, V_1 = 0.4V$	Reset			-0.4
	Current		A			-2.4

Output Current I_{CC} Supply Current V_{CC} = Max (Note 4) Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Short Circuit

 I_{OS}

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

V_{CC} = Max (Note 5)

Note 7: QA outputs are tested at IOL = Max plus the limit value of IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

В

-20

9

'LS90 Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input) $R_L = 2 k\Omega$					
Symbol	Parameter	To (Output)	C _L =	15 pF C _L =		50 pF	Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	16		10		
t _{PLH}	Propagation Delay Time	A to Q _A		16		20	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q _A		18		24	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	A to Q _D		48		52	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q _D		50		60	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _B		16		23	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _B		21		30	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _C		32		37	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _C		35		44	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	B to Q _D		32		36	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	B to Q _D		35		44	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	SET-9 to		30		35	ns
	Low to High Level Output	Q _A , Q _D					
t _{PHL}	Propagation Delay Time	SET-9 to		40		48	ns
	High to Low Level Output	Q _B , Q _C					
t _{PHL}	Propagation Delay Time	SET-0 to		40		52	ns
	High to Low Level Output	Any Q					
							-

www.fairchildsemi.com

Units

mΑ

mΑ

mΑ

-3.2

-100

15

Symbol	Paramete	er		DM74LS93		Units
			Min	Nom	Max	
V _{cc}	Supply Voltage		4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			V
V _{IL}	Low Level Input Voltage				0.8	V
I _{он}	High Level Output Current				-0.4	mA
I _{ol}	Low Level Output Current				8	mA
f _{CLK} Clock Frequency (Note 8)	A to Q _A	0		32		
	B to Q _B	0		16	MHz	
f _{CLK}	Clock Frequency (Note 9)	A to Q _A	0		20	
		B to Q _B	0		10	
t _{vv}	Pulse Width (Note 8)	А	15			
		В	30			ns
		Reset	15			
t _w	Pulse Width (Note 9)	А	25			
		В	50			ns
		Reset	25			
t _{REL}	Reset Release Time (Note 8)		25			ns
t _{REL}	Reset Release Time (Note 9)		35			ns
T _A	Free Air Operating Temperatu	ure	0		70	°C

Note 8: $C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$. Note 9: $C_L = 50 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$.

'LS93 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 10)	Max	Units
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max					
	Voltage	V _{IL} = Max, V _{IH} = Min			0.35	0.5	V
		(Note 13)					
		I_{OL} = 4 mA, V_{CC} = Min			0.25	0.4	
l _i	Input Current @Max	V_{CC} = Max, V_{I} = 7V	Reset			0.1	
	Input Voltage	V _{CC} = Max	A			0.2	mA
		V ₁ = 5.5V	В			0.4	
I _{IH}	High Level Input	V _{CC} = Max	Reset			20	
	Current	V ₁ = 2.7V	A			40	μA
			В			80	
I	Low Level Input	$V_{CC} = Max, V_1 = 0.4V$	Reset			-0.4	
	Current		А			-2.4	mA
			В			-1.6	
los	Short Circuit	V _{CC} = Max (Note 11)		-20		-100	mA
	Output Current						
I _{cc}	Supply Current	V _{CC} = Max (Note 12)			9	15	mA

Note 10: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 12: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 13: Q_A outputs are tested at I_{OL} = max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

		From (Input)		R _L = 2 kΩ				
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units	
			Min	Max	Min	Max	1	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz	
	Frequency	B to Q _B	16		10			
t _{PLH}	Propagation Delay Time	A to Q _A		16		20	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	A to Q _A		18		24	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	A to Q _D		70		85	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	A to Q _D		70		90	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	B to Q _B		16		23	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	B to Q _B		21		30	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	B to Q _C		32		37	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	B to Q _C		35		44	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	B to Q _D		51		60	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	B to Q _D		51		70	ns	
	High to Low Level Output							
t _{PHL}	Propagation Delay Time	SET-0 to		40		52	ns	
	High to Low Level Output	Any Q						

Function Tables LS90 BCD Count Sequence

(Note 14)						
Count	Output					
	QD	Qc	Q _B	Q _A		
0	L	L	L	L		
1	L	L	L	н		
2	L	L	Н	L		
3	L	L	Н	н		
4	L	н	L	L		
5	L	Н	L	н		
6	L	Н	Н	L		
7	L	Н	Н	н		
8	н	L	L	L		
9	н	L	L	н		

LS93 Count Sequence (Note 16)

Count	Output							
	Q _D	$\mathbf{Q}_{\mathbf{D}}$ $\mathbf{Q}_{\mathbf{C}}$ $\mathbf{Q}_{\mathbf{C}}$		Q_A				
0	L	L	L	L				
1	L	L	L	н				
2	L	L	н	L				
3	L	L	н	н				
4	L	н	L	L				
5	L	н	L	н				
6	L	н	н	L				
7	L	н	н	н				
8	н	L	L	L				
9	н	L	L	н				
10	н	L	н	L				
11	н	L	н	н				
12	н	н	L	L				
13	н	н	L	н				
14	н	н	н	L				
15	н	н	н	н				

LS90 Bi-Quinary (5-2)

(NOLE 15)					
Count	Output				
	Q _A	QD	Qc	Q _B	
0	L	L	L	L	
1	L	L	L	Н	
2	L	L	Н	L	
3	L	L H		Н	
4	L	Н	L	L	
5	н	L	L	L	
6	н	L	L	Н	
7	н	i L H		L	
8	н	L	н	н	
9	н	н	L	L	

 Note 14:
 Output Q_A is connected to input B for BCD count.

 Note 15:
 Output Q_D is connected to input A for bi-quinary count.

 Note 16:
 Output Q_A is connected to input B.

 Note 17:
 H = High Level, L = Low Level, X = Don't Care.

LS90 Reset/Count Truth Table

Reset Inputs					Out	put		
R0(1)	R0(2)	R9(1)	R9(2)	Q _D Q _C Q _B Q _A				
н	Н	L	Х	L	L	L	L	
н	Н	Х	L	L	L	L	L	
X	Х	Н	н	н	L	L	н	
X	L	Х	L	COUNT				
L	Х	L	Х	COUNT				
L	Х	Х	L	COUNT				
x	L	L	х	COUNT				

LS93 Reset/Count Truth Table

Reset		Out	tput			
R0(1)	R0(2)	Q _D	Qc	Q _B	Q _A	
Н	Н	L	L	L	L	
L	Х	COUNT				
Х	L	COUNT				

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$

Symbol	Parameter		DM54LS9	5		Unite		
Symbol	Farameter	Min	Nom	Max	Min	Nom	Max	Onits
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	v
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW D _S or Pn to CPn	20 20			20 20			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW D _S or Pn to CPn	10 10			10 10			ns
t _w (H)	CPn Pulse Width HIGH	20			20			ns
t _{en} (L)	Enable Time LOW, PE to CP1	25			25			ns
t _{inh} (H)	Inhibit Time HIGH, PE to CP1	20			20			ns
t _{en} (H)	Enable Time HIGH, PE to CP2	25			25			ns
t _{inh} (L)	Inhibit Time LOW, PE to CP2	20			20			ns

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max,$	DM54	2.5	3.4		v
		V _{IL} = Max	DM74	2.7	3.4		•
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max,$	DM54		0.25	0.4	
		V _{IH} = Min	DM74		0.35	0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
II Input Current @ Max Input Voltage PE Input	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	V _I = 10V	DM54			0.1	
	$V_{CC} = Max, V_I = 7V$	DM74			200	A	
		V _I = 10V	DM54			200	μ
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μA
	PE Input	$V_{CC} = Max, V_I = 2.7V$				40	μΑ
Ι _{ΙL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
	PE Input	$V_{CC} = Max, V_I = 0.4V$				-0.8	mA
I _{OS}	Short Circuit	V _{CC} = Max	DM54	-20		- 100	- mA
	Output Current	(Note 2)	DM74	-20		- 100	
Icc	Supply Current	V _{CC} = Max				21	mA

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$

Symbol	Parameter	R _L = C _L =	Units	
		Min	Max	
tPLH	Propagation Delay Time Low to High Level Output		27	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		27	ns
f _{max}	Maximum Shift Frequency	30		MHz

Functional Description

The '95 is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial (D_S) and four Parallel (P0–P3) Data inputs and four Parallel Data outputs (Q0–Q3). The serial or parallel mode of operation is controlled by a Parallel Enable input (PE) and two Clock inputs, $\overline{CP1}$ and $\overline{CP2}$. The serial (right-shift) or parallel data transfers occur synchronous with the HIGH-to-LOW transition of the selected clock input.

When PE is HIGH, $\overline{CP2}$ is enabled. A HIGH-to-LOW transition on enabled $\overline{CP2}$ transfers parallel data from the P0– P3 inputs to the Q0–Q3 outputs. When PE is LOW, $\overline{CP1}$ is enabled. A HIGH-to-LOW transition on enabled $\overline{CP}1$ transfers the data from Serial input (D_S) to Q0 and shifts the data in Q0 to Q1, Q1 to Q2, and Q2 to Q3 respectively (right-shift). A left-shift is accomplished by externally connecting Q3 to P2, Q2 to P1, and Q1 to P0, and operating the '95 in the parallel mode (PE = HIGH). For normal operation, PE should only change states when both Clock inputs are LOW. However, changing PE from LOW to HIGH while $\overline{CP}2$ is HIGH, or changing PE from HIGH to LOW while $\overline{CP}1$ is HIGH and $\overline{CP}2$ is LOW will not cause any changes on the register outputs.

Mode Select Table											
Operating		Inputs						Outputs			
Mode	PE	CP1	CP2	DS	Pn	Q0	Q1	Q2	Q3		
Shift	L	\sim	Х	Ι	Х	L	q0	q1	q2		
Shint	L	\sim	Х	h	Х	н	q0	q1	q2		
Parallel Load	н	Х	\sim	х	pn	p0	p1	p2	р3		
	\sim	L	L	Х	Х	No Change					
		L	L	Х	Х	No C	No Change				
	\sim	н	L	Х	Х	No C	Change)			
Modo Chango		н		Х	Х	Unde	etermir	ned			
wode onange	\sim	L	н	Х	Х	Unde	ətermir	ned			
		L	н	Х	Х	No C	Change)			
	\sim	н	Н	Х	Х	Unde	etermir	ned			
		Н	Н	Х	Х	No C	Change)			

I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.

h = HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.

 ${\sf pn}={\sf Lower}$ case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

DM54LS107A/DM74LS107A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flops with Clear and Complementary Outputs

General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. The data on the J and K inputs may change while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the clear input will reset the outputs regardless of the logic levels of the other inputs.

Order Number DM54LS107AJ, DM54LS107AW, DM74LS107AM or DM74LS107AN See NS Package Number J14A, M14A, N14A or W14B

Function Table

	Inpute	Out	puts		
CLR	CLK	J	к	Q	Q
L	Х	Х	Х	L	н
н	\downarrow	L	L	Q ₀	\overline{Q}_0
н	\downarrow	н	L	н	L
н	\downarrow	L	н	L	н
н	\downarrow	н	н	Toggle	
Н	н	Х	Х	Q ₀	\overline{Q}_0

H = High Logic Level

X = Either Low or High Logic Level

L = Low Logic Level

 \downarrow = Negative going edge of pulse.

 $Q_0 =$ The output logic level before the indicated input conditions were established.

Toggle = Each output changes to the complement of its previous level on each falling edge of the clock pulse.

©1995 National Semiconductor Corporation TL/F/6367

RRD-B30M105/Printed in U. S. A.

DM54LS107A/DM74LS107A Dual Negative-Ed -K Flip-Flops with Clear and Complementary Outputs Ige-Triggered Master-Slave

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		C	M54LS107	Ά	C	Unite		
Cymbol			Min	Nom	Max	Min	Nom	Max	Onits
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input	Voltage			0.7			0.8	V
Іон	High Level Outpu	ut Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current				4			8	mA
f _{CLK}	Clock Frequency (Note 2)		0		30	0		30	MHz
fCLK	Clock Frequency (Note 3)		0		25	0		25	MHz
t _W	Pulse Width	Clock High	20			20			- ns
	(Note 2)	Clear Low	25			25			
t _W	Pulse Width	Clock High	25			25			ns
	(Note 3)	Clear Low	30			30			110
t _{SU}	Setup Time (Note	Setup Time (Notes 1 & 2)				20↓			ns
t _{SU}	Setup Time (Notes 1 & 3)		25↓			25↓			ns
t _H	Hold Time (Notes 1 & 2)		0↓			o↓			ns
t _H	Hold Time (Notes 1 & 3)		5↓			5↓			ns
T _A	Free Air Operatir	ng Temperature	-55		125	0		70	°C

Note 1: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.

Note 2: C_L = 15 pF, R_L = 2 k\Omega, T_A = 25°C and V_{CC} = 5V.

Note 3: C_L = 50 pF, R_L = 2 k\Omega, T_A = 25°C and V_{CC} = 5V.

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.5	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		1
V _{OL}	V _{OL} Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OL} = \text{Max} \\ V_{IL} &= \text{Max}, \text{V}_{IH} = \text{Min} \end{split}$	DM54		0.25	0.4	
			DM74		0.35	0.5	v
		$I_{OL} = 4mA, V_{CC} = Min$	DM74		0.25	0.4	1
lj –	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	J, K			0.1	
	Input Voltage		Clear			0.3	mA
			Clock			0.4	

Symbol	Parameter	Conditio	ons	Min	Typ (Note 1)	Max	Units	
IIH	High Level Input	V _{CC} = Max	J, K		. ,	20		
	Current	$V_{I} = 2.7V$	Clear			60	μΑ	
			Clock			80		
IIL	Low Level Input	V _{CC} = Max	J, K			-0.4		
	Current	$V_{I} = 0.4V$	Clear			-0.8	mA	
			Clock			-0.8		
I _{OS}	Short Circuit	V _{CC} = Max	DM54	-20		- 100		
	Output Current	(Note 2)	DM74	-20		- 100	IIIA	
Icc	Supply Current	V _{CC} = Max (No	ote 3)		4	6	mA	

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

		From (Input)					
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		30		25		MHz
t _{PLH}	Propagation Delay Time Low to High Level Output	Preset to Q		20		24	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Preset to Q		20		28	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clear to Q		20		24	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Q		20		28	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Q or \overline{Q}		20		24	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Q or \overline{Q}		20		28	ns

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $V_0 = 2.25V$ and 2.125V for DM54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.

Note 3: With all inputs open, I_{CC} is measured with the Q and Q outputs high in turn. At the time of measurement the clock is grounded.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

SEMICONDUCTOR IM

DM74LS109A Dual Positive-Edge-Triggered J-K Flip-Flops with Preset, Clear, and Complementary Outputs

General Description

This device contains two independent positive-edge-triggered J- \overline{K} flip-flops with complementary outputs. The J and \overline{K} data is accepted by the flip-flop on the rising edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the J and \overline{K} inputs may be changed while the clock is high or low as long as

setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

 Alternate Military/Aerospace device (54LS109) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications

Connection Diagram

DM54LS109AW, DM74LS109AM or DM74LS109AN See Package Number J16A, M16A, N16E or W16A

Function Table

	I	nputs	Out	tputs		
PR	CLR	CLK	J	ĸ	Q	Q
L	н	Х	Х	Х	н	L
н	L	X	Х	X	L	Н
L	L	X	Х	Х	H (Note 1)	H (Note 1)
н	н	↑	L	L	L	н
н	н	↑	н	L	То	ggle
н	н	↑	L	н	Qo	\overline{Q}_{O}
н	н	↑	н	н	н	L
н	н	L	Х	Х	Q ₀	\overline{Q}_{0}

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level \uparrow = Rising Edge of Pulse

 \mathbf{Q}_0 = The output logic level of \mathbf{Q} before the indicated input conditions were established.

Toggle = Each output changes to the complement of its previous level on each active transition of the clock pulse.

Note 1: This configuration is nonstable; that is, it will not persist when preset and/or clear inputs return to their inactive (high) state.

© 1998 Fairchild Semiconductor Corporation DS006368

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS and 54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		DM54LS109A			DM74LS109A			Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Vo	oltage	2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
I _{он}	High Level Output Current				-0.4			-0.4	mA
IOL	Low Level Output Current				4			8	mA
f _{CLK}	Clock Frequency (Note 4)		0		25	0		25	MHz
f _{CLK}	Clock Frequency (N	lote 5)	0		20	0		20	MHz
t _w	Pulse Width	Clock High	18			18			
	(Note 4)	Preset Low	15			15			ns
		Clear Low	15			15			
t _w	Pulse Width	Clock High	25			25			
	(Note 5)	Preset Low	20			20			ns
		Clear Low	20			20			
t _{su}	Setup Time	Data High	30↑			30↑			ns
	(Notes 3, 4)	Data Low	20↑			20↑			
t _{s∪}	Setup Time	Data High	35↑			35↑			ns
	(Notes 3, 5)	Data Low	25↑			25↑			
t _H	Hold Time (Note 6)		0↑			0↑			ns
T _A	Free Air Operating	Temperature	-55		125	0		70	°C

7V

7V

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.

Note 4: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Note 5: $C_L = 50$ pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Note 6: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 7)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	l v
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	V _{CC} = Max	J, K			0.1	
	Input Voltage	$V_1 = 7V$	Clock			0.1	mA
			Preset			0.2	
			Clear			0.2	

Electrical Chara	acteristics	(Continued)
------------------	-------------	-------------

Symbol	Parameter	Conditions	6	Min	Тур	Max	Units
					(Note 7)		
l _{IH}	High Level Input	V _{CC} = Max	J, K			20	
	Current	V ₁ = 2.7V	Clock			20	μA
			Preset			40	
			Clear			40	
I _{IL}	Low Level Input	V _{CC} = Max	J, K			-0.4	
	Current	$V_{I} = 0.4V$	Clock			-0.4	mA
			Preset			-0.8	
			Clear			-0.8	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 8)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 9)	·		4	8	mA

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input)					
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock		25		20		MHz
	Frequency						
t _{PLH}	Propagation Delay Time	Clock to		25		35	ns
	Low to High Level Output	Q or \overline{Q}					
t _{PHL}	Propagation Delay Time	Clock to		30		35	ns
	High to Low Level Output	Q or \overline{Q}					
t _{PLH}	Propagation Delay Time	Clear		25		35	ns
	Low to High Level Output	to Q					
t _{PHL}	Propagation Delay Time	Clear		30		35	ns
	High to Low Level Output	to Q					
t _{PLH}	Propagation Delay Time	Preset		25		35	ns
	Low to High Level Output	to Q					
t _{PHL}	Propagation Delay Time	Preset		30		35	ns
	High to Low Level Output	to Q					

Note 7: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $V_0 = 2.25V$ and 2.125V for DM54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment. Note 9: I_{CC} is measured with all outputs open, with CLOCK grounded after setting the Q and \overline{Q} outputs high in turn.

DM74LS109A Dual Positive-Edge-Triggered J-K Flip-Flops with Preset, Clear, and Complementary Outputs

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
	Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
	Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
	Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
	Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
		English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
		Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
wwv	v.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

SEMICONDUCTOR IM

DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flops with Preset, Clear, and Complementary Outputs

General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flop on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the falling edge of the clock pulse. Data on the J and K inputs may be changed while the clock is high or low without affecting the outputs as long as the setup and hold times are

not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

 Alternate Military/Aerospace device (54LS112) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS112DMQB, 54LS112FMQB, 54LS112LMQB, DM54LS112AJ, DM54LS112AW, DM74LS112AM or DM74LS112AN See Package Number E20A, J16A, M16A, N16E or W16A

© 1998 Fairchild Semiconductor Corporation DS006382

Function Table

		Inputs	Outputs			
PR	CLR	CLK	J	К	Q	Q
L	Н	Х	Х	Х	Н	L
н	L	Х	Х	Х	L	н
L	L	Х	Х	Х	H (Note 1)	H (Note 1)
н	н	\downarrow	L	L	Qo	\overline{Q}_{o}
н	н	\downarrow	н	L	н	L
н	н	\downarrow	L	н	L	н
н	н	↓	н	н	Тод	gle
н	н	н	x	x	Q	\overline{Q}_{O}

 $\begin{array}{c} H = High \mbox{Logic Level} \\ L = Low \mbox{Logic Level} \\ X = Either \mbox{Low or High \mbox{Logic Level}} \\ \downarrow = Negative \mbox{Going Edge of Pulse} \\ Q_0 = The output \mbox{Logic level before the indicated input conditions were established.} \end{array}$

Toggle = Each output changes to the complement of its previous level on each falling edge of the clock pulse.

Note 1: This configuration is nonstable; that is, it will not persist when preset and/or clear inputs return to their inactive (high) level.

Absolute Maximum Ratings (Note 2)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Penge	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Operating Free Air Temperature Range

Recommended Operating Conditions

Symbol	Para	meter	C	M54LS11	2A	D	M74LS112	2A	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Vo	oltage	2			2			V
VIL	Low Level Input Vo	Itage			0.7			0.8	V
I _{он}	High Level Output (Current			-0.4			-0.4	mA
I _{OL}	Low Level Output C	Current			4			8	mA
f _{CLK}	Clock Frequency (N	lote 4)	0		30	0		30	MHz
f _{CLK}	Clock Frequency (N	lote 5)	0		25	0		25	MHz
t _w	Pulse Width	Clock High	20			20			
	(Note 4)	Preset Low	25			25			ns
		Clear Low	25			25			
t _w	Pulse Width	Clock High	25			25			
	(Note 5)	Preset Low	30			30			ns
		Clear Low	30			30			
t _{su}	Setup Time (Notes	3, 4)	20↓			20↓			ns
t _{su}	Setup Time (Notes	3, 5)	25↓			25↓			ns
t _H	Hold Time (Notes 3	s, 4)	0↓			0↓			ns
t _H	Hold Time (Notes 3	, 5)	5↓			5↓			ns
T _A	Free Air Operating	Temperature	-55		125	0		70	°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.

Note 4: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Note 5: C_L = 50 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 6)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	J, K			0.1	
	Input Voltage		Clear			0.3	mA
			Preset			0.3	
			Clock			0.4	
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V	J, K			20	
			Clear			60	μA
			Preset			60	
			Clock			80	

Electrical Characteristics (Continued)

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
					(Note 6)		
IIL	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$	J, K			-0.4	
			Clear			-0.8	mA
			Preset			-0.8	
			Clock			-0.8	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 7)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 8)			4	6	mA

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		30		25		MHz
t _{PLH}	Propagation Delay Time	Preset		20		24	ns
	Low to High Level Output	to Q					
t _{PHL}	Propagation Delay Time	Preset		20		28	ns
	High to Low Level Output	to Q					
t _{PLH}	Propagation Delay Time	Clear		20		24	ns
	Low to High Level Output	to Q					
t _{PHL}	Propagation Delay Time	Clear		20		28	ns
	High to Low Level Output	to Q					
t _{PLH}	Propagation Delay Time	Clock to		20		24	ns
	Low to High Level Output	Q or \overline{Q}					
t _{PHL}	Propagation Delay Time	Clock to		20		28	ns
	High to Low Level Output	Q or \overline{Q}					

Note 6: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $V_0 = 2.25V$ and 2.125V for DM54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment. Note 8: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement the clock is grounded.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

SEMICONDUCTOR IM

DM74LS122 Retriggerable One-Shot with Clear and Complementary Outputs

General Description

The DM74LS122 is a retriggerable monostable multivibrator featuring both positive and negative edge triggering with complementary outputs. An internal 10 kΩ timing resistor is provided for design convenience minimizing component count and layout problems. This device can be used with a single external capacitor. The 'LS122 has two active-low transition triggering inputs (A), two active-high transition triggering inputs (A), two active-high transition triggering inputs (A), two active-high transition triggering inputs (A), the active-high transition triggering inputs (A) and a CLEAR input that terminates the output pulse width at a predetermined time independent of the timing components. The clear (CLR) input also serves as a trigger input when it is pulsed with a low level pulse transition (\neg). To obtain optimum and trouble free operation please read operating rules and NSC one-shot application notes carefully and observe recommendations.

Features

DC triggered from active-high transition or active-low transition inputs

Connection Diagram Dual-In-Line Package REXT/ CEXT CEXT Vcc NC: NC RINT a 14 13 12 11 10 RINT Q ā CLR 2 3 5 4 6 7 A1 A2 B1 B2 CLB ō GND

Order Number DM74LS122M or DM74LS122N See Package Number M14A or N14A

- Retriggerable to 100% duty cycle
- Over-riding clear terminates output pulse
- Internal 10 kΩ timing resistor
- TTL, DTL compatible
- Compensated for V_{CC} and temperature variations
- Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of the internal resistor $R_{\rm INT}$ or an external resistor $(R_{\rm X})$ and capacitor ($C_{\rm X}$). Once triggered, the output pulse width may be extended by retriggering the gated active-low (A) transition inputs or the active-high transition (B) inputs or the CLEAR input. The output pulse width can be reduced or terminated by overriding it with the active-low CLEAR input.

Function Table

	I	nputs			Out	puts
CLEAR	A1	A2	B1	B2	Q	Q
L	Х	X	Х	Х	L	Н
Х	н	н	X	х	L	н
Х	X	X	L	х	L	н
Х	X	X	X	L	L	н
н	L	X	↑	н	л	ъ
н	L	X	н	↑	л	ъ
н	X	L	↑	н	л	ъ
н	X	L	н	↑	л	ъ
н	н	\downarrow	н	н	л	ъ
н	\downarrow	\downarrow	н	н	л	ъ
н	\downarrow	н	н	н	л	ъ
\uparrow	L	x	н	н	л	ъ
\uparrow	x	L	н	н	л	ഹ

H = High Logic Level

L = Low Logic Level X = Can Be Either Low or High

↑ = Positive Going Transition

↓ = Negative Going Transition

-r = A Positive Pulse

¬⊥¬ = A Negative Pulse

© 1998 Fairchild Semiconductor Corporation DS006385

Absolute	Maximum	Ratings	(Note 1)
----------	---------	---------	----------

Supply Voltage Input Voltage

Operating Free Air Temperature Range 0°C to +70°C DM74LS Storage Temperature -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameters	6	Min	Nom	Max	Units
V _{cc}	Supply Voltage		4.75	5	5.25	V
VIH	High Level Input Voltage		2			V
V _{IL}	Low Level Input Voltage				0.8	V
I _{он}	High Level Output Current				-0.4	mA
I _{OL}	Low Level Output Current				8	mA
t _{vv}	Pulse Width	A or B High	40			
	(Note 7)	A or B Low	40			ns
		Clear Low	40			
R _{EXT}	External Timing Resistor		5		260	kΩ
C _{EXT}	External Timing Capacitance			No Restriction		μF
C _{WIRE}	Wiring Capacitance				50	pF
	at R _{EXT} /C _{EXT} Terminal					
T _A	Free Air Operating Temperature)	0		70	°C
Note 1: The "At	osolute Maximum Ratings" are those values b	evond which the safety of t	the device cannot be	guaranteed The de	ice should not be	operated at these

7V

7V

devic limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I = -18 mA			-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	2.7	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min				
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max		0.35	0.5	
	Voltage	V _{IL} = Max, V _{IH} = Min				V
		I_{OL} = 4 mA, V_{CC} = Min		0.25	0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$			0.1	mA
	Input Voltage					
I _{IH}	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$			20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
l _{os}	Short Circuit	V _{CC} = Max	-20		-100	mA
	Output Current	(Note 3)				
I _{cc}	Supply Current	V _{CC} = Max (Notes 4, 5, 6)		6	11	mA

Switching Characteristics at V_{CC} = 5V and T_A = 25 $^\circ\text{C}$

				RL	= 2 k Ω		
Symbol	Parameter	From (Input)	C _L =	15 pF	C _L =	15 pF	Units
		To (Output)	C _{EXT} = R _{EXT} =	= 0 pF, = 5 kΩ	C _{EXT} = 1000 pF, R _{EXT} = 10 kΩ		
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	A to Q		33			ns
	Low to High Level Output						

Switching Characteristics (Continued)

at V _{CC} = 5V	and T_A	= 25°C
-------------------------	-----------	--------

				RL	= 2 k Ω		
Symbol	Parameter	From (Input)	C _L =	15 pF	C _L =	15 pF	Units
		To (Output)	C _{EXT} = 0 pF, R _{EXT} = 5 kΩ		C _{EXT} = 1000 pF, R _{EXT} = 10 kΩ		
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	B to Q		44			ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to \overline{Q}		45			ns
	High to Low Level Output						
t _{PHL}	Propagation Delay Time	B to Q		56			ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	Clear to \overline{Q}		45			ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	Clear to Q		27			ns
	High to Low Level Output						
t _{WQ(Min)}	Minimum Width of Pulse	A or B to Q		200			ns
	at Output Q						
t _{W(out)}	Output Pulse Width	A or B to Q			4	5	μs

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: Quiescent I_{CC} is measured (after clearing) with 2.4V applied to all clear and A inputs, B inputs grounded, all outputs open, C_{EXT} = 0.02 µF, and R_{EXT} = 25 kΩ.

Note 5: I_{CC} is measured in the triggered state with 2.4V applied to all clear and B inputs, A inputs grounded, all outputs open, C_{EXT} = 0.02 µF, and R_{EXT} = 25 kΩ. Note 6: With all outputs open and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V is applied to the clock. Note 7: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Operating Rules

- 1. To use the internal 10 k Ω timing resistor, connect the RINT pin to V_{CC}.
- 2. An external resistor (R_{χ}) or the internal resistor (10 k Ω) and an external capacitor (Cx) are required for proper operation. The value of C_x may vary from 0 to any necessary value. For small time constants use high-guality mica, glass, polypropylene, polycarbonate, or polystyrene capacitors. For large time constants use solid tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
- 3. The pulse width is essentially determined by external timing components R_x and C_x . For $C_x < 1000$ pF see Figure 1; design curves on T_w as function of timing components value. For $C_X >> 1000 \text{ pF}$ the output is defined as:

```
T_{W} = KR_{X}C_{X}
where [R_X \text{ is in } k\Omega]
           [C_X \text{ is in } pF]
          [T<sub>w</sub> is in ns]
          K ≈ 0.37
```

The K factor is not a constant, but, varies with Cx. See Figure 2.

4. The switching diode required for most TTL one-shots when using an electrolytic timing capacitor is not needed for the 'LS122 and should not be used.

- 5. To obtain variable pulse width by remote trimming, the following circuit is recommended:
- 6. The retriggerable pulse width is calculated as shown below:

 $T = T_{W} + t_{PLH} = 0.50 \text{ x } R_{X} \text{ x } C_{X} + T_{PLH}$

The retriggered pulse width is equal to the pulse width plus a delay time period (Figure 4).

- 7. Output pulse width variation versus $V_{\rm CC}$ and operation temperatures: Figure 5 depicts the relationship between pulse width variation versus V_{CC} ; and Figure 6 depicts pulse width variation versus temperatures.
- Under any operating condition C_X and R_X must be kept 8. as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I-R and Ldi/dt voltage developed along their connecting paths. If the lead length from Cx to pins (13) and (11) is greater than 3 cm, for example, the output pulse width might be guite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_x in each cycle of its operation so that the output pulse width will be accurate.

Operating Rules (Continued)

9. V_{CC} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{CC} and ground return leads do not cause interaction between one-shots. A 0.01 μ F to 0.10 μ F bypass capacitor (disk ceramic or monolithic type) from V_{CC} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{CC} pin as space permits.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
March 1998

FAIRCHILD

SEMICONDUCTOR IM

DM74LS123 Dual Retriggerable One-Shot with Clear and Complementary Outputs

General Description

The DM74LS123 is a dual retriggerable monostable multivibrator capable of generating output pulses from a few nano-seconds to extremely long duration up to 100% duty cycle. Each device has three inputs permitting the choice of either leading edge or trailing edge triggering. Pin (A) is an active-high transition trigger input and pin (B) is an active-high transition trigger input. The clear (CLR) input terminates the output pulse at a predetermined time independent of the timing components. The clear input also serves as a trigger input when it is pulsed with a low level pulse transition (\neg). To obtain the best trouble free operation from this device please read the operating rules as well as the NSC one-shot application notes carefully and observe recommendations.

Features

DC triggered from active-high transition or active-low transition inputs

Retriggerable to 100% duty cycle Compensated for V_{CC} and temperature variations

- Triggerable from CLEAR input
- DTL, TTL compatible
- Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of an external resistor (R_x) and capacitor (C_x). Once triggered, the basic pulse width may be extended by retriggering the gated active-low transition or active-high transition inputs or be reduced by use of the active-low or CLEAR input. Retriggering to 100% duty cycle is possible by application of an input pulse train whose cycle time is shorter than the output cycle time such that a continuous "HIGH" logic state is maintained at the "Q" output.

Function Table

	Inputs	Out	puts	
CLEAR	A	В	Q	Q
L	Х	Х	L	Н
Х	н	X	L	н
Х	X	L	L	н
Н	L	↑	л	v
н	↓	н	л	v
Ŷ	L	н	л	ъ

H = High Logic Level

L = Low Logic Level X = Can Be Either Low or High

C = Coarrible Entrier Edw of Fright = Positive Going Transition

↓ = Negative Going Transition

r = A Positive Pulse

¬⊥¬ = A Negative Pulse

© 1998 Fairchild Semiconductor Corporation DS006386

Absolute Maximum Ratings (Note 1)

Supply Voltage Input Voltage Operating Free Air Temperature Range Storage Temperature

0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
V _{cc}	Supply Voltage		4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			V
V _{IL}	Low Level Input Voltage				0.8	V
I _{он}	High Level Output Current				-0.4	mA
I _{OL}	Low Level Output Current				8	mA
t _{vv}	Pulse Width	A or B High	40			
	(Note 7)	A or B Low	40			ns
		Clear Low	40			
R _{EXT}	External Timing Resistor		5		260	kΩ
C _{EXT}	External Timing Capacitance		1	No Restriction	า	μF
C _{WIRE}	Wiring Capacitance				50	pF
	at R _{EXT} /C _{EXT} Terminal					
T _A	Free Air Operating Temperature		0		70	°C

7V

7V

limits. The Australia defined in the "Electrical Characteristics" table and guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA			-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	2.7	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max		0.35	0.5	
	Voltage	V _{IL} = Max, V _{IH} = Min				V
		I_{OL} = 4 mA, V_{CC} = Min		0.25	0.4	
-l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$			0.1	mA
	Input Voltage					
I _{IH}	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V			20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
los	Short Circuit	V _{CC} = Max	-20		-100	mA
	Output Current	(Note 3)				
Icc	Supply Current	V _{CC} = Max (Notes 4, 5, 6)		12	20	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: Quiescent I_{CC} is measured (after clearing) with 2.4V applied to all clear and A inputs, B inputs grounded, all outputs open, C_{EXT} = 0.02 µF, and R_{EXT} = 25 kΩ.

Note 5: I_{CC} is measured in the triggered state with 2.4V applied to all clear and B inputs, A inputs grounded, all outputs open, $C_{EXT} = 0.02 \ \mu$ F, and $R_{EXT} = 25 \ k\Omega$. Note 6: With all outputs open and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V is applied to the clock.

Note 7: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Switching Characteristics

at v _{cc} =	$_{A}$ = 25 C						
				RL	= 2 k Ω		
Symbol	Parameters	From (Input)	C _L =	15pF	C _L =	15pF	Units
		To (Output)	C _{EXT} = R _{EXT} =	= 0 pF, = 5 kΩ	C _{EXT} = R _{EXT} =	1000 pF, · 10 kΩ	
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	A to Q		33			ns
	Low to High Level Output						
t _{PLH}	Propagation Delay Time	B to Q		44			ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	A to Q		45			ns
	High to Low Level Output						
t _{PHL}	Propagation Delay Time	B to Q		56			ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	Clear to \overline{Q}		45			ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time	Clear to Q		27			ns
	High to Low Level Output						
t _{WQ(Min)}	Minimum Width of Pulse	A or B to Q		200			ns
	at Output Q						
t _{W(out)}	Output Pulse Width	A or B to Q			4	5	μs

Operating Rules

- 1. An external resistor (R_X) and an external capacitor (C_X) are required for proper operation. The value of $C_{\rm X}$ may vary from 0 to any necessary value. For small time constants high-grade mica, glass, polypropylene, polycarbonate, or polystyrene material capacitors may be used. For large time constants use tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
- 2. When an electrolytic capacitor is used for C_x a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current. This switching diode is not needed for the 'LS123 one-shot and should not be used. In general the use of the switching diode is not recommended with retriggerable operation.

Furthermore, if a polarized timing capacitor is used on the 'LS123 the negative terminal of the capacitor should be connected to the " C_{EXT} " pin of the device (*Figure 1*).

3. For $C_X >> 1000 \text{ pF}$ the output pulse width (T_W) is defined as follows:

$T_W = KR_X C_X$
where $[R_{X} \text{ is in } k\Omega]$
[C _x is in pF]
[T _w is in ns]
K ≈ 0.37

4. The multiplicative factor K is plotted as a function of C_X below for design considerations:

FIGURE 4.

Note: "R_{remote}" should be as close to the device pin as possible.
7. The retriggerable pulse width is calculated as shown below:

 $\label{eq:transform} \begin{array}{l} \mathsf{T} = \mathsf{T}_{\mathsf{W}} + \mathsf{t}_{\mathsf{PLH}} = \mathsf{K} \; x \; \mathsf{R}_{\mathsf{X}} \; x \; \mathsf{C}_{\mathsf{X}} + \mathsf{t}_{\mathsf{PLH}} \\ \text{The retriggered pulse width is equal to the pulse width plus a delay time period ($ *Figure 5* $). \end{array}$

8. Output pulse width variation versus V_{CC} and temperatures: *Figure 6* depicts the relationship between pulse width variation versus V_{CC}, and *Figure 7* depicts pulse width variation versus temperatures.

- 9. Under any operating condition C_x and R_x must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I-R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_x to pins (6) and (7) or pins (14) and (15) is greater than 3 cm, for example, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_x in each cycle of its operation so that the output pulse width will be accurate.
- The C_{EXT} pins of this device are internally connected to the internal ground. For optimum system performance they should be hard wired to the system's return ground plane.
- 11. V_{CC} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{CC} and ground return leads do not cause interaction between one-shots. A 0.01 μ F to 0.10 μ F bypass capacitor (disk ceramic or monolithic type) from V_{CC} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{CC}-pin as space permits.
- Note: For further detailed device characteristics and output performance please refer to the NSC one-shot application note AN-372.

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
ww.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

DM74LS125A Quad 3-STATE Buffers

General Description

This device contains four independent gates each of which performs a non-inverting buffer function. The outputs have the 3-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a signifi-

cant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Features

■ Alternate Military/Aerospace device (54LS125) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS125ADMQB, 54LS125AFMQB, 54LS125ALMQB, DM54LS125AJ, DM54LS125AW, DM74LS125AM or DM74LS125AN See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

Inp	uts	Output
Α	С	Y
L	L	L
Н	L	н
Х	н	Hi-Z

H = High Logic Level L = Low Logic Level

X = Either Low or High Logic Level Hi-Z = 3-STATE (Outputs are disabled)

© 1998 Fairchild Semiconductor Corporation DS006387

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS125A		D	Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-1			-2.6	mA
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.4	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max	DM74		0.35	0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74		0.25	0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input	V_{CC} = Max, V_{I} = 2.7V				20	μA
	Current						
I	Low Level Input	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
	Current						
I _{OZH}	Off-State Output Current	V_{CC} = Max, V_O = 2.4V					
	with High Level Output	$V_{IH} = Min, V_{IL} = Max$				20	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current	V_{CC} = Max, V_O = 0.4V					
	with Low Level Output	$V_{IH} = Min, V_{IL} = Max$				-20	μA
	Voltage Applied						
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			11	20	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with the data control (C) inputs at 4.5V and the data inputs grounded.

			R _L =	667 Ω			
Symbol	Parameter	C _L =	50 pF	C _L = 150 pF		Units	
		Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time Low		15		21	ns	
	to High Level Output						
t _{PHL}	Propagation Delay Time High		18		22	ns	
	to Low Level Output						
t _{PZH}	Output Enable Time to		25		35	ns	
	High Level Output						
t _{PZL}	Output Enable Time to		25		40	ns	
	Low Level Output						
t _{PHZ}	Output Disable Time from		20			ns	
	High Level Output (Note 5)						
t _{PLZ}	Output Disable Time from		20			ns	
	Low Level Output (Note 5)						

Note 5: $C_L = 5pF$.

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS126A Quad 3-STATE Buffer

General Description

This device contains four independent gates each of which performs a non-inverting buffer function. The outputs have the 3-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Function Table

Inp	uts	Output
Α	С	Y
L	Н	L
Н	Н	н
Х	L	Hi-Z

H = High Logic Level

L = Low Logic Level X = Either Low or High Logic Level

Hi-Z = 3-STATE (Outputs are disabled)

© 1998 Fairchild Semiconductor Corporation DS006388

Absolute Maximum Ratings (Note 1)

Supply Voltage Input Voltage Operating Free Air

Temperature Range

Storage Temperature Range

0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage				V
VIL	Low Level Input Voltage			0.8	V
I _{он}	High Level Output Current			-2.6	mA
I _{OL}	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V	Input Clamp Voltage	$V_{CC} = Min, I_1 = -18 \text{ mA}$		(1000 2)	-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	2.4			V
	Voltage	$V_{IH} = Min$				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max		0.35	0.5	
	Voltage	V _{IL} = Max, V _{IH} = Min				V
		I_{OL} = 12 mA, V_{CC} = Min		0.25	0.4	
Ц	Input Current @ Max	$V_{CC} = Max, V_I = 7V$			0.1	mA
	Input Voltage					
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μA
I	Low Level Input	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
	Current					
I _{ozh}	Off-State Output Current	V_{CC} = Max, V_O = 2.4V				
	with High Level Output	$V_{IH} = Min, V_{IL} = Max$			20	μA
	Voltage Applied					
I _{OZL}	Off-State Output Current	V_{CC} = Max, V_O = 0.4V				
	with Low Level Output	$V_{IH} = Min, V_{IL} = Max$			-20	μA
	Voltage Applied					
I _{os}	Short Circuit	V _{CC} = Max	-20		-100	mA
	Output Current	(Note 3)				
I _{cc}	Supply Current	V _{CC} = Max		12	22	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

			DM7	'4LS			
Symbol	Parameter	C _L = 50 pF		C _L = 150 pF		Units	
		Min	Max	Min	Max		
PLH	Propagation Delay Time Low		15		21	ns	
	to High Level Output						
PHL	Propagation Delay Time High		18		22	ns	
	to Low Level Output						
PZH	Output Enable Time to		30		36	ns	
	High Level Output						
PZL	Output Enable Time to		30		42	ns	
	Low Level Output						
t _{PHZ}	Output Disable Time from		25			ns	
	High Level Output (Note 4)						
t _{PLZ}	Output Disable Time from		25			ns	
	Low Level Output (Note 4)						
	F						

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

DM74LS132 Quad 2-Input NAND Gates with Schmitt Trigger Inputs

General Description

This device contains four independent gates each of which performs the logic NAND function. Each input has hysteresis

which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Order Number DM54LS132J, DM54LS132W, DM74LS132M or DM74LS132N See Package Number J14A, M14A, N14A or W14B

Function Table

Inp	Output	
Α	В	Y
L	L	Н
L	Н	н
н	L	н
Н	н	L

H = High Logic Level L = Low Logic Level

© 1998 Fairchild Semiconductor Corporation DS006389

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS132		[Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{T+}	Positive-Going Input	1.4	1.6	1.9	1.4	1.6	1.9	V
	Threshold Voltage (Note 2)							
V _{T-}	Negative-Going Input	0.5	0.8	1	0.5	0.8	1	V
	Threshold Voltage (Note 2)							
HYS	Input Hysteresis (Note 2)	0.4	0.8		0.4	0.8		V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Parameter	Conditions		Min	Тур	Max	Units
				(Note 3)		
Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
Voltage	$V_{I} = V_{T-}$ Min	DM74	2.7	3.4		
Low Level Output	V_{CC} = Min, I_{OL} = Max,	DM54		0.25	0.4	
Voltage	$V_{I} = V_{T+} Max$	DM74		0.35	0.5	V
	I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
Input Current at	$V_{CC} = 5V, V_I = V_{T+}$			-0.14		mA
Positive-Going Threshold						
Input Current at	$V_{\rm CC}$ = 5V, $V_{\rm I}$ = $V_{\rm T-}$			-0.18		mA
Negative-Going Threshold						
Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
Input Voltage						
High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
Output Current	(Note 4)	DM74	-20		-100	
Supply Current with	V _{CC} = Max			5.9	11	mA
Outputs High						
Supply Current with	V _{CC} = Max			8.2	14	mA
Outputs Low						
	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current at Positive-Going Threshold Input Current at Negative-Going Threshold Input Current @ Max Input Voltage High Level Input Current Low Level Input Current Short Circuit Output Current with Outputs High Supply Current with Outputs Low	$\begin{tabular}{ c c c c } \hline Parameter & Conditions \\ \hline \end{tabular} $	$\begin{tabular}{ c c c c } \hline Parameter & Conditions \\ \hline Input Clamp Voltage & V_{CC} = Min, I_1 = -18 mA \\ \hline High Level Output & V_{CC} = Min, I_{OH} = Max, & DM54 \\ \hline Voltage & V_1 = V_{T-} Min & DM74 \\ \hline Low Level Output & V_{CC} = Min, I_{OL} = Max, & DM54 \\ \hline Voltage & V_1 = V_{T+} Max & DM74 \\ \hline Iout Current at & V_{CC} = 5V, V_1 = V_{T+} \\ \hline Positive-Going Threshold & \\ \hline Input Current at & V_{CC} = 5V, V_1 = V_{T-} \\ \hline Negative-Going Threshold & \\ \hline Input Current @ Max & V_{CC} = Max, V_1 = 7V \\ \hline Input Voltage & \\ \hline High Level Input Current & V_{CC} = Max, V_1 = 0.4V \\ \hline Short Circuit & V_{CC} = Max & DM54 \\ \hline Output Current with & V_{CC} = Max \\ \hline Output S High & \\ \hline Supply Current with & V_{CC} = Max \\ \hline Outputs Low & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min \\ \hline Input Clamp Voltage & V_{CC} = Min, I_I = -18 mA & \\ \hline High Level Output & V_{CC} = Min, I_{OH} = Max, & DM54 & 2.5 \\ \hline Voltage & V_I = V_{T-} Min & DM74 & 2.7 \\ \hline Low Level Output & V_{CC} = Min, I_{OL} = Max, & DM54 & \\ \hline Voltage & V_I = V_{T+} Max & DM74 & \\ \hline IoL = 4 mA, V_{CC} = Min & DM74 & \\ \hline Input Current at & V_{CC} = 5V, V_I = V_{T+} & \\ \hline Positive-Going Threshold & & \\ \hline Input Current at & V_{CC} = SV, V_I = V_{T-} & \\ \hline Negative-Going Threshold & & \\ \hline Input Current @ Max & V_{CC} = Max, V_I = 7V & \\ \hline Input Voltage & & \\ \hline High Level Input Current & V_{CC} = Max, V_I = 0.4V & \\ \hline Short Circuit & V_{CC} = Max & DM54 & -20 \\ \hline Output Current with & V_{CC} = Max & \\ \hline Output S Low & & \\ \hline V_{CC} = Max & \\ \hline $	$\begin{tabular}{ c c c c c } \hline Parameter & Conditions & Min & Typ ((Note 3)) \\ \hline Input Clamp Voltage & V_{CC} = Min, I_1 = -18 mA & & & & & & & & & & & & & & & & & & $	$\begin{array}{ c c c c } \hline Parameter & \hline Conditions & \hline Min & Typ & Max \\ \hline \mbox{(Note 3)} & \hline \mbox{(Note 4)} & \hline $

Note 2: $V_{CC} = 5V$

Note 3: All typicals are at V_{CC} = 5V, $T_A = 25^{\circ}C$.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at V_{cc} 5V and $T_A = 25^{\circ}C$

at v _{CC} 5v and	1 _A = 23 C					
Symbol	Parameter	C _L =	15 pF	C _L =	50 pF	Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	5	22	8	25	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	5	22	10	33	ns
	High to Low Level Output					

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

©1995 National Semiconductor Corporation TL/F/9818

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for acutal device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS133				Units		
oyinbol	i arameter	Min	Nom	Мах	Min	Nom	Max	onito
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.5			v
	Voltage	V _{IL} = Max	DM74	2.7	3.4	Max -1.5 0.4 0.5 0.4 -0.5 0.4 -0.1 20 -0.4 -100 0.5 1.1	
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	DM54			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	Max -1.5 0.4 0.5 0.4 0.5 0.4 -100 -100 0.5 1.1	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25		
lj –	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	V _I = 10V	DM54				
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mΑ
	Output Current	(Note 2)	DM74	-20		0.4 0.5 0.4 - 20 - - - 0.1 20 - 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5	
ICCH	Supply Current with Outputs High	$V_{CC} = Max, V_{IN} = GND$				0.5	mA
I _{CCL}	Supply Current with Outputs Low	$V_{CC} = Max, V_{IN} = Open$				1.1	mA

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol	Parameter	$\mathbf{R}_{\mathbf{L}} = 2 \mathbf{k} \Omega,$	Unite	
eyniber	i arameter	Min Max 15 ns	onita	
tplh	Propagation Delay Time Low to High Level Output		15	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		38	ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

© 1998 Fairchild Semiconductor Corporation DS009819

Α L

L

н

н

Absolute Maximum Ratings (Note 1)

Supply Voltage Input Voltage Operating Free Air Temperature Range Storage Temperature Range 0°C to +70°C –65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{OL}	Low Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA			-1.5	V
ICEX	High Level Output Current	V_{CC} = Min, V_O = 5.5V			100	μA
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max		0.35	0.5	
	Voltage	V _{IH} = Min				V
		I_{OL} = 4 mA, V_{CC} = Min		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$			0.2	mA
	Input Voltage					
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$			40	μA
I	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$			-0.6	mA
I _{cc}	Supply Current	V _{CC} = Max			10	mA

Note 2: All typicals are at V_CC = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C (for Test Waveforms and Output Load)

Symbol Parameter		R _L = C _L =	2 kΩ 15 pF	Units
		Min	Max	
t _{PLH}	Propagation Delay Time		23	ns
	Low to High Level Output			
t _{PHL}	Propagation Delay Time		23	ns
	High to Low Level Output			

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
/ww.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

SEMICONDUCTOR IM

DM74LS138, DM74LS139 Decoders/Demultiplexers

General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The LS138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented with no external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The LS139 comprises two separate two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

Features

 Designed specifically for high speed: Memory decoders

Data transmission systems

- LS138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception
- LS139 contains two fully independent 2-to-4-line decoders/demultiplexers
 - Schottky clamped for high performance
- Typical propagation delay (3 levels of logic) LS138 21 ns
- LS139 21 ns ■ Typical power dissipation LS138 32 mW
 - LS139 34 mW
- Alternate Military/Aerospace devices (54LS138, 54LS139) are available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

© 1998 Fairchild Semiconductor Corporation DS006391

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		DM54LS13	38		OM74LS13	Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS138 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4]
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4]
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.7V				20	μA
I	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.36	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			6.3	10	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs enabled and open.

'LS138 Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		From (Input)	Levels					
Symbol	Parameter	To (Output)	of Delay	C _L = 15 pF		C _L = 50 pF		Units
				Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Select to	2		18		27	ns
	Low to High Level Output	Output						
t _{PHL}	Propagation Delay Time	Select to	2		27		40	ns
	High to Low Level Output	Output						
t _{PLH}	Propagation Delay Time	Select to	3		18		27	ns
	Low to High Level Output	Output						
'LS138 Switching Characteristics (Continued)

at V_{CC} = 5V and T_A = 25°C

	Parameter	From (Input)	Levels of Delay					
Symbol		To (Output)		C _L = 15 pF		C _L = 50 pF		Units
				Min	Max	Min	Max	
t _{PHL}	Propagation Delay Time	Select to	3		27		40	ns
	High to Low Level Output	Output						
t _{PLH}	Propagation Delay Time	Enable to	2		18		27	ns
	Low to High Level Output	Output						
t _{PHL}	Propagation Delay Time	Enable to	2		24		40	ns
	High to Low Level Output	Output						
t _{PLH}	Propagation Delay Time	Enable to	3		18		27	ns
	Low to High Level Output	Output						
t _{PHL}	Propagation Delay Time	Enable to	3		28		40	ns
	High to Low Level Output	Output						

Recommended Operating Conditions

Symbol	Parameter	DM54LS139				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

'LS139 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 5)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
Ч	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I _{IL}	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.36	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 6)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 7)			6.8	11	mA

Note 5: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: $I_{\mbox{\scriptsize CC}}$ is measured with all outputs enabled and open.

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Select to		18		27	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Select to		27		40	ns
	High to Low Level Output	Output					
t _{PLH}	Propagation Delay Time	Enable to		18		27	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Enable to		24		40	ns
	High to Low Level Output	Output					

Function Tables LS138

	Inputs							Out	puts			
	Enable	S	ele	ct								
G1	G2 (Note 8)	С	в	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	Х	Х	Х	н	н	н	н	н	н	Н	Н
L	х	х	X	X	н	н	н	н	н	н	н	н
н	L	L	L	L	L	н	н	н	н	н	н	н
н	L	L	L	н	н	L	н	н	н	н	н	н
н	L	L	н	L	н	н	L	н	н	н	н	н
н	L	L	н	н	н	н	н	L	н	н	н	н
н	L	н	L	L	н	н	н	н	L	н	н	н
н	L	н	L	н	н	н	н	н	н	L	н	н
н	L	н	н	L	н	н	н	н	н	н	L	н
н	L	Н	н	н	н	н	н	н	н	н	н	L

H = High Level, L = Low Level, X = Don't Care Note 8: G2 = G2A + G2B

LS139

In	puts		Outputs						
Enable	Select								
G	В	Α	Y0	Y1	Y2	Y3			
Н	Х	Х	н	н	н	Н			
L	L	L	L	н	н	н			
L	L	н	н	L	н	н			
L	н	L	н	н	L	н			
L	н	н	н	н	н	L			

H = High Level, L = Low Level, X = Don't Care

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

SEMICONDUCTOR IM

DM74LS138, DM74LS139 Decoders/Demultiplexers

General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The LS138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented with no external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The LS139 comprises two separate two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

Features

 Designed specifically for high speed: Memory decoders

Data transmission systems

- LS138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception
- LS139 contains two fully independent 2-to-4-line decoders/demultiplexers
 - Schottky clamped for high performance
- Typical propagation delay (3 levels of logic) LS138 21 ns
- LS139 21 ns ■ Typical power dissipation LS138 32 mW
 - LS139 34 mW
- Alternate Military/Aerospace devices (54LS138, 54LS139) are available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

© 1998 Fairchild Semiconductor Corporation DS006391

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS138				8	Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS138 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4]
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4]
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.7V				20	μA
I	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.36	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			6.3	10	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs enabled and open.

'LS138 Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

	Parameter	From (Input)	Levels of Delay					
Symbol		To (Output)		C _L = 15 pF		C _L = 50 pF		Units
				Min	Max	Min	Max	1
t _{PLH}	Propagation Delay Time	Select to	2		18		27	ns
	Low to High Level Output	Output						
t _{PHL}	Propagation Delay Time	Select to	2		27		40	ns
	High to Low Level Output	Output						
t _{PLH}	Propagation Delay Time	Select to	3		18		27	ns
	Low to High Level Output	Output						

'LS138 Switching Characteristics (Continued)

at V_{CC} = 5V and T_A = 25°C

	Parameter	From (Input)	Levels of Delay					
Symbol		To (Output)		C _L = 15 pF		C _L = 50 pF		Units
				Min	Max	Min	Max	
t _{PHL}	Propagation Delay Time	Select to	3		27		40	ns
	High to Low Level Output	Output						
t _{PLH}	Propagation Delay Time	Enable to	2		18		27	ns
	Low to High Level Output	Output						
t _{PHL}	Propagation Delay Time	Enable to	2		24		40	ns
	High to Low Level Output	Output						
t _{PLH}	Propagation Delay Time	Enable to	3		18		27	ns
	Low to High Level Output	Output						
t _{PHL}	Propagation Delay Time	Enable to	3		28		40	ns
	High to Low Level Output	Output						

Recommended Operating Conditions

Symbol	Parameter		DM54LS13	39	DM74LS139				
		Min	Nom	Max	Min	Nom	Max		
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V	
V _{IH}	High Level Input Voltage	2			2			V	
V _{IL}	Low Level Input Voltage			0.7			0.8	V	
I _{он}	High Level Output Current			-0.4			-0.4	mA	
I _{OL}	Low Level Output Current			4			8	mA	
T _A	Free Air Operating Temperature	-55		125	0		70	°C	

'LS139 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 5)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
Ч	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I _{IL}	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.36	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 6)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 7)			6.8	11	mA

Note 5: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: $I_{\mbox{\scriptsize CC}}$ is measured with all outputs enabled and open.

		From (Input)		R _L = 2 kΩ					
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units		
			Min	Max	Min	Max			
t _{PLH}	Propagation Delay Time	Select to		18		27	ns		
	Low to High Level Output	Output							
t _{PHL}	Propagation Delay Time	Select to		27		40	ns		
	High to Low Level Output	Output							
t _{PLH}	Propagation Delay Time	Enable to		18		27	ns		
	Low to High Level Output	Output							
t _{PHL}	Propagation Delay Time	Enable to		24		40	ns		
	High to Low Level Output	Output							

Function Tables LS138

	Inputs							Out	puts			
	Enable	S	ele	ct								
G1	G2 (Note 8)	С	в	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	Х	Х	Х	н	н	н	н	н	н	Н	Н
L	х	х	X	X	н	н	н	н	н	н	н	н
н	L	L	L	L	L	н	н	н	н	н	н	н
н	L	L	L	н	н	L	н	н	н	н	н	н
н	L	L	н	L	н	н	L	н	н	н	н	н
н	L	L	н	н	н	н	н	L	н	н	н	н
н	L	н	L	L	н	н	н	н	L	н	н	н
н	L	н	L	н	н	н	н	н	н	L	н	н
н	L	н	н	L	н	н	н	н	н	н	L	н
н	L	Н	н	н	н	н	н	н	н	н	н	L

H = High Level, L = Low Level, X = Don't Care Note 8: G2 = G2A + G2B

LS139

In	puts			Out	puts		
Enable	Sel	lect					
G	В	Α	Y0	Y1	Y2	Y3	
Н	Х	Х	н	н	н	Н	
L	L	L	L	н	н	н	
L	L	н	н	L	н	н	
L	н	L	н	н	L	н	
L	н	н	н	н	н	L	

H = High Level, L = Low Level, X = Don't Care

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

DM74LS151 Data Selector/Multiplexer

FAIRCHILD

DM74LS151 Data Selector/Multiplexer

General Description

This data selector/multiplexer contains full on-chip decoding to select the desired data source. The 'LS151 selects one-of-eight data sources. The 'LS151 has a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high, and the Y output low.

The 'LS151 features complementary W and Y outputs.

Features

Select one-of-eight data lines

Connection Diagram

Order Number 54LS151DMQB, 54LS151FMQB, 54LS151LMQB, DM54LS151J, DM54LS151W, DM74LS151M or DM74LS151N See Package Number E20A, J16A, M16A, N16E or W16A

Performs parallel-to-serial conversion

- Permits multiplexing from N lines to one line
- Also for use as Boolean function generator
- Typical average propagation delay time data input to W output 12.5 ns
- Typical power dissipation 30 mW

© 1998 Fairchild Semiconductor Corporation DS006392

Truth Table

		nputs		Out	puts
	Select		Strobe	Y	w
С	В	Α	S		
Х	Х	Х	Н	L	Н
L	L	L	L	D0	DO
L	L	н	L	D1	D1
L	н	L	L	D2	D2
L	н	н	L	D3	D3
н	L	L	L	D4	D4
н	L	н	L	D5	D5
н	н	L	L	D6	D6
н н н			L	D7	D7

H = High Level, L = Low Level, X = Don't Care D0, D1...D7 = the level of the respective D input

Absolute Maximum Ratings (Note 1)

e 1) DM54LS and 54LS 7V DM74LS 7V Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Operating Free Air Temperature Range

Supply Voltage

Input Voltage

Recommended Operating Conditions

Symbol	Parameter	DM54LS151				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		1
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	1
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I _{IL}	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.4	mA
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			6	10	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs open, strobe and data select inputs at 4.5V, and all other inputs open.

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		From (Input)		R _L =	2 k Ω		_
Symbol	Parameter	To (output)	C _L =	C _L = 15 pF		50 pF	Units
			Min	Max	Min	Max	1
t _{PLH}	Propagation Delay Time	Select		43		46	ns
	Low to High Level Output	(4 Levels) to Y					
t _{PHL}	Propagation Delay Time	Select		30		36	ns
	High to Low Level Output	(4 Levels) to Y					
t _{PLH}	Propagation Delay Time	Select		23		25	ns
	Low to High Level Output	(3 Levels) to W					
			•	•	•	·	

		From (Input)					
Symbol	Parameter	To (output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
t _{PHL}	Propagation Delay Time	Select		32		40	ns
	High to Low Level Output	(3 Levels) to W					
t _{PLH}	Propagation Delay Time	Strobe		42		44	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Strobe		32		40	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	Strobe		24		27	ns
	Low to High Level Output	to W					
t _{PHL}	Propagation Delay Time	Strobe		30		36	ns
	High to Low Level Output	to W					
t _{PLH}	Propagation Delay Time	D0 thru D7		32		35	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	D0 thru D7		26		33	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	D0 thru D7		21		25	ns
	Low to High Level Output	to W					
t _{PHL}	Propagation Delay Time	D0 thru D7		20		27	ns
	High to Low Level Output	to W					

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

DM74LS153 Dual 4-Line to 1-Line Data Selectors/Multiplexers

General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

Features

Permits multiplexing from N lines to 1 line

Connection Diagram

Order Number 54LS153DMQB, 54LS153FMQB, 54LS153LMQB, DM54LS153J, DM54LS153W, DM74LS153M or DM74LS153N See Package Number E20A, J16A, M16A,

N16E or W16A

Performs at parallel-to-serial conversion

- Strobe (enable) line provided for cascading (N lines to n lines)
- High fan-out, low impedance, totem pole outputs
- Typical average propagation delay times
 - From data 14 ns
 - From strobe 19 ns
 - From select 22 ns
- Typical power dissipation 31 mW

Logic Diagram

DM74LS153 Dual 4-Line to 1-Line Data Selectors/Multiplexers

© 1998 Fairchild Semiconductor Corporation DS006393

Function Table

Sel	ect		Data I	nputs		Strobe	Output
Inp	uts						
в	Α	C0	C1	C2	C3	G	Y
Х	Х	Х	Х	Х	Х	Н	L
L	L	L	Х	X	X	L	L
L	L	н	Х	X	X	L	н
L	н	х	L	X	X	L	L
L	н	х	н	X	X	L	н
н	L	х	Х	L	X	L	L
н	L	х	Х	н	X	L	н
н	н	X	х	x	L	L	L
н	н	х	Х	x	н	L	н

Select inputs A and B are common to both sections. H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note 1)

DM54LS and 54LS 7V DM74LS 7V Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150° C

Operating Free Air Temperature Range

Supply Voltage

Input Voltage

Recommended Operating Conditions

Symbol	Parameter		DM54LS153		0	M74LS15	3	Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		1
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	1
l _i	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.36	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
Icc	Supply Current	V _{CC} = Max (Note 4)			6.2	10	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25° C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs open and all other inputs grounded.

				R _L =	2 k Ω			
Symbol	Parameter	From (Input) to (Output)	C _L =	15 pF	C _∟ =	Units		
			Min Max		Min Max		1	
t _{PLH}	Propagation Delay Time	Data to Y		15		20	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	Data to Y		26		35	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	Select to Y		29		35	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	Select to Y		38		45	ns	
	High to Low Level Output							
t _{PLH}	Propagation Delay Time	Strobe to Y		24		30	ns	
	Low to High Level Output							
t _{PHL}	Propagation Delay Time	Strobe to Y		32		40	ns	
	High to Low Level Output							

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

DM74LS154 4-Line to 16-Line Decoder/Demultiplexer

General Description

Each of these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

Features

- Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs
- Performs the demultiplexing function by distributing data
- from one input line to any one of 16 outputs
- Input clamping diodes simplify system design
- High fan-out, low-impedance, totem-pole outputs
- Typical propagation delay 3 levels of logic 23 ns Strobe 19 ns
- Typical power dissipation 45 mW

Connection and Logic Diagrams

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		DM54LS1	54		Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM74		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min			0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
IIL	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			9	14	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: $\ensuremath{\mathsf{I_{CC}}}$ is measured with all outputs open and all inputs grounded.

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	Units	
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Data to		30		35	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Data to		30		35	ns
	High to Low Level Output	Output					
t _{PLH}	Propagation Delay Time	Strobe to		20		25	ns
	Low to High Level Output	Output					
			•				

Switching Characteristics (Continued)

at V_{CC} = 5V and T_A = 25°C

		From (Input)					
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	Units	
			Min	Max	Min	Max	
t _{PHL}	Propagation Delay Time	Strobe to		25		35	ns
	High to Low Level Output	Output					

Function Table

Inputs														Outpu	uts						
G1	G2	D	С	в	Α	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	Н	н	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	н
L	L	L	L	L	н	н	L	н	н	н	н	Н	н	н	н	н	н	н	н	н	н
L	L	L	L	н	L	н	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н
L	L	L	L	н	н	н	н	н	L	н	Н	н	Н	Н	н	н	Н	Н	н	Н	н
L	L	L	Н	L	L	н	н	н	н	L	Н	н	Н	Н	н	н	Н	Н	н	Н	н
L	L	L	н	L	н	н	н	н	н	н	L	н	н	н	н	н	н	Н	н	н	н
L	L	L	н	н	L	н	н	н	н	н	Н	L	н	н	н	н	н	Н	н	н	н
L	L	L	н	н	н	н	н	н	н	н	Н	Н	L	н	н	н	н	Н	н	н	н
L	L	н	L	L	L	н	н	н	н	н	Н	Н	н	L	н	н	н	Н	н	н	н
L	L	н	L	L	н	н	н	н	н	н	Н	Н	Н	Н	L	н	Н	Н	н	Н	н
L	L	н	L	н	L	н	н	н	н	н	Н	Н	н	н	н	L	н	Н	н	н	н
L	L	н	L	н	н	н	н	н	н	н	Н	Н	Н	н	н	н	L	Н	н	Н	н
L	L	н	н	L	L	н	н	н	н	н	Н	Н	Н	н	н	н	Н	L	н	Н	н
L	L	н	н	L	н	н	н	н	н	н	Н	Н	н	Н	н	н	н	Н	L	н	н
L	L	н	н	н	L	н	н	н	н	н	Н	Н	н	Н	н	н	н	Н	н	L	н
L	L	н	н	н	н	н	н	н	н	н	Н	Н	Н	н	н	н	Н	Н	н	Н	L
L	Н	X	Х	Х	Х	н	н	н	н	н	Н	Н	Н	Н	н	н	Н	Н	н	Н	н
Н	L	X	Х	Х	Х	н	н	н	н	н	Н	Н	Н	Н	н	н	Н	Н	н	Н	н
Н	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	<u>H</u>
H =	High Lev	rel, L =	Low Le	vel, X	= Don'i	t Care															

March 1998

DM74LS155/DM74LS156 Dual 2-Line to 4-Line Decoders/Demultiplexers

FAIRCHILD

SEMICONDUCTOR IM

DM74LS155/DM74LS156 Dual 2-Line to 4-Line Decoders/Demultiplexers

General Description

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C1 is inverted at its outputs and data applied at C2 is true through its outputs. The inverter following the C1 data input permits use as a 3-to-8-line decoder, or 1-to-8-line demultiplexer, without external gating. Input clamping diodes are provided on these circuits to minimize transmission-line effects and simplify system design.

Features

- Applications: Dual 2-to-4-line decoder Dual 1-to-4-line demultiplexer 3-to-8-line decoder 1-to-8-line demultiplexer
- Individual strobes simplify cascading for decoding or
- demultiplexing larger words
- Input clamping diodes simplify system design
- Choice of outputs: Totem-pole (LS155) Open-collector (LS156)

Connection Diagram and Function Tables

Connection Diagram and Function Tables (Continued)

3-Line-to-8-Line Decoder or 1-Line-to-8-Line Demultiplexer

	Inp	uts				(Outp	outs			
Selec	t		Strobe	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
			Or Data								
C (Note 1)	в	Α	G (Note 2)	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3
X	Х	Х	Н	н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	н	L	Н	Н	Н	Н	Н	Н
L	н	L	L	н	н	L	Н	Н	Н	Н	Н
L	н	Н	L	н	н	Н	L	Н	Н	Н	Н
н	L	L	L	н	н	Н	Н	L	Н	Н	Н
н	L	н	L	н	н	Н	Н	н	L	Н	Н
н	н	L	L	н	Н	н	н	н	н	L	н
н	н	н	L	н	н	н	н	н	н	н	L

2-Line-to-4-Line Decoder or 1-Line-to-4-Line Demultiplexer

		Inputs			Out	puts	
Sel	ect	Strobe	Data				
В	Α	G1	C1	1Y0	1Y1	1Y2	1Y3
X	Х	Н	Х	н	Н	Н	Н
L	L	L	н	L	н	Н	н
L	н	L	н	н	L	Н	н
н	L	L	н	н	н	L	н
н	Н	L	н	н	н	н	L
Х	Х	Х	L	н	Н	Н	н

_							
		Inputs			Out	puts	
Se	lect	Strobe	Data				
в	Α	G2	C2	2Y0	2Y1	2Y2	2Y3
X	Х	Н	Х	Н	Н	Н	Н
L	L	L	L	L	Н	н	н
L	н	L	L	н	L	н	н
н	L	L	L	н	Н	L	н
н	н	L	L	н	н	н	L
X	х	x	н	н	н	н	н

H = high level, L = low level, X = don't care

Note 1: C = inputs C1 and C2 connected together

Note 2: G = inputs G1 and G2 connected together

Absolute Maximum Ratings (Note 3)

ote 3) DM54LS and 54LS 7V DM74LS 7V Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Operating Free Air Temperature Range

Supply Voltage

Input Voltage

Recommended Operating Conditions

Symbol	Parameter		DM54LS1	55	C	Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS155 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
Ц	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				-0.36	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 5)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 6)			6.1	10	mA

Note 4: All typicals are at V_CC = 5V, T_A = 25° C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CC} is measured with all outputs open, A,B, and C1 inputs at 4.5V, and C2, G1, and G2 inputs grounded.

'LS155 Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		From (Input)					
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max]
t _{PLH}	Propagation Delay Time	A, B, C2, G1		18		22	ns
	Low to High Level Output	or G2 to Y					
t _{PHL}	Propagation Delay Time	A, B, C2, G1		27		35	ns
	High to Low Level Output	or G2 to Y					
t _{PLH}	Propagation Delay Time	A or B		18		24	ns
	Low to High Level Output	to Y					
	•	•					

'LS155 Switching Characteristics (Continued)

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input)		R _L = 2 kΩ						
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L =	50 pF	Units			
			Min	Max	Min	Max				
t _{PHL}	Propagation Delay Time	A or B		27		35	ns			
	High to Low Level Output	to Y								
t _{PLH}	Propagation Delay Time	C1		20		24	ns			
	Low to High Level Output	to Y								
t _{PHL}	Propagation Delay Time	C1		27		35	ns			
	High to Low Level Output	to Y								

Recommended Operating Conditions

Symbol	Parameter	DM54LS156			[OM74LS15	6	Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
V _{он}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

'LS156 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 7)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 5.5V				100	μA
	Current	V _{IL} = Max, V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$	•			0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.36	mA
I _{cc}	Supply Current	V _{CC} = Max (Note 8)			6.1	10	mA

Note 7: All typicals are at V_{CC} = 5V, T_A = 25° C.

Note 8: I_{CC} is measured with all outputs open, A, B, and C1 inputs at 4.5V, and C2, G1, and G2 grounded.

'LS156 Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		From (Input)		R _L = 2 kΩ						
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L =	C _L = 50 pF				
			Min	Max	Min	Max				
t _{PLH}	Propagation Delay Time	A, B, C2, G1		28		53	ns			
	Low to High Level Output	or G2 to Y								
t _{PHL}	Propagation Delay Time	A, B, C2, G1		33		43	ns			
	High to Low Level Output	or G2 to Y								

'LS156 Switching Characteristics (Continued)

		From (Input)		R _L =			
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L =	Units	
			Min	Max	Min	Max	1
t _{PLH}	Propagation Delay Time	A or B		28		53	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	A or B		33		43	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	C1		28		53	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	C1		34		43	ns
	High to Low Level Output	to Y					

Logic Diagram

March 1998

DM74LS155/DM74LS156 Dual 2-Line to 4-Line Decoders/Demultiplexers

FAIRCHILD

SEMICONDUCTOR IM

DM74LS155/DM74LS156 Dual 2-Line to 4-Line Decoders/Demultiplexers

General Description

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C1 is inverted at its outputs and data applied at C2 is true through its outputs. The inverter following the C1 data input permits use as a 3-to-8-line decoder, or 1-to-8-line demultiplexer, without external gating. Input clamping diodes are provided on these circuits to minimize transmission-line effects and simplify system design.

Features

- Applications: Dual 2-to-4-line decoder Dual 1-to-4-line demultiplexer 3-to-8-line decoder 1-to-8-line demultiplexer
- Individual strobes simplify cascading for decoding or
- demultiplexing larger words
- Input clamping diodes simplify system design
- Choice of outputs: Totem-pole (LS155) Open-collector (LS156)

Connection Diagram and Function Tables

Connection Diagram and Function Tables (Continued)

3-Line-to-8-Line Decoder or 1-Line-to-8-Line Demultiplexer

	Inp	uts				(Outp	outs			
Selec	t		Strobe	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
			Or Data								
C (Note 1)	в	Α	G (Note 2)	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3
X	Х	Х	Н	н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	н	L	Н	Н	Н	Н	Н	Н
L	н	L	L	н	н	L	Н	Н	Н	Н	Н
L	н	Н	L	н	Н	Н	L	Н	Н	Н	Н
н	L	L	L	н	Н	Н	Н	L	Н	Н	Н
н	L	н	L	н	н	н	н	н	L	Н	Н
н	н	L	L	н	Н	н	н	н	н	L	н
н	н	н	L	н	н	н	н	н	н	н	L

2-Line-to-4-Line Decoder or 1-Line-to-4-Line Demultiplexer

	Inputs				Out	puts	
Sel	ect	Strobe	Data				
В	Α	G1	C1	1Y0	1Y1	1Y2	1Y3
X	Х	Н	Х	н	Н	Н	Н
L	L	L	н	L	н	Н	н
L	н	L	н	н	L	Н	н
н	L	L	н	н	н	L	н
н	Н	L	н	н	н	н	L
Х	Х	Х	L	н	Н	Н	н

_							
		Inputs			Out	puts	
Se	lect	Strobe	Data				
в	Α	G2	C2	2Y0	2Y1	2Y2	2Y3
X	Х	Н	Х	Н	Н	Н	Н
L	L	L	L	L	Н	н	н
L	н	L	L	н	L	н	н
н	L	L	L	н	Н	L	н
н	н	L	L	н	н	н	L
X	х	x	н	н	н	н	н

H = high level, L = low level, X = don't care

Note 1: C = inputs C1 and C2 connected together

Note 2: G = inputs G1 and G2 connected together

Absolute Maximum Ratings (Note 3)

ote 3) DM54LS and 54LS 7V DM74LS 7V Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Operating Free Air Temperature Range

Supply Voltage

Input Voltage

Recommended Operating Conditions

Symbol	Parameter	DM54LS155		C	5	Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
V _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS155 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
Ц	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				-0.36	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 5)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 6)			6.1	10	mA

Note 4: All typicals are at V_CC = 5V, T_A = 25° C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CC} is measured with all outputs open, A,B, and C1 inputs at 4.5V, and C2, G1, and G2 inputs grounded.

'LS155 Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		From (Input)					
Symbol	Parameter	To (Output)	t) $C_{L} = 15 \text{ pF}$ $C_{L} = 50 \text{ pF}$		50 pF	Units	
			Min	Max	Min	Max]
t _{PLH}	Propagation Delay Time	A, B, C2, G1		18		22	ns
	Low to High Level Output	or G2 to Y					
t _{PHL}	Propagation Delay Time	A, B, C2, G1		27		35	ns
	High to Low Level Output	or G2 to Y					
t _{PLH}	Propagation Delay Time	A or B		18		24	ns
	Low to High Level Output	to Y					
	•	•					

'LS155 Switching Characteristics (Continued)

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input) To (Output)					
Symbol	Parameter		C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
t _{PHL}	Propagation Delay Time	A or B		27		35	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	C1		20		24	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	C1		27		35	ns
	High to Low Level Output	to Y					

Recommended Operating Conditions

Symbol	Parameter	DM54LS156		[6	Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
V _{он}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

'LS156 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 7)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 5.5V				100	μA
	Current	V _{IL} = Max, V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$	•			0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V				-0.36	mA
I _{cc}	Supply Current	V _{CC} = Max (Note 8)			6.1	10	mA

Note 7: All typicals are at V_{CC} = 5V, T_A = 25° C.

Note 8: I_{CC} is measured with all outputs open, A, B, and C1 inputs at 4.5V, and C2, G1, and G2 grounded.

'LS156 Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		From (Input) To (Output)					
Symbol	Parameter		C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	A, B, C2, G1		28		53	ns
	Low to High Level Output	or G2 to Y					
t _{PHL}	Propagation Delay Time	A, B, C2, G1		33		43	ns
	High to Low Level Output	or G2 to Y					

'LS156 Switching Characteristics (Continued)

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	1
t _{PLH}	Propagation Delay Time	A or B		28		53	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	A or B		33		43	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	C1		28		53	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	C1		34		43	ns
	High to Low Level Output	to Y					

Logic Diagram

FAIRCHILD

DM74LS157/DM74LS158 Quad 2-Line to 1-Line Data Selectors/Multiplexers

General Description

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The LS157 presents true data whereas the LS158 presents inverted data to minimize propagation delay time.

Applications

- Expand any data input point
- Multiplex dual data buses
- Generate four functions of two variables (one variable is common)

Connection Diagrams

DM74LS157M or DM74LS157N See Package Number E20A, J16A, M16A, N16E or W16A Source programmable counters

Features

- Buffered inputs and outputs
- Typical Propagation Time
 - LS157 9 ns LS158 7 ns
- Typical Power Dissipation
 - LS157 49 mW LS158 24 mW

Order Number 54LS158DMQB, 54LS158FMQB, 54LS158LMQB, DM54LS158J, DM54LS158W, DM74LS158M or DM74LS158N See Package Number E20A, J16A, M16A, N16E or W16A

Function Table

	Inputs		Output Y							
Strobe	Select	Α	В	LS157	LS158					
Н	Х	Х	Х	L	н					
L	L	L	Х	L	н					
L	L	н	Х	н	L					
L	н	Х	L	L	н					
L	н	Х	Н	н	L					

H = High Level, L = Low Level, X = Don't Care

March 1998

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS157			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS157 Electrical Characteristics

over recommended operating	free air temperature range	(unless otherwise noted)
----------------------------	----------------------------	--------------------------

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		1
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4]
I _I	Input Current @ Max	V _{CC} = Max	S or G			0.2	mA
	Input Voltage	V ₁ = 7V	A or B			0.1	1
IIH	High Level Input	V _{CC} = Max	S or G			40	μA
	Current	V ₁ = 2.7V	A or B			20	1
I	Low Level Input	V _{CC} = Max	S or G			-0.8	mA
	Current	$V_1 = 0.4V$	A or B			-0.4	
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	1
I _{cc}	Supply Current	V _{CC} = Max (Note 4)	·		9.7	16	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with 4.5V applied to all inputs and all outputs open.

'LS157 Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

	Parameter	From (Input)					
Symbol		To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Data		14		18	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Data		14		23	ns
	High to Low Level Output	to Y					

'LS157 Switching Characteristics (Continued)

at V _{CC} = 5V	and $T_A = 25^{\circ}C$
-------------------------	-------------------------

		From (Input)					
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Strobe		20		24	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Strobe		21		30	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	Select		23		28	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Select		27		32	ns
	High to Low Level Output	to Y					

Recommended Operating Conditions

Symbol	Parameter	DM54LS158			C	Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

'LS158 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 5)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	V _{CC} = Max	S or G			0.2	mA
	Input Voltage	V ₁ = 7V	A or B			0.1	
IIH	High Level Input	V _{CC} = Max	S or G			40	μA
	Current	V ₁ = 2.7V	A or B			20	
I _{IL}	Low Level Input	V _{CC} = Max	S or G			-0.8	mA
	Current	$V_1 = 0.4V$	A or B			-0.4	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 6)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 7)			4.8	8	mA

Note 5: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: $\rm I_{CC}$ is measured with 4.5V applied to all inputs and all outputs open.

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Data		12		18	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Data		12		21	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	Strobe		17		23	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Strobe		18		28	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	Select		20		24	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Select		24		36	ns
	High to Low Level Output	to Y					

Logic Diagrams

54LS160A/DM74LS160A, 54LS162A/DM74LS162A Synchronous Presettable BCD Decade Counters

General Description

Features

- Synchronous counting and loading
- High speed synchronous expansion

TL/F/10177-1

- Typical count rate of 35 MHz
- Fully edge triggered

The 'LS160 and 'LS162 are high speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The 'LS160 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The 'LS162 has a Synchronous Reset input that overrides counting and parallel loading and allows all outputs to be simultaneously reset on the rising edge of the clock.

Connection Diagram

Order Number 54LS160ADMQB, 54LS160AFMQB, 54LS160ALMQB, 54LS162ADMQB, 54LS162AFMQB, 54LS162ALMQB, DM74LS160AM, DM74LS160AN, DM74LS162AM or DM74LS162AN See NS Package Number E20A, J16A, M16A, N16E or W16A

Pin ames	Description	Logic Symbol
EP ET P IR ('160)	Count Enable Parallel Input Count Enable Trickle Input Clock Pulse Input (Active Rising Edge) Asynchronous Master Reset	9 3 4 5 6 9 1 1 1 PE PO P1 P2 P3
₩ R ('162)	Input (Active LOW) Synchronous Reset Input (Active LOW)	7 CEP 10 CET TC 15 2 CP
20-P3 2Ē	Parallel Data Inputs Parallel Enable Input (Active LOW)	*R Q0 Q1 Q2 Q3 Q I I I I 1 14 13 12 11
20–Q3 TC	Flip-Flop Outputs Terminal Count Output	TL/F/ ⁻ V _{CC} = Pin 16 [*] ₩R for 'LS160 GND = Pin 8 [*] SR for 'LS162

© 1995 National Semiconductor Corporation TL/F/10177

RRD-B30M105/Printed in U. S. A.

54LS160A/DM74LS160A, 54LS162A/DM74LS162A Synchronous Presettable BCD Decade Counters

May 1992

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS160A/162A			DM	Unite		
Symbol	Farameter	Min	Nom	Мах	Min	Nom	Max	Onits
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H) t _s (L)	Setup Time, HIGH or LOW P _n to CP	20 20			20 20			ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW P _n to CP	0.0 0.0			0.0 0.0			ns
t _s (H) t _s (L)	Setup Time, HIGH or LOW PE to CP	20 20			20 20			ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW PE to CP	0 0			0 0			ns
t _s (H) t _s (L)	Setup Time, HIGH or LOW CEP, CET or SR to CP	20 20			20 20			ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW CEP, CET or SR to CP	0 0			0 0			ns
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	15 25			15 25			ns
t _w (L)	MR Pulse Width LOW ('160)	15			15			ns
t _{rec}	Recovery Time MR to CP ('160)	20			20			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max,$	54LS	2.5			V
	Voltage	$V_{IL} = Max$	DM74	2.7			v
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	54LS			0.4	
	Voltage V _{IH} =	$V_{IH} = Min$	DM74			0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$				0.4	

Note 1: All typicals are at V_{CC}\,=\, 5V, T_A $=\,$ 25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units	
II.	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Other			0.1	mΑ	
	Input Voltage	PE, C	ET Inputs			0.2		
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$	Other			20	0 0	
		PE, C	ET Inputs			40	μπ	
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$ Inputs	54LS			-0.4	m۵	
			DM74			- 1.6		
		PE, CET Inputs				-0.8	mA	
I _{OS}	Short Circuit	V _{CC} = Max	54LS	-20		-100	m۵	
	Output Current	(Note 2)	DM74	-20		-100		
ICCH	Supply Current with Outputs HIGH	$V_{CC} = Max, \overline{PE} = GND$ CP = \checkmark , Other Inputs = 4.5V				31	mA	
I _{CCL}	Supply Current with Outputs LOW	$V_{CC} = Max, V_{IN} = GND$ CP = \checkmark				31	mA	

Symbol	Parameter	RL CL	Units	
		Min	Max	
f _{max}	Maximum Clock Frequency	25		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to TC		25 21	ns
t _{PLH} t _{PHL}	Propagation Delay CP to Q _n		24 27	ns
t _{PLH} t _{PHL}	Propagation Delay CET to TC		14 23	ns
t _{PHL}	Propagation Delay MR to Q _n ('160)		28	ns

Functional Description

The 'LS160 and 'LS162 count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The '161 and '163 count modulo-16 binary sequence. From state 15 (HHHH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 'LS160) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('LS160), synchronous Reset (SR, 'LS162), parallel load, count-up and hold. Five control inputs—Master Reset (MR, 'LS160), Synchronous Reset (SR, 'LS162), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)—determine the mode of operation, as shown in the

Mode Select Table. A LOW signal on $\overline{\text{MR}}$ overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{\text{SR}}$ overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on $\overline{\text{PE}}$ overrides counting and allows information on the Parallel Data (P_n) inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{\text{PE}}$ and $\overline{\text{MR}}$ ('LS160) or $\overline{\text{SR}}$ ('LS162) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The 'LS160A and 'LS162A use D-type edge-triggered flipflops and changing the \overline{SR} , \overline{PE} , CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

Functional Description (Continued)

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in its maximum count state (9 for the decade counters, 15 for the binary counters). To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. These two schemes are shown in the 9310 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or regis-ters. In the decade counters of the 'LS160, 'LS162, the TC output is fully decoded and can only be HIGH in state 9.

LOGIC EQUATIONS:

 $Count Enable = CEP \bullet CET \bullet PE$

 $TC = Q0 \bullet \overline{Q}1 \bullet \overline{Q}2 \bullet Q3 \bullet CET$

State Diagrams

Mode Select Table										
* SR	*SR PE CET CEP Action on the Ris Clock Edge (_/									
L	х	х	х	RESET (Clear)						
н	L	Х	Х	LOAD ($P_n \rightarrow Q_n$)						
н	н	н	н	COUNT (Increment)						
н	н	L	Х	NO CHANGE (Hold)						
н	Н	Х	L	NO CHANGE (Hold)						

*For the 'LS162

H = HIGH Voltage LevelL = LOW Voltage Level

X = Immaterial

4

TL/F/10177-5

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

March 1998

DM74LS161A/DM74LS163A

Synchronous

4-Bit Binary Counters

FAIRCHILD

SEMICONDUCTOR IM

DM74LS161A/DM74LS163A Synchronous 4-Bit Binary Counters

General Description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The LS161A and LS163A are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buff-ered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable input. The clear function for the LS161A is asynchronous; and a low level at the clear input sets all four of the flip-flop outputs low, regardless of the levels of clock, load, or enable inputs. The clear function for the LS163A is synchronous; and a low level at the clear inputs sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily, as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to all low outputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output.

Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_A output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs may occur, regardless of the logic level of the clock. These counters feature a fully independent clock circuit. Changes made to control inputs (enable P or T or load) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable set-up and hold times.

Features

- Synchronously programmable
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs
- Typical propagation time, clock to Q output 14 ns
- Typical clock frequency 32 MHz
- Typical power dissipation 93 mW

Connection Diagram

Absolute	Maximum	Ratings	(Note 1)
----------	---------	---------	----------

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	

DM54LS and 54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		C	M54LS16	61A	D	Units		
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input	Voltage	2			2			V
V _{IL}	Low Level Input	/oltage			0.7			0.8	V
I _{он}	High Level Outpu	it Current			-0.4			-0.4	mA
I _{OL}	Low Level Output	t Current			4			8	mA
f _{CLK}	Clock Frequency	(Note 2)	0		25	0		25	MHz
	Clock Frequency	(Note 3)	0		20	0		20	MHz
t _w	Pulse Width	Clock	20	6		20	6		ns
	(Note 2)	Clear	20	9		20	9		1
	Pulse Width	Clock	25			25			ns
	(Note 3)	Clear	25			25			
t _{su}	Setup Time	Data	20	8		20	8		
	(Note 2)	Enable P	25	17		25	17		ns
		Load	25	15		25	15		1
	Setup Time	Data	20			20			
	(Note 3)	Enable P	30			30			ns
		Load	30			30			1
t _H	Hold Time	Data	0	-3		0	-3		ns
	(Note 2)	Others	0	-3		0	-3]
	Hold Time	Data	5			5			ns
	(Note 3)	Others	5			5]
t _{REL}	Clear Release Til	me (Note 2)	20			20			ns
	Clear Release Til	me (Note 3)	25			25			ns
T _A	Free Air Operatin	g Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5.5V.

Note 3: C_L = 50 pF, R_L = 2 kΩ, T_A = 25 $^\circ C$ and V_{CC} = 5.5V.

'LS161 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V_{CC} = Min, I_{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
Vol	Low Level Output	V_{CC} = Min, I_{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	

'LS161 Electrical Characteristics (Continued) over recommended operating free air temperature range (unless otherwise noted)								
Symbol	Parameter	Con	ditions	Min	Typ (Note 4)	Max	Units	
Ц	Input Current @ Max	V _{CC} = Max	Enable T			0.2		
	Input Voltage	V ₁ = 7V	Clock			0.2	mA	
			Load			0.2		
			Others			0.1		
I _{IH}	High Level Input	V _{CC} = Max	Enable T			40		
	Current	V ₁ = 2.7V	Clock			40	μA	
			Load			40		
			Others			20		
I _{IL}	Low Level Input	V _{CC} = Max	Enable T			-0.8		
	Current	$V_{1} = 0.4V$	Clock			-0.8	mA	
			Load			-0.8		
			Others			-0.4		
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA	
	Output Current	(Note 5)	DM74	-20		-100		
I _{CCH}	Supply Current with	V _{CC} = Max	•		18	31	mA	
	Outputs High	(Note 6)						
I _{CCL}	Supply Current with	V _{CC} = Max			19	32	mA	
	Outputs Low	(Note 7)						

Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CCH} is measured with the load high, then again with the load low, with all other inputs high and all outputs open.

Note 7: I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

'LS161 Switching Characteristics at V_{CC} = 5V and T_A = 25'C

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time	Clock to		25		30	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clock to		30		38	ns
	High to Low Level Output	Ripple Carry					
t _{PLH}	Propagation Delay Time	Clock to Any Q		22		27	ns
	Low to High Level Output	(Load High)					
t _{PHL}	Propagation Delay Time	Clock to Any Q		27		38	ns
	High to Low Level Output	(Load High)					
t _{PLH}	Propagation Delay Time	Clock to Any Q		24		30	ns
	Low to High Level Output	(Load Low)					
t _{PHL}	Propagation Delay Time	Clock to Any Q		27		38	ns
	High to Low Level Output	(Load Low)					
t _{PLH}	Propagation Delay Time	Enable T to		14		27	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Enable T to		15		27	ns
	High to Low Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clear to		28		45	ns
	High to Low Level Output	Any Q					
	•	•	•	•		•	•

Symbol	Parameter		C	DM54LS163A			DM74LS163A		
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
I _{он}	High Level Output Current				-0.4			-0.4	mA
I _{OL}	Low Level Output Current				4			8	mA
f _{CLK}	Clock Frequency (Note 8)		0		25	0		25	MHz
	Clock Frequency (Note 9)		0		20	0		20	MHz
t _w	Pulse Width	Clock	20	6		20	6		ns
	(Note 8)	Clear	20	9		20	9]
	Pulse Width	Clock	25			25			ns
	(Note 9)	Clear	25			25			
t _{SU}	Setup Time	Data	20	8		20	8		
	(Note 8)	Enable P	25	17		25	17		ns
		Load	25	15		25	15		
	Setup Time	Data	20			20			
	(Note 9)	Enable P	30			30			ns
		Load	30			30			
t _H	Hold Time	Data	0	-3		0	-3		ns
	(Note 8)	Others	0	-3		0	-3		
	Hold Time	Data	5			5			ns
	(Note 9)	Others	5			5			
t _{REL}	Clear Release Time (Note 8)		20			20			ns
	Clear Release Time (Note 9)		25			25			ns
T _A	Free Air Operating Temperature		-55		125	0		70	°C

Note 8: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V. Note 9: C_L = 50 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

'LS163 Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 10)	Max	Units	
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA			-1.5	V		
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4			
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4		
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	l v	
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4		
I _I	Input Current @ Max	V _{CC} = Max	Enable T			0.2		
	Input Voltage	V ₁ = 7V	Clock, Clear			0.2	mA	
			Load			0.2		
			Others			0.1		
I	High Level Input V _{CC} = Max		Enable T			40		
	Current	V ₁ = 2.7V	Load			40	μΑ	
			Clock, Clear			40		
			Others			20	1	
'LS163	Electrical	Characteristics	(Continued)					
--------	------------	-----------------	-------------					
--------	------------	-----------------	-------------					

Symbol	Parameter	Co	nditions	Min	Тур	Max	Units
					(Note 10)		
I _{IL}	Low Level Input	V _{CC} = Max	Enable T			-0.8	
	Current	$V_{I} = 0.4V$	Clock, Clear			-0.8	mA
			Load			-0.8	
			Others			-0.4	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 11)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			18	31	mA
	Outputs High	(Note 12)					
I _{CCL}	Supply Current with	V _{CC} = Max			18	32	mA
	Outputs Low	(Note 13)					

Note 10: All typicals are at V_CC = 5V, T_A = 25°C.

Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 12: I_{CCH} is measured with the load high, then again with the load low, with all other inputs high and all outputs open.

Note 13: I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

'LS163 Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time	Clock to		25		30	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clock to		30		38	ns
	High to Low Level Output	Ripple Carry					
t _{PLH}	Propagation Delay Time	Clock to Any Q		22		27	ns
	Low to High Level Output	(Load High)					
t _{PHL}	Propagation Delay Time	Clock to Any Q		27		38	ns
	High to Low Level Output	(Load High)					
t _{PLH}	Propagation Delay Time	Clock to Any Q		24		30	ns
	Low to High Level Output	(Load Low)					
t _{PHL}	Propagation Delay Time	Clock to Any Q		27		38	ns
	High to Low Level Output	(Load Low)					
t _{PLH}	Propagation Delay Time	Enable T to		14		27	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Enable T to		15		27	ns
	High to Low Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clear to Any Q		28		45	ns
	High to Low Level Output	(Note 14)					

Note 14: The propagation delay clear to output is measured from the clock input transition.

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

0.008-0.012 (0.203 - 0.305)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

Fax: +852 2314-0061

March 1998

FAIRCHILD

DM74LS164 8-Bit Serial In/Parallel Out Shift Register

General Description

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either input inhibits entry of the new data, and resets the first flip-flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup and hold time requirements will be entered. Clocking occurs

Connection Diagram

Order Number 54LS164DMQB, 54LS164FMQB, 54LS164LMQB, DM54LS164J, DM54LS164W, DM74LS164M or DM74LS164N See Package Number E20A, J14A, M14A, N14A or W14B

Logic Diagram

on the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Features

- Gated (enable/disable) serial inputs
- Fully buffered clock and serial inputs
- Asynchronous clear
- Typical clock frequency 36 MHz
- Typical power dissipation 80 mW

Function Table

	Inputs		Outputs				
Clear	Clock	Α	в	Q_A	Q _B		Q _H
L	Х	Х	Х	L	L		L
н	L	X	Х	Q _{A0}	Q_{B0}		Q _{H0}
н	↑	н	н	н	Q _{An}		Q_{Gn}
н	↑	L	Х	L	Q _{An}		Q_{Gn}
н	Ŷ	Х	L	L	Q_{An}		Q_{Gn}

H = High Level (steady state), L = Low Level (steady state) X = Don't Care (any input, including transitions)

↑ = Transition from low to high level Q_{A0} , Q_{B0} , Q_{H0} = The level of Q_A , Q_B , or Q_H , respectively, before the indicated steady-state input conditions were established.

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G before the most recent \uparrow transition of the clock; indicates a one-bit shift.

© 1998 Fairchild Semiconductor Corporation DS006398

Absolute	Maximum	Ratings	(Note 1)
----------	---------	---------	----------

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	

DM54LS and 54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Para	meter	[DM54LS1	64	D	M74LS16	64	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
I _{он}	High Level Output Current				-0.4			-0.4	mA
I _{OL}	Low Level Output Current				4			8	mA
f _{CLK}	Clock Frequency (Note 5)		0		25	0		25	MHz
t _{vv}	Pulse Width	Clock	20			20			ns
	(Note 5)	Clear	20			20			
t _{su}	Data Setup Time (Note	e 5)	17			17			ns
t _H	Data Hold Time (Note 5)		5			5			ns
t _{REL}	Clear Release Time (Note 5)		30			30			ns
T _A	Free Air Operating Ter	nperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" tables will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I _{IL}	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			16	27	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs open, the SERIAL input grounded, the CLOCK input at 2.4V, and a momentary ground, then 4.5V, applied to the CLEAR input.

Note 5: T_A = 25°C and V_{CC} = 5V.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input)					
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		25				MHz
t _{PLH}	Propagation Delay Time	Clock to		27		30	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Clock to		32		40	ns
	High to Low Level Output	Output					
t _{PHL}	Propagation Delay Time	Clear to		36		45	ns
	High to Low Level Output	Output					

FAIRCHILD

DM74LS165 8-Bit Parallel In/Serial Output Shift Registers

General Description

This device is an 8-bit serial shift register which shifts data in the direction of $Q_{\rm A}$ toward $Q_{\rm H}$ when clocked. Parallel-in access is made available by eight individual direct data inputs, which are enabled by a low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eighth bit.

Clocking is accomplished through a 2-input NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with the load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Parallel

loading is inhibited as long as the load input is high. Data at the parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input, regardless of the logic levels on the clock, clock inhibit, or serial inputs.

Features

- Complementary outputs
- Direct overriding (data) inputs
- Gated clock inputs
- Parallel-to-serial data conversion
- Typical frequency 35 MHz
- Typical power dissipation 105 mW

Connection Diagram

Dual-In-Line Package PARALLEL INPUTS CLOCK SERIAL OUTPUT V_{CC} INHIBIT D С в Α INPUT QH 16 15 13 10 9 14 12 11 2 3 6 8 SHIFT / CLOCK E G н OUTPUT GND LOAD QΗ PARALLEL INPUTS DS006399-1

Order Number DM54LS165J, DM54LS165W, DM74LS165WM or DM74LS165N See Package Number J16A, M16B, N16E or W16A

April 1998

www.fairchildsemi.com

© 1998 Fairchild Semiconductor Corporation DS006399

Function Table

	Inputs										
Shift/	Clock	Clock	Serial	Parallel	Out	Outputs		Outputs		Outputs C	
Load	Inhibit			AH	Q _A	Q _B	Q _H				
L	Х	Х	Х	ah	а	b	h				
н	L	L	X	x	Q _{A0}	Q _{B0}	Q _{H0}				
н	L	↑ (н	x	н	Q _{An}	Q _{Gn}				
н	L	↑ (L	x	L	Q _{An}	Q _{Gn}				
н	н	x	X	X	Q _{A0}	Q _{B0}	Q _{H0}				

H = High Level (steady state), L = Low Level (steady state) X = Don't Care (any input, including transitions) \uparrow = Transition from low-to-high level a...h = The level of steady-state input at inputs A through H, respectively. Q_{A0}, Q_{B0}, Q_{H0} = The level of $Q_A, Q_B, \text{ or } Q_H$, respectively, before the indicated steady-state input conditions were established. Q_{An}, Q_{Gn} = The level of Q_A or Q_G , respectively, before the most recent \uparrow transition of the clock.

Absolute Maximum Ratings (Note 1)

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Operating Free Air Temperature Range

Supply Voltage

Input Voltage

Recommended Operating Conditions

Symbol	Parameter		C	M54LS1	65	D	M74LS16	65	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
I _{он}	High Level Output Current				-0.4			-0.4	mA
IOL	Low Level Output Current				4			8	mA
f _{CLK}	Clock Frequency (Note 2)				30	0		25	MHz
f _{CLK}	Clock Frequency (Note 3)					0		20	MHz
t _w	Pulse Width	Clock	18			25			ns
	(Note 3)	Load	15			15			
t _{su}	Setup Time	Parallel	10			10			
	(Note 7)	Serial	10			20			ns
		Enable	10			30			
		Shift	10			45			
t _H	Hold Time (Note 7)		5			0			ns
T _A	Free Air Operating Temperature		-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5			V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V_{CC} = Min, I_{OL} = Max				0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min			0.25	0.4	1
I,	Input Current @ Max	$V_{CC} = Max, V_1 = 7V (DM74)$	Shift/Load			0.3	mA
	Input Voltage	V ₁ = 10V (DM54)	Others			0.1	1
I _{IH}	High Level Input	V _{CC} = Max	Shift/Load			60	μA
	Current	V ₁ = 2.7V	Others			20	
I _{IL}	Low Level Input	V _{CC} = Max	Shift/Load			-1.2	mA
	Current	$V_1 = 0.4V$	Others			-0.4	1
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 5)	DM74	-20		-100	1
Icc	Supply Current	V _{CC} = Max (Note 6)	•		21	36	mA

Note 2: CL = 15 pF, RL = 2 kΩ, TA = 25°C and V_{CC} = 5V

Note 3: C_L = 50 pF, R_L = 2 kΩ, T_A = 25°C and V_{CC} = 5V

Note 4: All typicals are at V_{CC} = 5V, T_A = 25 $^{\circ}$ C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: With all outputs open, clock inhibit and shift/load at 4.5V, and a clock pulse applied to the CLOCK input, I_{CC} is measured first with the parallel inputs at 4.5V, then again grounded.

Electrical Characteristics (Continued)

Note 7: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

			DM	54LS	DM7	4LS	DM7	4LS	
Symbol	Parameter	From (Input)	C _L =	15 pF	C _L =	15 pF	R _L =	2 k Ω	Units
		To (Output)					C _L =	50 pF	
			Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		25		25		20		MHz
t _{PLH}	Propagation Delay Time	Load to		30		35		37	ns
	Low to High Level Output	Any Q							
t _{PHL}	Propagation Delay Time	Load to		30		35		42	ns
	High to Low Level Output	Any Q							
t _{PLH}	Propagation Delay Time	Clock to		30		40		42	ns
	Low to High Level Output	Any Q							
t _{PHL}	Propagation Delay Time	Clock to		30		40		47	ns
	High to Low Level Output	Any Q							
t _{PLH}	Propagation Delay Time	н		20		25		27	ns
	Low to High Level Output	to Q _H							
t _{PHL}	Propagation Delay Time	Н		30		30		37	ns
	High to Low Level Output	to Q _H							
t _{PLH}	Propagation Delay Time	н		30		30		32	ns
	Low to High Level Output	to Q _H							
t _{PHL}	Propagation Delay Time	Н		25		25		32	ns
	High to Low Level Output	to Q _H							

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

April 1998

DM74LS166 8-Bit Parallel-In/Serial-Out Shift Registers

FAIRCHILD

DM74LS166 8-Bit Parallel-In/Serial-Out Shift Registers

General Description

These parallel-in or serial-in, serial-out shift registers feature gated clock inputs and an overriding clear input. All inputs are buffered to lower the drive requirements to one normalized load, and input clamping diodes minimize switching transients to simplify system design. The load mode is established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading,

serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a two-input NOR gate, permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free running, and the register can be stopped on command with the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.

Connection Diagram Dual-In-Line Package PARALLEL INPUTS PARALLEL SHIFT/ OUTPUT INPUT QH G E CLEAR н 16 15 14 13 12 10 3 5 6 8 1 2 7 Ď CLOCK CLOCK GND SERIAL Α в С INPUT INHIBIT PARALLEL INPUTS DS006400-1 Order Number DM74LS166WM or DM74LS166N See Package Number M16B or N16A **Function Table** Inputs Internal Output Shift/ Clock Serial Parallel Outputs Clear Clock Q_H Load Inhibit А...Н QA Q_B L Х Х Х Х Х L L L $\mathsf{Q}_{\mathsf{A}0}$ Q_{B0} Q_{H0} Н Х L L Х Х Н L î Х L a...h b h а н Q_{Gn} н ↑ н Х н Q_{An} L н н ↑ Х L L L Q_{An} Q_{Gn} Q_{B0} н Х н х Х Q_{A0} Q_{H0}

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions) ↑ = Transition from low to high level

a...h = The level of steady-state input at inputs A through H, respectively

QA0, QB0, QH0 = The level of QA, QB, QH, respectively, before the indicated steady-state input conditions were established QAn, QGn, = The level of QA, QG, respectively, before the most recent 1 transition of the clock

© 1998 Fairchild Semiconductor Corporation DS006400

Absolute Maximur	n Ratings (Note 1)
------------------	--------------------

Supply Voltage Input Voltage

Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Para	Parameter		DM74LS166		Units	
			Min	Nom	Max		
V _{cc}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	High Level Input Voltage	High Level Input Voltage				V	
V _{IL}	Low Level Input Voltage				0.8	V	
I _{он}	High Level Output Current				-0.4	mA	
I _{OL}	Low Level Output Current				8	mA	
f _{CLK}	Clock Frequency (Note 2)		0		25	MHz	
	Clock Frequency (Note 3)		0		20	MHz	
t _{vv}	Pulse Width (Note 7)	Clock	20			ns	
		Clear	20]	
t _{su}	Setup Time (Note 7)	Mode	30			ns	
		Data]	
t _H	Hold Time (Note 7)		0			ns	
T _A	Free Air Operating Tem	perature	0		70	°C	

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA			-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max	2.7	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max		0.35	0.5	
	Voltage	V _{IL} = Max, V _{IH} = Min				V
		I_{OL} = 4 mA, V_{CC} = Min		0.25	0.4	1
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$			0.1	mA
	Input Voltage					
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V			20	μA
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
l _{os}	Short Circuit	V _{CC} = Max	-20		-100	mA
	Output Current	(Note 5)				
I _{cc}	Supply Current	V _{CC} = Max (Note 6)		22	38	mA

Note 2: C_L = 15 pF, R_L = 2 k Ω , T_A = 25 °C and V_{CC} = 5V.

Note 3: CL = 50 pF, RL = 2 k\Omega, TA = 25 °C and VCC = 5V.

Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: With all outputs open, 4.5V applied to the serial input, all other inputs except the CLOCK grounded, I_{CC} is measured after a momentary ground, then 4.5V is applied to the CLOCK.

Note 7: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Switch at V _{cc} = 5	ing Characteristics						
		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock		25		20		MHz
	Frequency						
t _{PLH}	Propagation Delay Time	Clock to	8	35		38	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Clock to	8	35		41	ns
	High to Low Level Output	Output					
t _{PHL}	Propagation Delay Time	Clear to	6	30		36	ns
	High to Low Level Output	Output					

Parameter Measurement Information

Test Table for Synchronous Inputs

Data Input	Shift/Load	Output Tested
for Test		(See Note C)
н	0V	Q _H at T _{N+1}
Serial Input	4.5V	Q _H at T _{N+8}

Note A:The clock pulse has the following characteristics: $t_{W(clock)} \ge 20$ ns and PRR = 1 MHz. The clear pulse has the following characteristics: $t_{W(clear)} \ge 20$ ns and $t_{HOLD} = 0$ ns. When testing t_{MAX} , vary the clock PRR. Note B:A clear pulse is applied prior to each test. Note C:Propagation delay times (t_{PLH} and t_{PHL}) are measured at t_{n+1} . Proper shifting of data is verified at t_{n+8} with a functional test. Note D: $t_n =$ bit time before clocking transition

 $t_{n+1} = bit time after bolcocking transition <math>t_{n+8} = bit time after eight clocking transition Note E:V_{REF} = 1.3V.$

4

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

SEMICONDUCTOR TM

DM74LS169A Synchronous 4-Bit Up/Down Binary Counter

General Description

This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs all change at the same time when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising edge of the clock waveform.

This counter is fully programmable; that is, the outputs may each be preset either high or low. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry permits cascading counters for n-bit synchronous applications without additional gating. Both count-enable inputs (\overline{P} and \overline{T}) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input \overline{T} is fed forward to enable

the carry outputs. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the Q_A output when counting up, and approximately equal to the low portion of the Q_A output when counting down. This low-level overflow carry pulse can be used to enable successively cascaded stages. Transitions at the enable \overline{P} or \overline{T} inputs are allowed regardless of the level of the clock input. All inputs are diode clamped to minimize transmission-line effects, thereby simplifying system design. This counter features a fully independent clock circuit. Changes at control inputs (enable \overline{P} , enable \overline{T} , load, up/ down), which modify the operating mode, have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

Features

- Fully synchronous operation for counting and programming.
- Internal look-ahead for fast counting.
- Carry output for n-bit cascading.
- Fully independent clock circuit

DM74LS169A Synchronous

4-Bit Up/Down Binary Counter

© 1998 Fairchild Semiconductor Corporation DS006401

Absolute Maximum	Ratings (Note 1)	
------------------	------------------	--

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		C	DM54LS169A			DM74LS169A		
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
I _{OH}	High Level Output Current				-0.4			-0.4	mA
I _{OL}	Low Level Output Current				4			8	mA
f _{CLK}	Clock Frequency (Note 2)		0		25	0		25	MHz
	Clock Frequency (Note 3)		0		20	0		20	MHz
t _w	Clock Pulse Width (Note 4)		25			25			ns
t _{su}	Setup Time	Data	20			20			
	(Note 4)	Enable	20			20			1
		T or P							ns
		Load	25			25			
		U/D	30			30			1
t _H	Hold Time (Note 4)		0			0			ns
TA	Free Air Operating Ter	nperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Note 3: C_L = 50 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions Min		Min	Typ (Note 5)	Max	Units
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA			(-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	V _{CC} = Max	Enable T			0.2	mA
	Input Voltage	$V_1 = 7V$	Others			0.1	
IIH	High Level Input	V _{CC} = Max	Enable T			40	μA
	Current	V ₁ = 2.7V	Others			20	
I	Low Level Input	V _{CC} = Max	Enable T			-0.8	mA
	Current	$V_{I} = 0.4V$	Others			-0.4	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 6)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max(Note 7)			20	34	mA

Note 5: All typicals are at V_{CC} = 5V and T_A = 25°C.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: I_{CC} is measured after a momentary 4.5V, then ground, is applied to the CLOCK with all other inputs grounded and all the outputs open.

Symbol	Parameter	From (Input) To (Output)					
			C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock		25		20		MHz
	Frequency						
t _{PLH}	Propagation Delay Time	Clock to		35		39	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Clock to		35		44	ns
	High to Low Level Output	Ripple Carry					
t _{PLH}	Propagation Delay Time	Clock to		20		24	ns
	Low to High Level Output	Any Q					
t _{PHL}	Propagation Delay Time	Clock to		23		32	ns
	High to Low Level Output	Any Q					
t _{PLH}	Propagation Delay Time	Enable T to		18		24	ns
	Low to High Level Output	Ripple Carry					
t _{PHL}	Propagation Delay Time	Enable T to		18		28	ns
	High to Low Level Output	Ripple Carry					
t _{PLH}	Propagation Delay Time	Up/Down to		25		30	ns
	Low to High Level Output	Ripple Carry (Note 8)					
t _{PHL}	Propagation Delay Time	Up/Down to		29		38	ns
	High to Low Level Output	Ripple Carry (Note 8)					

Note 8: The propagation delay from UP/DOWN to RIPPLE CARRY must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum, the ripple carry output transition will be in phase. If the count is maximum, the ripple carry output will be out of phase.

4

6

1. Life support devices or systems are devices or sys-

tems which, (a) are intended for surgical implant into

the body, or (b) support or sustain life, and (c) whose

failure to perform when properly used in accordance

with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
ww.fairchildsemi.com		Fax: +852 2314-0061	

0.371-0.390

(9.423-9.906)

6 15 14 13 12 11 10

0.015 - 0.019

(0.381 - 0.482)TYP

16-Lead Ceramic Flat Package (W)

Package Number W16A

.

0.300

(7.620) MAX GLASS

¥

PIN NO. 1

IDENT

 0.050 ± 0.005

 $\overline{(1.270 \pm 0.127)}$

0.250-0.370 (6.350 - 9.398)

.

0.245-0.275

(6.223-6.985)

0.250 - 0.370

(6.350-9.398)

W16A (REV H)

- 0.000 MIN TYP

түр

0.008 - 0.012

(0.203-0.305)

DETAIL A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

DM74LS170 4 x 4 Register File with Open-Collector Outputs

General Description

The 'LS170 contains 16 high speed, low power, transparent D-type latches arranged as four words of four bits each, to function as a 4 \times 4 register file. Separate read and write inputs, both address and enable, allow simultaneous read and write operation. Open-collector outputs make it possible to connect up to 128 outputs in a wired-AND configuration to increase the word capacity up to 512 words. Any number of these devices can be operated in parallel to generate an n-bit length. The '670 provides a similar function to this device but it features TRI-STATE® outputs.

Features

- Simultaneous read/write operation
- Expandable to 512 words of n-bits
- Typical access time of 20 ns
- Low leakage open-collector outputs for expansion

DM74LS170 4 x 4 Register File with Open-Collector Outputs

January 1992

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74	0°C to +70°C
Storage Temperature Range	-65°C to $+150^\circ\text{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Barameter		DM74LS170			
Symbol	Falameter	Min	Nom	Max	Onits	
V _{CC}	Supply Voltage	4.75	5	5.25	V	
V _{IH}	High Level Input Voltage	2			V	
V _{IL}	Low Level Input Voltage			0.8	V	
V _{OH}	High Level Output Voltage			5.5	V	
I _{OL}	Low Level Output Current			8	mA	
T _A	Free Air Operating Temperature	0		70	°C	
ts	Setup Time HIGH or LOW Dn to Rising WE	10			ns	
t _h	Hold Time HIGH or LOW Dn to Rising WE	5.0			ns	
t _s	Setup Time HIGH or LOW WAn to Falling WE	10			ns	
t _h	Hold Time HIGH or LOW WAn to Rising WE	5.0			ns	
t _w (L)	WE or RE Pulse Width LOW	25			ns	

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Uints	
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_{I} = -18 \text{ mA}$				-1.5	V
ICEX	High Level Output Current	$V_{CC} = Min, V_O = 5.5V$				20	μA
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max, V_{IH} = Min$	DM74		0.35	0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$	DM74		0.25	0.4	
l	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Dns, RAO, WA0			0.1	mΔ
Input Voltage			WE, RE			0.2	
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$	Inputs			20	۵
			RE, WE			40	μπ
Ι _{ΙL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	RE, WE	-0.06		-0.8	
			RA1, WA1	-0.05		-0.4	mA
			DATA, RA0, WA0	-0.03		-0.4	
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	DM74	-20		-100	mA
ICC	Supply Current	$V_{CC} = Max, Dn, \overline{WE},$ $\overline{RE} = 4.5V, WAn, RAn = GND$				40	mA

Note 1: All typicals are at V_{CC}\,=\, 5V, T_A $=\,$ 25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

t _{PLH}		arameter	Condition		$R_L = 2k, C_L = 15 pF$		
t _{PLH} t _{PHL}	F	arameter	Conditions	5	Min	Max	
tPHL	Propa	igation Delay	/*			35	ns
	RA0 d	or RA1 to On				35	
^t PLH	RE to	On	/			30 30	ns
t _{PLH} t _{PHL}	Propa WE to	gation Delay On	/			35 35	ns
t _{PLH} t _{PHL}	Propa Dn to	igation Delay On	<i>,</i>			35 35	ns
witching	g Wavef	orms					
WAO	, WA1		-		t_		<u> </u>
D	1-D4	<u>ının</u>		Vm	¥\\\		1111
				Is-+	← t _h →		
	WE	<u>`</u>	*(-)	7	$v_{m} = 1.5V$		
					(1.3V for	_S)	TL/F/982
			FIGUR	Ea			
	Write Fur	nction Table	1		Read F	unction Tab	le
\	Write Inputs		D Inputs to	D Inputs to Read Inputs		Outputs from	
WE	WA1	WA0	Mard O	RE	RA1	RA0	Mard 0
L	L	L H	Word 1			L H	Word 1
L		1	Word 2	1	н	Ĺ	Word 2
L L	Н	L	TOTAL			_	WOIUZ
	H H	H	Word 3		н	H	Word 3
L L H	H H X	H X	Word 3 None (Hold)	L	H X	H X	Word 2 Word 3 None (High Z)

16 15

1 2

OPTION 02

0.300 - 0.320

95°±5°

0.280

(7.112) MIN

(0.325^{+0.040} -0.015

(8.255 +1.016 -0.381

 $\frac{0.065}{(1.651)}$

ł

0.008 - 0.016 (0.203 - 0.406) TYP

N16E (REV F)

National Se Corporation 1111 West Arlington, T. Tel: 1(800) Fax: 1(800)	emiconductor Natio n Europ Bardin Road X 76017 272-9959 Deuts 737-7018 Englis Franç Italian	nal Semiconductor e Fax: (+49) 0-180-530 85 86 Email: onjwge@tevm2.nsc.com h Tel: (+49) 0-180-530 85 85 h Tel: (+49) 0-180-532 78 32 ais Tel: (+49) 0-180-532 93 58 n Tel: (+49) 0-180-532 16 80	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (652) 2737-1800 Fax: (652) 2736-980	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408
--	--	---	---	--

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

54LS173/DM74LS173A TRI-STATE[®] 4-Bit D-Type Register

General Description

Connection Diagram

This four-bit register contains D-type flip-flops with totempole TRI-STATE® outputs, capable of driving highly capacitive or low-impedance loads. The high-impedance state and increased high-logic-level drive provide these flip-flops with the capability of driving the bus lines in a bus-organized system without need for interface or pull-up components.

Gated enable inputs are provided for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flipflops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the truth table. times are shorter than the average output enable times.
Features
TRI-STATE outputs interface directly with system bus

To minimize the possibility that two outputs will attempt to

take a common bus to opposite logic levels, the output con-

trol circuitry is designed so that the average output disable

- Gated output control lines for enabling or disabling the outputs
- Fully independent clock eliminates restrictions for operating in one of two modes:
 - Parallel load Do nothing (hold)
- For application as bus buffer registers

Inputs

G1

Х

Х

Н

Х

L

I.

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however, sequential operation of the flip-flops is not affected.

Q0 = The Level of Q Before the Indicated Steady State Input Conditions

Data

Enable

G2

Х

х

Х

н

L

Т

Function Table

Clear

Н

L

L

L

L

L.

Clock

Х

L

↑

↑

1

↑

H = High Level (Steady State)
 L = Low Level (Steady State)
 ↑ = Low-to-High Level Transition
 X = Don't Care (Any Input Including Transitions)

Were Established

			Di	iai-in-	Line	часка	ge			
DATA ENABLE DATA INPUTS INPUTS										
V _{CC} CLEAR D1 D2 D3 D4 G2 G1										
		16	15	14	13	12	11	10	9	
								j		
			EAR 1 PUT TROL 1	D 2 Q 2	2D 3	iD 4	ID C EN Q	DATA IABLE IK		
		ļ)							
		1	2	3	4	5	6	7	8	
	Ņ	i i	N C	1 (12 0	, 33 (4 CL	оск с	ND	
¢	DUTP	UT CO	NTROL	c	UTPUT	rs				
5	TL/F/6403-1 Order Number 54LS173DMQB, 54LS173FMQB, 54LS173LMQB, DM74LS173AM or DM74LS173AN See NS Package Number E20A, J16A, M16A, N16E or W16A									

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1995 National Semiconductor Corporation TL/F/6403

RRD-B30M105/Printed in U. S. A.

54LS173/DM74LS173A TRI-STATE 4-Bit D-Type Register

May 1992

Output

Q

L

Q₀

Q₀

Q₀

L H

Data

D

Х

х

Х

Х

L

н

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Bange	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

-0.4

20

-20

-100

-100

30

mΑ

μΑ

μA

mΑ

mΑ

Recommended Operating Conditions

Low Level Input Current

Short Circuit

Output Current

Supply Current

Off-State Output Current with High

Off-State Output Current with Low

Level Output Voltage Applied

Level Output Voltage Applied

 $I_{|L}$

IOZH

I_{OZL}

los

 I_{CC}

Symbol	Parameter	Parameter			54LS173		[A	Unite		
Symbol	Falameter			Min	Nom	Max	Min	Nom	Мах	onits	
V _{CC}	Supply Voltage			4.5	5	5.5	4.75	5	5.25	V	
VIH	High Level Input Voltage			2			2			V	
VIL	Low Level Input Voltage					0.7			0.8	V	
IOH	High Level Output Curren	t				-1			-2.6	mA	
I _{OL}	Low Level Output Current					12			24	mA	
fCLK	Clock Frequency (Note 1)			30			0		30	MHz	
	Clock Frequency (Note 2)						0		20	MHz	
tw	Pulse Width	Clock	(20			17			ne	
	(Note 3)	Clear		17			17			115	
t _{SU}	Setup Time	Enab	le	17			23			D C	
	(Note 3)	Data		15			15			1 115	
t _H	t _H Hold Time (Note 3)	Enab	le	0			0			nc	
		Data		5			0			115	
t _{REL}	Clear Release Time)		10			10			ns	
Т _А	Free Air Operating Tempe	Free Air Operating Temperature		-55		125	0		70	°C	
Note 1: CL Note 2: CL Note 3: TA Electi	$\begin{array}{l} = 45 \ \text{pF}, \ \text{R}_L = 667 \Omega, \ \text{T}_A = 25^\circ \text{C} \ \text{ar} \\ = 150 \ \text{pF}, \ \text{R}_L = 667 \Omega, \ \text{T}_A = 25^\circ \text{C} \ \text{a} \\ = 25^\circ \text{C} \ \text{and} \ \text{V}_{\text{CC}} = 5 \text{V}. \end{array}$	d $V_{CC} = 5^{\circ}$ nd $V_{CC} = 5^{\circ}$ Nd $V_{CC} = 5^{\circ}$	v. 5v. recomm	ended op	perating free	e air tempe	erature ran	nge (unless c	therwise no	oted)	
Symbol	Parameter			Co	onditions		Min	Typ (Note 4)	Max	Units	
VI	Input Clamp Voltage		V _{CC} =	= Min, I _I	= -18 mA				-1.5	V	
V _{OH}	High Level Output Voltage		V _{CC} ≡ V _{IL} =	= Min, I _O Max, V _{II}	_H = Max _H = Min		2.4			v	
V _{OL}	Low Level Output		V _{CC} =	= Min, I _O	L = Max	54LS			0.4		
	Voltage		$V_{IL} =$	Max, V _{II}	_H = Min	DM74		0.35	0.5	V	
			I _{OL} =	4 mA, V	_{CC} = Min	DM74		0.25	0.4		
lı	Input Current @ Max Input Voltage		V _{CC} =	= Max, V	r _l = 7V				0.1	mA	
IIH	High Level Input Current		V _{CC} =	= Max, V	' _l = 2.7V				20	μA	

V_{CC} = Max (Note 6)

 $V_{CC} = Max, V_I = 0.4V$

 $\begin{array}{l} V_{CC} = Max, V_{O} = 2.7V \\ V_{IH} = Min, V_{IL} = Max \end{array}$

 $\begin{array}{l} V_{CC} = Max, V_{O} = 0.4V \\ V_{IH} = Min, V_{IL} = Max \end{array}$

54LS

DM74

-20

-20

17

V_{CC} = Max (Note 5)

			54	ILS	DM	74LS	
Symbol	Parameter	From (Input) To (Output)	$C_L = 50 pF$		$C_L = 50 \text{ pF}$ $R_L = 667\Omega$		Units
			Min	Мах	Min	Max	
f _{MAX}	Maximum Clock Frequency		30		20		ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Output		28		25	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Output		28		28	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Output		30		30	ns
t _{PZH}	Output Enable Time to High Level Output	Output Control (M or N) to Any Q		23		26	ns
t _{PZL}	Output Enable Time to Low Level Output	Output Control (M or N) to Any Q		28		24	ns
t _{PHZ}	Output Disable Time from High Level Output (Note 7)	Output Control (M or N) to Any Q		17		17	ns
t _{PLZ}	Output Disable Time from Low Level Output (Note 7)	Output Control (M or N) to Any Q		23		25	ns

Note 4: All typicals are at V_{CC} = 5V, T_A = 25^{\circ}C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CC} is measured with all outputs open: Clear grounded after a momentary 4.5V; N, G1, G2 and all data inputs grounded: and the CLOCK and M input at 4.5V.

Note 7: $C_L\,=\,5$ pF.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

April 1998

FAIRCHILD

DM74LS174/DM74LS175 Hex/Quad D Flip-Flops with Clear

General Description

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Features

- LS174 contains six flip-flops with single-rail outputs
- LS175 contains four flip-flops with double-rail outputs
- Buffered clock and direct clear inputs
- Individual data input to each flip-flop
- Applications include: Buffer/storage registers Shift registers Pattern generators
- Typical clock frequency 40 MHz
- Typical power dissipation per flip-flop 14 mW
- Alternate Military/Aerospace device (54LS174, 54LS175) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Dual-In-Line Package

13

D4 D3

3

Q1

4

M16Å, N16E or W16Å

D1

ōз

12

5 6

Q2

Q2

D2

Q3 CLOCK

8

GND

DS0

10 9

www.fairchildsemi.com

© 1998 Fairchild Semiconductor Corporation DS006404

Function Table

(Each Flip-Flop)

	Inputs		Out	puts
Clear	Clock	D	Q	<u>Q</u> †
L	Х	Х	L	Н
н	↑	н	н	L
н	↑	L	L	н
н	L	X	Qo	\overline{Q}_{o}

 $\begin{array}{l} H = \text{High Level (steady state)} \\ L = \text{Low Level (steady state)} \\ X = \text{Don't Care} \\ \uparrow = \text{Transition from low to high level} \\ Q_0 = \text{The level of } Q \text{ before the indicated steady-state input conditions were established.} \\ \uparrow = \text{LS175 only} \end{array}$

Absolute Maximum Ratings (Note 1)

	-	
Supply Voltage		7V
Input Voltage		7V
Operating Free Air Temperature Range		

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Param	eter		DM54LS17	74		DM74LS17	4	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Vo	Itage	2			2			V
V _{IL}	Low Level Input Vol	tage			0.7			0.8	V
I _{он}	High Level Output C	Current			-0.4			-0.4	mA
I _{OL}	Low Level Output C	urrent			4			8	mA
f _{CLK}	Clock Frequency (N	ote 2)	0		30	0		30	MHz
f _{CLK}	Clock Frequency (N	ote 3)	0		25	0		25	MHz
t _{vv}	Pulse Width	Clock	20			20			ns
	(Note 7)	Clear	20			20			
t _{su}	Data Setup Time (N	ote 7)	20			20			ns
t _H	Data Hold Time (No	te 7)	0			0			ns
t _{REL}	Clear Release Time	(Note 7)	25			25			ns
T _A	Free Air Operating	Femperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'LS174 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current@Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
IIL.	Low Level Input	V _{CC} = Max	Clock			-0.4	
	Current	$V_1 = 0.4V$	Clear			-0.4	mA
			Data			-0.36	
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 5)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 6)			16	26	mA

Note 2: CL = 15 pF, RL = 2 k\Omega, TA = 25°C and V_{CC} = 5V.

Note 3: C_L = 50 pF, R_L = 2 k\Omega, T_A = 25°C and V_{CC} = 5V.

Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: With all outputs open and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the clock. Note 7: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load) From (Input) $R_L = 2 \ k\Omega$ C_L = 50 pF Symbol Parameter To (Output) C_L = 15 pF Max Min Min Max f_{MAX} Maximum Clock Frequency 30 25 Propagation Delay Time Clock to 30 32 t_{PLH} Low to High Level Output Output Propagation Delay Time Clock to 30 36 t_{PHL} High to Low Level Output Output t_{PHL} Propagation Delay Time Clear to 35 42 High to Low Level Output Output

Units

MHz

ns

ns

ns

Recommended Operating Conditions

Symbol	Parameter			DM54LS17	75		M74LS17	5	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			2			V
V _{IL}	Low Level Input Voltage				0.7			0.8	V
I _{OH}	High Level Output Curre	nt			-0.4			-0.4	mA
IOL	Low Level Output Currer	nt			4			8	mA
f _{CLK}	Clock Frequency (Note 8	3)	0		30	0		30	MHz
f _{CLK}	Clock Frequency (Note 9	9)	0		25	0		25	MHz
t _w	Pulse Width	Clock	20			20			ns
	(Note 10)	Clear	20			20			
t _{SU}	Data Setup Time (Note	0)	20			20			ns
t _H	Data Hold Time (Note 10))	0			0			ns
t _{REL}	Clear Release Time (No	te 10)	25			25			ns
T _A	Free Air Operating Temp	erature	-55		125	0		70	°C

Note 10: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Symbol	Parameter	Conditions		Min	Typ (Note 11)	Мах	Units
V	Input Clamp Voltage	$V_{CC} = Min, I_1 = -18 \text{ mA}$				-1.5	v
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.5	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
l _i	Input Current@Max	$V_{CC} = Max, V_1 = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	$V_{\rm CC} = Max, V_{\rm I} = 2.7V$				20	μA
I _{IL}	Low Level Input	V _{CC} = Max	Clock			-0.4	
	Current	$V_1 = 0.4V$	Clear			-0.4	mA
			Data			-0.36	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 12)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 13)	·		11	18	mA

'LS175 Switching Characteristics at V_{CC} = 5V and T_A = 25°C (See Section 1 for Test Waveforms and Output Load)

		From (Input)					
Symbol	Parameter	To (Output)	C _L =	C _L = 15 pF		C _L = 50 pF	
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		30		25		MHz
t _{PLH}	Propagation Delay Time	Clock to		30		32	ns
	Low to High Level Output	Q or \overline{Q}					
t _{PHL}	Propagation Delay Time	Clock to		30		36	ns
	High to Low Level Output	Q or \overline{Q}					
t _{PLH}	Propagation Delay Time	Clear to		25		29	ns
	Low to High Level Output	Q					
t _{PHL}	Propagation Delay Time	Clear to		35		42	ns
	High to Low Level Output	Q					

Note 11: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 12: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 13: With all outputs open and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the clock input.

6

8

FAIRCHILD

DM74LS181 4-Bit Arithmetic Logic Unit

General Description

The 'LS181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations.

Features

- Provides 16 arithmetic operations: add, subtract, compare, double, plus twelve other arithmetic operations
- Provides all 16 logic operations of two variables: exclusive-OR, compare, AND, NAND, OR, NOR, plus ten other logic operations
- Full lookahead for high speed arithmetic operation on long words

Connection Diagram

Order Number DM54LS181J, DM54LS181W or DM74LS181N See Package Number J24A, N24A or W24C

Pin Names	Description
Ā0-Ā3	Operand Inputs (Active LOW)
B0-B3	Operand Inputs (Active LOW)
S0-S3	Function Select Inputs
м	Mode Control Input
C _n	Carry Input
F0-F3	Function Outputs (Active LOW)
A = B	Comparator Output
G	Carry Generate Output (Active LOW)
P	Carry Propagate Output (Active LOW)
C _{n+4}	Carry Output

DM74LS181 4-Bit Arithmetic Logic Unit

© 1998 Fairchild Semiconductor Corporation DS009821

Absolute	Maximum	Ratings	(Note 1)
----------	---------	---------	----------

Recommended Operating Conditions

Supply Voltage Input Voltage

 Operating Free Air Temperature Range

 DM74LS
 0°C to +70°C

 Storage Temperature Range
 -65°C to +150°C

7V

7V

Symbol	Parameter	DM54LS181			Units		
		Min	Max	Min	Nom	Max	1
V _{cc}	Supply Voltage	4.5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2		2			V
VIL	Low Level Input Voltage		0.7			0.8	V
I _{он}	High Level Output Current		-0.4			-0.4	mA
I _{OL}	Low Level Output Current		4			8	mA
T _A	Free Air Operating Temperature	-55	125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Мах	Units
					(Note 2)		
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 mA$				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7			
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54			0.4	V
	Voltage	V _{IH} = Min	DM74		0.35	0.5	
		I _{OL} = 4 mA, V _{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	M input			0.1	
	Input Voltage	V ₁ = 10V (DM54)	$\overline{A}_n, \overline{B}_n$			0.3	mA
			Sn			0.4	
			C _n			0.5	
IIH	High Level Input Current	V _{CC} = Max, V _I = 2.7V	M input			20	
			$\overline{A}_n, \overline{B}_n$			60	μA
			Sn			80	
			C _n			100	
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	M input			-0.4	
			$\overline{A}_n, \overline{B}_n$			-1.2	mA
			Sn			-1.6	
			C _n			-2.0	
Ios	Short Circuit	V _{CC} = Max		-20		-100	mA
	Output Current	(Note 3)					
I _{cc}	Supply Current	$V_{CC} = Max, \overline{B}_n, C_n = GND$	DM54			35	mA
		S_n , M, \overline{A}_n = 4.5V	DM74			37	

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

			DM54/I	DM74LS	
Symbol	Parameter	Conditions	C _L =	15 pF	Units
			Min	Max	
t _{PLH}	Propagation Delay	M = GND		27	ns
t _{PHL}	C _n to C _{n+4}			20	
t _{PLH}	Propagation Delay	M = GND		26	ns
t _{PHL}	C_n to \overline{F}			20	
t _{PLH}	Propagation Delay	M, S_1 , $S_2 = GND$;		29	ns
t _{PHL}	\overline{A} or \overline{B} to \overline{G} (Sum)	S ₁ , S ₃ = 4.5V		23	
t _{PLH}	Propagation Delay	M, S_0 , $S_3 = GND$;		32	ns
t _{PHL}	\overline{A} or \overline{B} to \overline{G} (Diff)	S ₁ , S ₂ = 4.5V		26	
t _{PLH}	Propagation Delay	M, S_1 , $S_2 = GND$;		30	ns
t _{PHL}	\overline{A} or \overline{B} to \overline{P} (Sum)	S ₀ , S ₃ = 4.5V		30	
t _{PLH}	Propagation Delay	M, S_0 , $S_3 = GND$;		30	ns
t _{PHL}	\overline{A} or \overline{B} to \overline{P} (Diff)	S ₁ , S ₂ = 4.5V		33	
t _{PLH}	Propagation Delay	M, S_1 , $S_2 = GND$;		32	ns
t _{PHL}	\overline{A}_i or \overline{B}_i to \overline{F}_i (Sum)	S ₀ , S ₃ = 4.5V		25	
t _{PLH}	Propagation Delay	M, S_0 , $S_3 = GND$;		32	ns
t _{PHL}	\overline{A}_i or \overline{B}_i to \overline{F}_i (Diff)	S ₁ , S ₂ = 4.5V		33	
t _{PLH}	Propagation Delay	M = 4.5V		33	ns
t _{PHL}	\overline{A} or \overline{B} to \overline{F} (Logic)			29	
t _{PLH}	Propagation Delay	M, S_1 , $S_2 = GND$;		38	ns
t _{PHL}	\overline{A} or \overline{B} to C_{n+4} (Sum)	S ₀ , S ₃ = 4.5V		38	
t _{PLH}	Propagation Delay	M, S_0 , $S_3 = GND$;		41	ns
t _{PHL}	\overline{A} or \overline{B} to C_{n+4} (Diff)	$S_1, S_2 = 4.5V$		41	
t _{PLH}	Propagation Delay	M, S_0 , $S_3 = GND$;		50	ns
t _{PHL}	\overline{A} or \overline{B} to $A = B$	S ₁ , S ₂ = 4.5V;		62	
		$R_1 = 2 k\Omega$ to 5.0V			

Sum Mode Test Table 1

Function Inputs

Symbol	Input Under	Other Sam	⁻ Input e Bit	Other D	ata Inputs	Output Under
	Test	Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	Test
t _{PLH} t _{PHL}	\overline{A}_{i}	B _i	None	Remaining \overline{A} and \overline{B}	C _n	₽,
t _{PLH} t _{PHL}	B _i	Ā	None	Remaining \overline{A} and \overline{B}	C _n	₽,
t _{PLH} t _{PHL}	Ā	B	None	None	Remaining \overline{A} and \overline{B} , C _n	P
t _{PLH} t _{PHL}	B	Ā	None	None	Remaining \overline{A} and \overline{B} , C _n	P
t _{PLH} t _{PHL}	Ā	None	B	Remaining B	Remaining Ā, C _n	G
t _{PLH} t _{PHL}	B	None	Ā	Remaining B	Remaining Ā, C _n	G
t _{PLH} t _{PHL}	Ā	None	B	Remaining B	Remaining Ā, C _n	C _{n+4}

Sum Mode Test Table 1

Function Inputs (Continued)

S0 = S3 = 4.5V, S1 = S2 = M = 0V

Symbol	Input Under Test	Other Input Same Bit		Other D	Output Under	
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	Test
t _{PLH} t _{PHL}	B	None	Ā	Remaining B	Remaining Ā, C _n	C _{n+4}
t _{PLH} t _{PHL}	C _n	None	None	All Ā	All B	Any F or C _{n+4}

Function Inputs Diff Mode Test Table 2

S1 = S2 = 4.5V, S0 = S3 = M = 0V

Symbol	Input Under Test	Other Input Same Bit		Other D	Output Under	
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	Test
t _{PLH} t _{PHL}	Ā	None	B	Remaining Ā	Remaining	F,
t _{PLH} t _{PHL}	B	Ā	None	Remaining Ā	Remaining B, C _n	F _i
t _{PLH} t _{PHL}	Ā	None	B	None	Remaining \overline{A} and \overline{B} , C_n	P
t _{PLH} t _{PHL}	B	Ā	None	None	Remaining Ā and Ē, C _n	P
t _{PLH} t _{PHL}	Ā	B	None	None	Remaining \overline{A} and \overline{B} , C_n	G
t _{PLH} t _{PHL}	B	None	Ā	None	Remaining \overline{A} and \overline{B} , C_n	G
t _{PLH} t _{PHI}	Ā	None	B	Remaining Ā	Remaining B, C _n	A = B
t _{PLH}	B	Ā	None	Remaining Ā	Remaining B, C _n	A = B
t _{PLH} t _{PHI}	Ā	B	None	None	Remaining \overline{A} and \overline{B} , C_n	C _{n+4}
t _{PLH} t _{PHI}	B	None	Ā	None	Remaining \overline{A} and \overline{B} , C_n	C _{n+4}
t _{PLH}	C _n	None	None	All None		C _{n+4}

Logic Mode Test Table 3 -M - 451/90 - 92 - 01/

Function Inputs

Symbol	Input Under	Other Input Same Bit		Other Data Inputs		Output Under
	Test	Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	Test
t _{PLH} t _{PHL}	Ā	B	None	None	Remaining \overline{A} and \overline{B} , C _n	Any F
t _{PLH} t _{PHL}	B	Ā	None	None	Remaining \overline{A} and \overline{B} , C _n	Any F

Functional Description

The 'LS181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs (S0–S3) and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations

When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $C_{n\!+\!4}$ output, or for carry lookahead between packages using the signals \overline{P} (Carry Propagate) and G (Carry Generate). In the ADD mode, \overline{P} indicates that \overline{F} is 15 or more, while \overline{G} indicates that $\overline{\mathsf{F}}$ is 16 or more. In the SUBTRACT mode, $\overline{\mathsf{P}}$ indicates that $\overline{\mathsf{F}}$ is zero or less, while \overline{G} indicates that \overline{F} is less than zero. \overline{P} and G are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output (C_{n+4}) signal to the Carry input (Cn) of the next unit. For high speed operation the device is used in conjunction with the 9342 or 93S42 carry lookahead circuit. One carry lookahead package is required for each group of four 'LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.

The A = B output from the device goes HIGH when all four \overline{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The A = B output is open-collector and can be wired-AND with other A = B outputs to give a comparison for more than four bits. The A = B signal can also be used with the C_{n+4} signal to indicate A > B and A < B.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

Function Table

Mode Select				Activ	ve LOW Operands	Active HIGH Operands		
Inputs					& F _n Outputs	& F _n Outputs		
				Logic	Arithmetic	Logic	Arithmetic	
					(Note 5)		(Note 5)	
S3	S2	S1	S0	(M = H)	(M = L) (C _n = L)	(M = H)	(M = L) (C _n = H)	
L	L	L	L	Ā	A minus 1	Ā	A	
L	L	L	Н	AB	AB minus 1	A + B	A + B	
L	L	н	L	A + B	AB minus 1	ĀВ	A + B	
L	L	Н	Н	Logic 1	minus 1	Logic 0	minus 1	
L	Н	L	L	A + B	A plus (A + B)	AB	A plus AB	
L	Н	L	Н	B	AB plus (A + B)	B	(A + B) plus AB	
L	н	н	L	$\overline{A \oplus B}$	A minus B minus 1	A \oplus B	A minus B minus 1	
L	н	н	н	A + B	A + B	AB	AB minus 1	
Н	L	L	L	ĀВ	A plus (A + B)	Ā + B	A plus AB	
н	L	L	н	A ⊕ B	A plus B	A ⊕ B	A plus B	
н	L	н	L	в	AB plus (A + B)	В	(A + B) plus AB	
н	L	н	н	A + B	A + B	AB	AB minus 1	
Н	Н	L	L	Logic 0	A plus A (Note 4)	Logic 1	A plus A (Note 4)	
н	н	L	н	AB	AB plus A	A + B	(A + B) plus A	
н	н	н	L	AB	AB minus A	A + B	(A + B) plus A	
н	н	н	н	A	А	A	A minus 1	

Note 4: Each bit is shifted to the next most significant position.

Note 5: Arithmetic operations expressed in 2s complement notation.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications
National Semiconductor

DM54LS190/DM74LS190, DM54LS191/DM74LS191 Synchronous 4-Bit Up/Down Counters with Mode Control

General Description

These circuits are synchronous, reversible, up/down counters. The LS191 is a 4-bit binary counter and the LS190 is a BCD counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits counting. Level changes at either the enable input or the down/ up input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement; which significantly reduces the number of clock drivers, etc., required for long parallel words. Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Features

- Counts 8-4-2-1 BCD or binary
- Single down/up count control line
- Count enable control input
- Ripple clock output for cascading
- Asynchronously presettable with load control
- Parallel outputs
- Cascadable for n-bit applications
- Average propagation delay 20 ns
- Typical clock frequency 25 MHz
- Typical power dissipation 100 mW

©1995 National Semiconductor Corporation TL/F/6405

RRD-B30M105/Printed in U. S. A

DM54LS190/DM74LS190, DM54LS191/DM74LS191 Synchronous 4-Bit Up/Down Counters with Mode Control

May 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM	DM54LS190, LS191			DM74LS190, LS191		
Cymbol			Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Cu	irrent			-0.4			-0.4	mA
I _{OL}	Low Level Output Cu	rrent			4			8	mA
f _{CLK}	Clock Frequency (No	ote 4)	0		20	0		20	MHz
t _W	Pulse Width	Clock	25			25			ns
	(Note 4)	Load	35			35			113
t _{SU}	Data Setup Time (No	te 4)	20			20			ns
t _H	Data Hold Time (Not	ə 4)	0			0			ns
t _{EN}	Enable Time to Clock	(Note 4)	30			30			ns
T _A	Free Air Operating Te	emperature	-55		125	0		70	°C

'LS190 and 'LS191 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.5	3.4		
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		V
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
lj –	Input Current @ Max	ent @ Max $V_{CC} = Max$ age $V_I = 7V$	Enable			0.3	mA
	Input Voltage		Others			0.1	110.
I _{IH}	High Level Input	High Level Input V _{CC} = Max	Enable			60	۵
	Current	$V_{I} = 2.7V$	Others			20	μπ
Ι _{ΙL}	Low Level Input	V _{CC} = Max	Enable			-1.08	mΑ
	Current	$V_{I} = 0.4V$	Others			-0.4	
IOS	Short Circuit	V _{CC} = Max	DM54	-20		-100	mΔ
	Output Current	(Note 2)	DM74	-20		-100	
ICC	Supply Current	V _{CC} = Max (Note 3)			20	35	mA
	Short Circuit Output Current Supply Current	V _{CC} = Max (Note 2) V _{CC} = Max (Note 3)	DM54 DM74	-20 -20	20	-100 -100 35	

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all inputs grounded and all outputs open.

Note 4: T_{A} = 25°C and V_{CC} = 5V.

		Erom (Input)	$R_L = 2 k\Omega$					
Symbol	Parameter	To (Output)	C _L =	15 pF	C L =	Units		
			Min	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency		20		20		MHz	
t _{PLH}	Propagation Delay Time Low to High Level Output	Load to Any Q		33		43	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Load to Any Q		50		59	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Any Q		22		26	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Any Q		50		62	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Ripple Clock		20		24	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Ripple Clock		24		33	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Any Q		24		29	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Any Q		36		45	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Max/Min		42		47	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Max/Min		52		65	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Up/Down to Ripple Clock		45		50	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Up/Down to Ripple Clock		45		54	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Down/Up to Max/Min		33		36	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Down/Up to Max/Min		33		42	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Enable to Ripple Clock		33		36	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Enable to Ripple Clock		33		42	ns	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

54LS192/DM74LS192 Up/Down Decade Counter with Separate Up/Down Clocks

General Description

The 'LS192 is an up/down BCD decade (8421) counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs. Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for a subsequent stage without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load (\overline{PL}) and the Master Reset (MR) inputs asynchronously override the clocks.

RRD-B30M105/Printed in U. S. A.

May 1992

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter			54LS192			Units		
Symbol	Farameter		Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
I _{OH}	High Level Output Voltage				-0.4			-0.4	mA
I _{OL}	Low Level Output Current				4			8	mA
Τ _Α	Free Air Operating Tempera	ature	-55		125	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW Pn to PL		20 20			20 10			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW Pn to PL		3 3			3 3			ns
t _w (L)	CP Pulse Width LOW		17			17			ns
t _w (L)	PL Pulse Width LOW		20			20			ns
t _w (H)	MR Pulse Width HIGH		15			15			ns
t _{rec}	Recovery Time, MR to CP		3			3			ns
t _{rec}	Recovery Time, PL to CP		10			10			ns
Electri	ical Characteristics	over re	ecommende	ed operating	g free air ter	nperature r	ange (unless	otherwise r	noted)
Symbol	Parameter		Cor	nditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	V _{CC}	= Min, I _I =	= −18 mA				-1.5	V
V _{OH}	High Level Output Voltage	V _{CC}	= Min, I _{OH}	I = Max,	54LS	2.5			v
		Itage -0.4 rrent 4 Imperature -55 .OW 20 20 20 .OW 3 3 3 17 17 20 20 .OW 3 3 3 17 17 20 20 .OW 3 3 3 .OP 3 .OP 3 .OP 3 .OP 3 .OP 3 .OP 10 .OP .OP .OP .OP .OP </td <td></td> <td>•</td>		•					
V _{OL}	Low Level Output Voltage	Vcc	= Min, I _{OL}	= Max,	54LS			0.4	
		VIH	= Min		DM74			0.5	v
		I _{OL} =	= 4 mA, V _C	_C = Min	DM74			0.4	
lj	Input Current @ Max	V _{CC}	= Max, V _I	= 10V	DM54			0.1	mΔ
	Input Voltage		VI	= 7V	DM74			0.1	
IIH	High Level Input Current	V _{CC}	= Max, V _I	= 2.7V				20	μΑ
IIL	Low Level Input Current	Vcc	= Max, V _I	= 0.4V				-0.4	mA

Supply Current Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Short Circuit

Output Current

los

ICC

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

 $V_{CC}=\text{Max}$

(Note 2)

 $V_{CC} = Max, MR, \overline{PL} = GND$

Other Inputs = 4.5V

54LS

DM74

-20

-20

-100

-100

31

mΑ

mΑ

Symbol	Parameter	R _L = 2k C _L = 15 pF		Units
		Min	Max	
f _{max}	Maximum Count Frequency	30		MHz
t _{PLH} t _{PHL}	Propagation Delay $CP_U \text{ or } CP_D$ to Q_n		31 28	ns
t _{PLH} t _{PHL}	Propagation Delay CP_U to \overline{TC}_U		16 21	ns
t _{PLH} t _{PHL}	Propagation Delay $CP_D \text{ to } \overline{TC}_D$		16 24	113
t _{PLH} t _{PHL}	Propagation Delay P _n to Q _n		20 30	ns
t _{PLH} t _{PHL}	Propagation Delay PL to Q _n		32 30	
t _{PHL}	Propagation Delay, MR to Q _n		25	ns

Functional Description

The '192 is an asynchronously presettable decade and 4-bit binary synchronous up/down (reversible) counter. The operating modes of the '192 decade counter and the '193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagram. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up, and count down operations.

Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW.

The Terminal Count Up (\overline{TC}_U) and Terminal Count Down (\overline{TC}_D) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the '192, 15 for the '193), the next HIGH-to-LOW transition of the Count Up Clock will cause \overline{TC}_U to go LOW. \overline{TC}_U will stay LOW until CPU goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the \overline{TC}_D output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the \overline{TC} outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

$$\overline{\mathsf{TC}}_{\mathsf{U}} = \mathsf{Q0} \bullet \mathsf{Q3} \bullet \overline{\mathsf{CP}}_{\mathsf{U}}$$
$$\overline{\mathsf{TC}}_{\mathsf{D}} = \overline{\mathsf{Q0}} \bullet \overline{\mathsf{Q1}} \bullet \overline{\mathsf{Q2}} \bullet \overline{\mathsf{Q3}} \bullet \overline{\mathsf{CP}}_{\mathsf{I}}$$

Each circuit has an asynchronous parallel load capability permitting the counter to be reset. When the Parallel Load (\overline{PL}) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs (P0–P3) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

DM74LS193 Synchronous 4-Bit Binary Counters with Dual Clock

General Description

FAIRCHILD

SEMICONDUCTOR

The DM74LS193 circuit is a synchronous up/down 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (rippleclock) counters.

The outputs of the four master-slave flip-flops are triggered by a LOW-to-HIGH level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is held HIGH.

The counter is fully programmable; that is, each output may be preset to either level by entering the desired data at the inputs while the load input is LOW. The output will change independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which, when taken to a high level, forces all outputs to the low level; independent of

the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements of clock drivers, etc., required for long words.

September 1986

Revised February 1999

These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up and down counting functions. The borrow output produces a pulse equal in width to the count down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count down input when an overflow condition exists.

to the count down input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count down and count up inputs respectively of the succeeding counter.

Features

- · Fully independent clear input
- Synchronous operation
- Cascading circuitry provided internally
- Individual preset each flip-flop

Ordering Code:

Order Number	Package Number	Package Description
DM74LS193N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
DM74LS193M	M16A	16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body

Connection Diagram

www.fairchildsemi.com

2

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Operating Free Air Temperature Range	$-0^{\circ}C$ to $+70^{\circ}C$
Supply Voltage	7V
Input Voltage	7V
Storage Temperature Range	-65°C to +125°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the abbsolute maximum ratings. The "Reccommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{ОН}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
f _{CLK}	Clock Frequency (Note 2)	0		25	
	Clock Frequency (Note 3)				
t _W	Pulse Width of any Input (Note 4)	20			ns
t _{SU}	Data Setup Time (Note 4)	20			ns
t _H	Data Hold Time (Note 4)	0			ns
t _{EN}	Enable Time to Clock (Note 4)	40			ns
T _A	Free Air Operating Temperature	0		70	°C

Note 2: $C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $I_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$.

Note 3: C_L = 50 pF, R_L = 2 k $\Omega,~I_A$ = 25°C and V_{CC} = 5V.

Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

DC Electrical Characteristics

Symbol	Devenueter	Conditions	Min	Тур	Max	Unite
	Faidilieter	Conditions		(Note 5)		Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level Output	$V_{CC} = Min, I_{OH} = Max$	2.5	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	2.7	3.4		1
V _{OL}	LOW Level Output	V _{CC} = Min, I _{OL} = Max		0.25	0.4	
	Voltage	$V_{IL} = Max, V_{IH} = Min$		0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$		0.25	0.4	1
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
IIL	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
I _{OS}	Short Circuit	V _{CC} = Max	-20		-100	m۸
	Output Current	(Note 6)	-20		-100	111/4
lcc	Supply Current	$V_{CC} = Max$ (Note 7)		19	34	mA

Note 5: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: I_{CC} is measured with all outputs open, CLEAR and LOAD inputs grounded, and all other inputs at 4.5V.

		From (Input)		$R_L = 2 k\Omega$			
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L =	50 pF	Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time	Count Up		26		30	ns
	LOW-to-HIGH Level Output	to Carry					
t _{PHL}	Propagation Delay Time	Count Up		24		36	ns
	HIGH-to-LOW Level Output	to Carry					
t _{PLH}	Propagation Delay Time	Count Down		24		29	ns
	LOW-to-HIGH Level Output	to Borrow					
t _{PHL}	Propagation Delay Time	Count Down		24		32	ns
	HIGH-to-LOW Level Output	to Borrow					
t _{PLH}	Propagation Delay Time	Either Count		38		45	ns
	LOW-to-HIGH Level Output	to Any Q					
t _{PHL}	Propagation Delay Time	Either Count		47		54	ns
	HIGH-to-LOW Level Output	to Any Q					
t _{PLH}	Propagation Delay Time	Load to		40		41	ns
	LOW-to-HIGH Level Output	Any Q					
t _{PHL}	Propagation Delay Time	Load to		40		47	ns
	HIGH-to-LOW Level Output	Any Q					
t _{PHL}	Propagation Delay Time	Clear to		35		44	ns
	HIGH-to-LOW Level Output	Any Q					

DM74LS193

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM74LS194A

FAIRCHILD

SEMICONDUCTOR TM

DM74LS194A 4-Bit Bidirectional Universal Shift Register

General Description

This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register; they feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load

Shift right (in the direction Q_A toward Q_D)

Shift left (in the direction Q_D toward $\mathsf{Q}_\mathsf{A})$

Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, high. The data is loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial

Order Number 54LS194ADMQB, 54LS194AFMQB, 54LS194ALMQB, DM74LS194AM or DM74LS194AN See Package Number E20A, J16A, M16A, N16E or W16A

April 1998

data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input. Clocking of the flip-flop is inhibited when both mode control

clocking of the flip-flop is inhibited when both mode control inputs are low.

Features

_

- Parallel inputs and outputs
- Four operating modes: Synchronous parallel load Right shift Left shift
 - Do nothing
- Positive edge-triggered clocking
- Direct overriding clear

Connection Diagram

© 1998 Fairchild Semiconductor Corporation DS006407

www.fairchildsemi.com

1

Absolute Maximum Ratings (Note 1)		54LS	–55°C to +125°C		
Supply Voltage	7V	DM74LS	0°C to +70°C		
Input Voltage	7V	Storage Temperature Range	–65°C to +150°C		
Operating Free Air Temperature Range					

Recommended Operating Conditions

Symbol	Pa	arameter		54LS194	A	D	M74LS194	1A	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input	Voltage	2			2			V
V _{IL}	Low Level Input	Voltage			0.7			0.8	V
I _{он}	High Level Outpu			-0.4			-0.4	mA	
IOL	Low Level Outpu	t Current			4			8	mA
f _{CLK}	Clock Frequency	30		0	0		25	MHz	
	Clock Frequency	(Note 3)	22			0		20	
t _{vv}	Pulse Width	Clock	17			20			ns
	(Note 4)	Clear	12			20			
t _{su}	Setup Time	Mode	25			30			ns
	(Note 4)	Data	16			20			
t _H	Hold Time (Note 4)		0			0			ns
t _{REL}	Clear Release Ti	me (Note 4)	18			25			ns
T _A	Free Air Operatir	ng Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: C_L = 15 pF, T_A = 25°C and V_{CC} = 5V.

Note 3: $C_L = 50 \text{ pF}, R_L = 2 \text{ } k\Omega, T_A = 25^{\circ}\text{C} \text{ and } V_{CC} = 5\text{V}.$

Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

+

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
					(Note 5)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	54LS	2.5			V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	54LS			0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min				0.4	
l _i	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I _{IL}	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
l _{os}	Short Circuit	V _{CC} = Max	54LS	-20		-100	mA
	Output Current	(Note 6)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 7)			15	23	mA

Note 5: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: With all outputs open, inputs A through D grounded, and 4.5V applied to S0, S1, CLEAR, and the serial inputs, I_{CC} is tested with momentary ground, then 4.5V applied to CLOCK.

Switching Characteristics at V_{CC} = 5V and T_A = 25°C (See for Test Waveforms and Output Load)

		From (Input)	54	ILS	DM7			
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L =	Units		
						$R_L = 2 k\Omega$		
			Min	Max	Min	Max		
f _{MAX}	Maximum Clock		30	30			MHz	
	Frequency							
t _{PLH}	Propagation Delay Time	Clock to		21		26	ns	
	Low to High Level Output	Any Q						
t _{PHL}	Propagation Delay Time	Clock to		24		35	ns	
	High to Low Level Output	Any Q						
t _{PHL}	Propagation Delay Time	Clear to		26		38	ns	
	High to Low Output	Any Q						

+

Note 8: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 10: With all outputs open, inputs A through D grounded, and 4.5V applied to S0, S1, CLEAR, and the serial inputs, I_{CC} is tested with momentary ground, then 4.5V applied to CLOCK.

Logic Diagram

+

3

+PrintDate=1998/03/26 PrintTime=10:40:55 37023 ds006407 Rev. No. 3 cmserv Proof www.fairchildsemi.com

Function Table

	Inputs										Out	puts	
Clear	Mo	ode	Clock	Se	Serial Pa			allel		Q _A	Q _B	Qc	Q_D
	S1	S0		Left	Right	Α	в	С	D				
L	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L
н	X	Х	L	x	Х	X	Х	Х	Х	Q _{A0}	Q_{B0}	Q_{C0}	Q_{D0}
н	н	н	↑	x	Х	а	b	с	d	а	b	С	d
н	L	н	↑	x	н	X	Х	Х	Х	н	Q_{An}	Q_{Bn}	Q _{Cn}
н	L	н	↑	x	L	X	Х	Х	Х	L	Q _{An}	Q_{Bn}	Q _{Cn}
н	н	L	↑	н	Х	X	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q_{Dn}	н
н	н	L	↑	L	Х	X	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q_{Dn}	L
н	L	L	x	x	Х	X	Х	Х	х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}

+

H = High Level (steady state), L = Low Level (steady state), X = Don't Care (any input, including transitions) \uparrow = Transition from low to high level

 A_A , A_B , A_C , A_B , A_C , A_C , A_B , A_B , A_C , A_B , A_C ,

Timing Diagram

+

www.fairchildsemi.com

4

+Proof PrintDate=1998/03/26 PrintTime=10:40:55 37023 ds006407 Rev. No. 3 cmserv

Book Extract End

+

+

5

+

+

6

+

+

com

7

7

_

54LS195A/DM74LS195A 4-Bit Parallel Access Shift Register

General Description

This 4-bit register features parallel inputs, parallel outputs, J- \overline{K} serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The registers have two modes of operation:

Parallel (broadside) load

Shift (in the direction Q_{A} toward Q_{D})

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J- \overline{K} inputs. These inputs permit the first stage to perform as a J- \overline{K} , D, or T-type flip-flop as shown in the truth table.

Connection Diagram

Features

- Synchronous parallel load
- Positive-edge-triggered clocking
- Parallel inputs and outputs from each flip-flop
- Direct overriding clear
- J and K inputs to first stage
- Complementary outputs from last stage
 For use in high-performance: accumulators/processors
- serial-to-parallel, parallel-to-serial converters Typical clock frequency 39 MHz
- Typical power dissipation 70 mW

Dual-In-Line Package OUTPUTS SHIFT . Q∆ QB QC QD $\overline{\mathbf{Q}}_{\mathbf{D}}$ Vcc CLOCK LOAD 16 15 10 14 13 12 11 q 2 6 8 CLEAR ĸ с GND J в D SERIAL INPUTS PARALLEL INPUTS TL/F/6408-1 Order Number 54LS195ADMQB, 54LS195AFMQB, 54LS195ALMQB, DM74LS195AM or DM74LS195AN See NS Package Number E20A, J16A, M16A, N16E or W16A

©1995 National Semiconductor Corporation TL/F/6408

RRD-B30M105/Printed in U. S. A.

54LS195A/DM74LS195A 4-Bit Parallel Access Shift Register

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol Parameter			54LS195/	4		DM74LS19	5A	Unite	
Symbol	Falameter		Min	Nom	Max	Mir	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	4.7	5 5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Curren	t			-0.4	ł		-0.4	mA
I _{OL}	Low Level Output Current				4			8	mA
f _{CLK}	Clock Frequency (Note 1)		30		0	0		30	MHz
	Clock Frequency (Note 2)		30		0	0		25	MHz
tw	Pulse Width	Clock	16			16			ne
	(Note 3)	Clear	14			12			115
t _{SU}	Setup Time	Shift/Load	25			25			20
	(Note 3)	Data	15			15			115
t _H	Hold Time (Note 3)		0			0			ns
t _{REL}	Shift/Load Release Time	(Note 3)	10			10			-
	Clear Release Time (Note	93)	25			25			115
TA	Free Air Operating Tempe	-55		125	0		70	°C	
Electr	ical Characteristi	CS over recom	mended op	erating fre	e air tem	perature i	ange (unless	otherwise r	noted)
Symbol	Parameter		Conditio	ns		Min	Typ (Note 4)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min,	I _I = -18	mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min,	I _{OH} = Ma	x 54L	S	2.5			V
	Voltage	$V_{IL} = Max,$	$V_{IH} = Min$	DM	74LS	2.7	3.4		Ň
V _{OL}	Low Level Output	V _{CC} = Min,	I _{OL} = Max	x 54L	S			0.4	
	Voltage	$V_{IL} = Max,$	$V_{IH} = Min$	DM	74LS		0.35	0.5	v
		$I_{OL} = 4 \text{ mA}$	$V_{\rm CC} = M$	in			0.25	0.4]
I	Input Current @ Max Input Voltage	V _{CC} = Max	$x, V_{I} = 7V$					0.1	mA
I _{IH}	High Level Input Current	V _{CC} = Max	x, V∣ = 2.7V	/				20	μA
IIL	Low Level Input Current	V _{CC} = Max	$v_{\rm I} = 0.4 v_{\rm I}$	/				-0.4	mA
I _{OS}	Short Circuit	V _{CC} = Max	:	54L	S	-20		-100	mΔ
	Output Current	(Note 5)		DM	74LS	-20		-100	
Icc	Supply Current	V _{CC} = Max	, (Note 6)				14	21	mA

Note 4: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: With all inputs open, SHIFT/LOAD grounded, and 4.5V applied to the J, \overline{K} , and data inputs, I_{CC} is measured by applying a momentary ground, then 4.5V to the CLEAR and then applying a momentary ground then 4.5V to the CLOCK.

Symbol			54	LS	DM7	4LS	
	Parameter	From (Input) To (Output)	C L =	15 pF	R _L = C _L =	Units	
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		30		25		MHz
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Any Q		21		26	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Any Q		24		35	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Any Q		26		38	ns

Function Table

	Inputs									Outputs			
Clear Shift/	Shift/	hift/ Clock	Serial			Parallel				0.	00	0-	<u>0</u> _
olcal	Load	Olock	J	ĸ	Α	в	С	D	-A	αB	۹C	~D	αD
L	х	х	х	х	Х	Х	Х	Х	L	L	L	L	Н
н	L	↑	Х	Х	a	b	с	d	а	b	с	d	d
н	н	L	Х	Х	X	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}	Q _{D0}
н	н	↑	L	Н	X	Х	Х	Х	Q _{A0}	Q _{A0}	Q _{Bn}	Q _{Cn}	Q Cn
Н	н	↑	L	L	X	Х	Х	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Cn}
Н	н	↑	н	н	Х	Х	Х	Х	н	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Cn}
н	Н	↑	н	L	Х	Х	Х	Х	Q₄n	Q _{An}	Q _{Bn}	QCn	\overline{Q}_{Cn}

H = High Level (steady state), L = Low Level (steady state), X = Don't Care (any input, including transitions)

 \uparrow = Transition from low to high level

a, b, c, d = The level of steady state input at A, B, C, or D, respectively.

 $\mathsf{Q}_{A0},\,\mathsf{Q}_{B0},\,\mathsf{Q}_{C0},\,\mathsf{Q}_{D0}\,=\,\text{The level of }\mathsf{Q}_{A},\,\mathsf{Q}_{B},\,\mathsf{Q}_{C},\,\text{or }\mathsf{Q}_{D},\,\text{respectively, before the indicated steady state input conditions were established.}$

 $Q_{An},\,Q_{Bn},\,Q_{Cn}=\,\text{The level of }Q_{A},\,Q_{B},\,Q_{C}\text{, respectively, before the most recent transition of the clock.}$

Logic Diagram

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

National Semiconductor

DM74LS196 Presettable Decade Counter

General Description

The 'LS196 decade ripple counter is partitioned into divideby-two and divide-by-five sections which can be combined to count either in BCD (8421) sequence or in a bi-quinary mode producing a 50% duty cycle output. Both circuit types have a Master Reset (MR) input which overrides all other inputs and asynchronously forces all outputs LOW. A Parallel Load input (PL) overrides clocked operations and asynchronously loads the data on the Parallel Data inputs (Pn) into the flip-flops. This preset feature makes the circuits usable as programmable counters. The circuits can also be used as 4-bit latches, loading data from the Parallel Data inputs when $\overline{\text{PL}}$ is LOW and storing the data when $\overline{\text{PL}}$ is HIGH. In the counting modes, state changes are initiated by the falling edge of the clock.

Features

- High counting rates—typically 60 MHz
- Choice of counting modes—BCD, bi-quinary, binary
- Asynchronous preset and master reset

DM74LS196 Presettable Decade Counter

January 1992

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 7V

Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74LS196			Units
oyinibol		Min	Nom	Max	Unite
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{ОН}	High Level Output Current			-0.4	mA
I _{OL}	Low Level Output Current		-	8	mA
T _A	Free Air Operating Temperature	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW Pn to PL	8 12			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW Pn to PL	0 6			ns
t _w (H)	CP0 Pulse Width HIGH	12	-		ns
t _w (H)	CP1 Pulse Width HIGH	24			ns
t _w (L)	PL Pulse Width LOW	18			ns
t _w (L)	MR Pulse Width LOW	12			ns
t _{rec}	Recovery Time PL to CPn	16			ns
t _{rec}	Recovery Time MR to CPn	18			ns

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.7	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min$, $I_{OL} = Max$, $V_{IH} = Min$		0.35	0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$		0.25	0.4	v
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 5.5V, \overline{CP}1$			40	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
IOS	Short Circuit Output Current	V _{CC} = Max (Note 2)	-20		-100	mA
Icc	Supply Current	$V_{CC} = Max, V_{IN} = GND$			20	mA

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

witching Characteristics $_{C} = +5.0V, T_{A} = +25^{\circ}C$ By the second secon				
Symbol	Parameter	н _L С _L =	= 2K 15 pF	Units
		Min	Max	
f _{max}	Maximum Count Frequency at CP0	45		MHz
f _{max}	Maximum Count Frequency at CP1	22.5		MHz
t _{PLH} t _{PHL}	Propagation Delay CP0 to Q0		15 15	ns
t _{PLH} t _{PHL}	Propagation Delay CP1 to Q1		15 15	ns
t _{PLH} t _{PHL}	Propagation Delay CP1 to Q2		34 34	ns
t _{PLH} t _{PHL}	Propagation Delay CP1 to Q3		15 21	ns
t _{PLH} t _{PHL}	Propagation Delay Pn to Qn		25 35	ns
t _{PLH} t _{PHL}	Propagation Delay PL to Qn		31 37	ns
t _{PHL}	Propagation Delay MR to Qn		42	ns

Functional Description

The '196 and '197 are asynchronous presettable decade and binary ripple counters. The '196 decade counter is partitioned into divide-by-two and divide-by-five sections while the '197 is partitioned into divide-by-two and divide-by-eight sections, with all sections having a separate Clock input. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The CP0 input serves the Q0 flip-flop in both circuit types while the CP1 input serves the divide-by-five or divideby-eight section. The Q0 output is designed and specified to drive the rated fan-out plus the CP1 input. With the input frequency connected to $\overline{CP0}$ and with Q0 driving $\overline{CP1}$, the '197 forms a straight forward modulo-16 counter, with Q0 the least significant output and Q3 the most significant output.

The '196 decade counter can be connected up to operate in two different count sequences. With the input frequency connected to $\overline{CP0}$ and with Q0 driving $\overline{CP1}$, the circuit counts in the BCD (8421) sequence. With the input frequency connected to $\overline{CP1}$ and Q3 driving $\overline{CP0}$, Q0 becomes the low frequency output and has a 50% duty cycle waveform. Note that the maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section.

The '196 and '197 have an asynchronous active LOW Master Reset input (MR) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (\overline{PL}) overrides the clock inputs and loads the data from Parallel Data (P0–P3) inputs into the flip-flops. While \overline{PL} is LOW, the counters act as transparent latches and any change in the Pn inputs will be reflected in the outputs. In order for the intended parallel data to be entered and stored, the recommended setup and hold times with respect to the rising edge of \overline{PL} should be observed.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

National Semiconductor

February 1992

DM74LS197 Presettable Binary Counters

©1995 National Semiconductor Corporation TL/F/10180

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply vollage	7 V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Unito		
Symbol	Farameter	Min	Nom	Мах	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	v
IOH	High Level Output Voltage	-		-0.4	mA
I _{OL}	Low Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.7	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max, V_{IH} = Min$		0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$		0.25	0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	-20		-100	mA
Icc	Supply Current	V _{CC} = Max			27	mA

Note 1: All typicals are at V_{CC} = 5V, T_A = 25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

	Parameter	$\label{eq:RL} \begin{array}{c} & \textbf{R}_L = 2 \textbf{k} \Omega \\ \\ \textbf{Parameter} & \textbf{C}_L = 15 \textbf{pF} \end{array}$		Units
		Min	Мах	
MAX	Max CLK Frequency	55		MHz
t _{PLH} t _{PHL}	Propagation Delay		15 15	ns
^t PLH t _{PHL}	Propagation Delay CP1 to Q2		34 34	ns
t _{PLH}	Propagation Delay P2 to Q2		27 44	ns
^l PLH ^l PHI	Propagation Delay PL to Q2		39 45	ns
PLH	Propagation Delay CP1 to Q1		15 17	ns
PLH	Propagation Delay CP1 to Q3		55 63	ns
ені	Propagation Delay MR to Q3		42	ns
	┝─┼─┼┲══			<u> </u>

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

SEMICONDUCTOR IM

DM74LS221 Dual Non-Retriggerable One-Shot with Clear and Complementary Outputs

General Description

The DM74LS221 is a dual monostable multivibrator with Schmitt-trigger input. Each device has three inputs permitting the choice of either leading-edge or trailing-edge triggering. Pin (A) is an active-low trigger transition input and pin (B) is an active-high transition Schmitt-trigger input that allows jitter free triggering for inputs with transition rates as slow as 1 volt/second. This provides the input with excellent noise immunity. Additionally an internal latching circuit at the input stage also provides a high immunity to V_{CC} noise. The clear (CLR) input can terminate the output pulse at a predetermined time independent of the timing components. This (CLR) input also serves as a trigger input when it is pulsed with a low level pulse transition (). To obtain the best and trouble free operation from this device please read operating rules as well as the NSC one-shot application notes carefully and observe recommendations.

Features

- A dual, highly stable one-shot
- Compensated for V_{CC} and temperature variations

Connection Diagram

- Pin-out identical to 'LS123 (Note 1)
- Output pulse width range from 30 ns to 70 seconds
 Hysteresis provided at (B) input for added noise
- immunityDirect reset terminates output pulse
- Triggerable from CLEAR input
- DTL, TTL compatible
- Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of an external resistor (R_x) and capacitor (C_x). Once triggered, the basic pulse width is independent of further input transitions and is a function of the timing components, or it may be reduced or terminated by use of the active low CLEAR input. Stable output pulse width ranging from 30 ns to 70 seconds is readily obtainable.

Note 1: The pin-out is identical to 'LS123 but, functionally it is not; refer to Operating Rules #10 in this datasheet.

Function Table

Inputs			Out	puts
CLEAR	A	В	Q	Q
L	Х	Х	L	Н
х	н	X	L	н
х	X	L	L	н
н	L	↑	л	Υ
н	\downarrow	н	л	Υ
↑ (Note 2)	L	н	л	Υ

H = High Logic Level

- L = Low Logic Level X = Can Be Either Low or High
- C = Can be Either Low or Hig = Positive Going Transition
- ↓ = Negative Going Transition

_r∟ = A Positive Pulse

Note 2: This mode of triggering requires first the B input be set from a low to high level while the CLEAR input is maintained at logic low level. Then with the B input at logic high level, the CLEAR input whose positive transition from low to high will trigger an output pulse.

© 1998 Fairchild Semiconductor Corporation DS006409

Absolute Maximu	Im Ratings (Note 4)
-----------------	---------------------

Supply Voltage Input Voltage

 Operating Free Air Temperature Range

 DM74LS
 0°C to +70°C

 Storage Temperature Range
 -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter			DM74LS22	1	Units
			Min	Nom	Max	
V _{cc}	Supply Voltage		4.75	5	5.25	V
V _{T+}	Positive-Going Input Threshold Voltage			1	2	V
	at the A Input (V _{CC} = Min)					
V _{T-}	Negative-Going Input Threshold Voltage		0.8	1		V
	at the A Input (V _{CC} = Min)					
V _{T+}	Positive-Going Input Threshold Voltage			1	2	V
	at the B Input (V _{CC} = Min)					
V _{T-}	Negative-Going Input Threshold Voltage		0.8	0.9		V
	at the B Input (V _{CC} = Min)					
I _{он}	High Level Output Current				-0.4	mA
I _{OL}	Low Level Output Current				8	mA
t _w	Pulse Width	Data	40			ns
	(Note 3)	Clear	40			
t _{REL}	Clear Release Time (Note 3)		15			ns
dV	Rate of Rise or Fall of				1	V
dt	Schmitt Input (B) (Note 3)					s
dV	Rate of Rise or Fall of				1	V
dt	Logic Input (A) (Note 3)					μs
R _{EXT}	External Timing Resistor (Note 3)		1.4		100	kΩ
C _{EXT}	External Timing Capacitance (Note 3)		0		1000	μF
DC	Duty Cycle	R _T = 2 kΩ			50	%
	(Note 3)	$R_{T} = R_{E \times T}$ (Max)			60	
T _A	Free Air Operating Temperature		0		70	°C

7V

7V

Note 3: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Note 4: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

				i yp	IVIAN	Units
				(Note 5)		
Vi	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA			-1.5	V
V _{он}	High Level Output	V _{CC} = Min, I _{OH} = Max	2.7	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max		0.35	0.5	
	Voltage	V _{IL} = Max, V _{IH} = Min				V
		V_{CC} = Min, I_{OL} = 4 mA			0.4	
I,	Input Current @ Max	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 7V			0.1	mA
	Input Voltage					
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V			20	μA

Electr	ical Characteristics	(Continued)					
over recor	mmended operating free air tem	perature range (u	nless otherwise n	oted)			
Symbol	Parameter	Con	ditions	Min	Тур	Max	Units
					(Note 5)		
I	Low Level Input	V _{CC} = Max	A1, A2			-0.4	
	Current	$V_{I} = 0.4V$	В			-0.8	mA
			Clear			-0.8	
l _{os}	Short Circuit	V _{CC} = Max		-20		-100	mA
	Output Current	(Note 6)					
I _{cc}	Supply Current	V _{CC} = Max	Quiescent		4.7	11	mA
			Triggered		19	27	

Note 5: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at	V _{cc}	=	5V	and	T_A	=	25°(С
----	-----------------	---	----	-----	-------	---	------	---

Symbol	Parameter	From (Input)	Conditions	Min	Max	Units
		To (Output)				
t _{PLH}	Propagation Delay Time	A1, A2	C _{EXT} = 80 pF		70	ns
	Low to High Level Output	to Q	$R_{EXT} = 2 k\Omega$			
t _{PLH}	Propagation Delay Time	В	C _L = 15 pF		55	ns
	Low to High Level Output	to Q	$R_L = 2 k\Omega$			
t _{PHL}	Propagation Delay Time	A1, A2			80	ns
	High to Low Level Output	to Q				
t _{PHL}	Propagation Delay Time	В			65	ns
	High to Low Level Output	to Q				
t _{PLH}	Propagation Delay Time	Clear to			65	ns
	Low to High Level Output	Q				
t _{PHL}	Propagation Delay Time	Clear			55	ns
	High to Low Level Output	to Q				
t _{W(out)}	Output Pulse	A1, A2	C _{EXT} = 0			
	Width Using Zero	to Q, Q	$R_{EXT} = 2 k\Omega$	20	70	ns
	Timing Capacitance		$R_L = 2 k\Omega$			
			C _L = 15 pF			
t _{W(out)}	Output Pulse	A1, A2	C _{EXT} = 100 pF			
	Width Using External	to Q, Q	R _{EXT} = 10 kΩ	600	750	ns
	Timing Resistor		$R_L = 2 k\Omega$			
			C _L = 15 pF			
			C _{EXT} = 1 μF			
			R _{EXT} = 10 kΩ	6	7.5	ms
			$R_L = 2 k\Omega$			
			C _L = 15 pF			
			C _{EXT} = 80 pF			
			R _{EXT} = 2 kΩ	70	150	ns
			$R_L = 2 k\Omega$			
			C _L = 15 pF			
	•	-			•	

Operating Rules

- 1. An external resistor (R_x) and an external capacitor (C_x) are required for proper operation. The value of C_x may vary from 0 to approximately 1000 μ F. For small time constants high-grade mica, glass, polypropylene, polycarbonate, or polystyrene material capacitor may be used. For large time constants use tantalum or special aluminum capacitors. If timing capacitar has leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
- 2. When an electrolytic capacitor is used for C_X a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current. This switching diode is not needed for the 'LS221 one-shot and should not be used.

Furthermore, if a polarized timing capacitor is used on the 'LS221, the positive side of the capacitor should be connected to the " C_{EXT} " pin (*Figure 1*).

3. For C_x >> 1000 pF, the output pulse width (T_w) is defined as follows:

 $T_W = KR_X C_X$

where
$$[R_X \text{ is in } k\Omega]$$

[T_w is in ns]

- The multiplicative factor K is plotted as a function of C_x for design considerations: (See *Figure 2*).
- 5. For C_X < 1000 pF see *Figure 3* for T_W vs C_X family curves with R_X as a parameter.
- 6. To obtain variable pulse widths by remote trimming, the following circuit is recommended: (See Figure 4).
- 7. Output pulse width versus V_{CC} and temperatures: *Figure 5* depicts the relationship between pulse width variation versus V_{CC} . *Figure 6* depicts pulse width variation versus temperatures.
- 8. Duty cycle is defined as $T_W/T \times 100$ in percentage, if it goes above 50% the output pulse width will become shorter. If the duty cycle varies between low and high values, this causes output pulse width to vary, or jitter (a function of the R_{EXT} only). To reduce jitter, R_{EXT} should be as large as possible, for example, with $R_{EXT} = 100k$ jitter is not appreciable until the duty cycle approaches 90%.
- 9. Under any operating condition C_x and R_x must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I-R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_x to pins (6) and (7) or pins (14) and (15) is greater than 3 cm, for example, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_x in each cycle of its operation so that the output pulse width will be accurate.
- 10. Although the 'LS221's pin-out is identical to the 'LS123 it should be remembered that they are not functionally identical. The 'LS123 is a retriggerable device such that the output is dependent upon the input transitions when its output "Q" is at the "High" state. Furthermore, it is recommended for the 'LS123

to externally ground the C_{EXT} pin for improved system performance. However, this pin on the 'LS221 is not an internal connection to the device ground. Hence, if substitution of an 'LS221 onto an 'LS123 design layout where the C_{EXT} pin is wired to the ground, the device will not function.

11. V_{CC} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{CC} and ground return leads do not cause interaction between one-shots. A 0.01 µF to 0.10 µF bypass capacitor (disk ceramic or monolithic type) from V_{CC} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{CC} -pin as space permits.

FIGURE 2.

FIGURE 3.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS240, DM74LS241 Octal 3-STATE Buffers/Line Drivers/Line Receivers

General Description

These buffers/line drivers are designed to improve both the performance and PC board density of 3-STATE buffers/ drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to 133 Ω .

Features

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins

Connection Diagrams

- Typical I_{OL} (sink current) 54LS 12 mA 74LS 24 mA
- Typical I_{OH} (source current)
 54LS -12 mA
 74LS -15 mA
- Typical propagation delay times Inverting 10.5 ns Noninverting 12 ns
- Typical enable/disable time 18 ns
- Typical power dissipation (enabled) Inverting 130 mW Noninverting 135 mW

Order Number DM54LS241J, DM54LS241W, DM54LS241E, DM74LS241WM or DM74LS241N See Package Number E20A, J20A, M20B, N20A or W20A

© 1998 Fairchild Semiconductor Corporation DS006411

Function Tables

LS240

Inputs		Output
G A		Y
L	L	Н
L	н	L
н	Х	Z

LS241

	In	Out	puts		
G	G	1A	2A	1Y	2Y
Х	L	L	Х	L	
X	L	н	X	н	
X	н	Х	X	Z	
н	х	Х	L		L
н	Х	Х	н		н
L	х	Х	X		Z

L = Low Logic Level H = High Logic Level X = Either Low or High Logic Level Z = High Impedance

Absolute Maximum Ratings (Note 1)

DM54LS, 54LS –55°C to +125°C DM74LS 0° C to +70 $^{\circ}$ C Supply Voltage 7V -65°C to +150°C Storage Temperature Range 7V Input Voltage

Operating Free Air Temperature Range

Recommended Operating Conditions

Symbol	Parameter	DM54LS240, 241		DM74LS240, 241			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-12			-15	mA
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter		Conditions		Min	Тур	Max	Units
						(Note 2)		
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -1	3 mA				-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-})	V _{CC} = Min			0.2	0.4		V
	Data Inputs Only							
V _{OH}	High Level Output Voltage	$V_{CC} = Min, V_{IH} = N$	<i>l</i> in/	DM74	2.7			
		V _{IL} = Max, I _{OH} = -	1 mA					
		$V_{CC} = Min, V_{IH} = N$	<i>l</i> in/	DM54/DM74	2.4	3.4		V
		V _{IL} = Max, I _{OH} = -	3 mA					
		$V_{\rm CC}$ = Min, $V_{\rm IH}$ = M	/lin	DM54/DM74	2			
		V _{IL} = 0.5V, I _{OH} = N	<i>l</i> ax					
V _{OL}	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA	DM74			0.4	
		V _{IL} = Max	I _{OL} = Max	DM54			0.4	V
		V _{IH} = Min		DM74			0.5	
I _{ozh}	Off-State Output Current,	V _{CC} = Max	V _O = 2.7V	•			20	μA
	High Level Voltage Applied	V _{IL} = Max						
I _{OZL}	Off-State Output Current,	V _{IH} = Min	V _O = 0.4V				-20	μA
	Low Level Voltage Applied							
I _I	Input Current at Maximum	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 7	V (DM74)				0.1	mA
	Input Voltage	V _I = 10V (DM54)						
I _н	High Level Input Current	V_{CC} = Max, V_{I} = 2	.7V				20	μA
I _{IL}	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0	.4V				-0.2	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3	3)		-40		-225	mA
I _{cc}	Supply Current	V _{CC} = Max,	Outputs High	LS240, LS241		13	23	
		Outputs Open	Outputs Low	LS240		26	44	
				LS241		27	46	mA
			Outputs Disabled	LS240		29	50	
				LS241		32	54	
Note 2:	All typicals are at V _{CC} = 5V, T _A = 25°C.	•						

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Symbol	Parameter	Cond	Conditions		DM74LS	Units
				Max	Max	
t _{PLH}	Propagation Delay Time	C _L = 45 pF	LS240	18	14	ns
	Low to High Level Output	$R_L = 667\Omega$	LS241	18	18	
t _{PHL}	Propagation Delay Time	C _L = 45 pF	LS240	18	18	ns
	High to Low Level Output	$R_L = 667\Omega$	LS241	18	18	
t _{PZL}	Output Enable Time to	C _L = 45 pF	LS240	30	30	ns
	Low Level	$R_L = 667\Omega$	LS241	30	30	
t _{PZH}	Output Enable Time to	C _L = 45 pF	LS240	23	23	ns
	High Level	$R_L = 667\Omega$	LS241	23	23	
t _{PLZ}	Output Disable Time	C _L = 5 pF	LS240	25	25	ns
	from Low Level	$R_L = 667\Omega$	LS241	25	25	
t _{PHZ}	Output Disable Time	C _L = 5 pF	LS240	18	18	ns
	from High Level	$R_L = 667\Omega$	LS241	18	18	
t _{PLH}	Propagation Delay Time	C _L = 150 pF	LS240		18	ns
	Low to High Level Output	$R_L = 667\Omega$	LS241		21	
t _{PHL}	Propagation Delay Time	C _L = 150 pF	LS240		22	ns
	High to Low Level Output	$R_L = 667\Omega$	LS241		22	
t _{PZL}	Output Enable Time to	C _L = 150 pF	LS240		33	ns
	Low Level	$R_L = 667\Omega$	LS241		33	
t _{PZH}	Output Enable Time to	C _L = 150 pF	LS240		26	ns
	High Level	$R_1 = 667\Omega$	LS241		26	

Note 4: 54LS Output load is C_L = 50 pF for t_{PLH} , t_{PHL} , t_{PZL} and t_{PZH} .

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
ww.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

DM74LS243 Quadruple Bus Transceiver

FAIRCHILD

DM74LS243 Quadruple Bus Transceiver

General Description

This four data line transceiver is designed for asynchronous two-way communications between data buses. It can be used to drive terminated lines down to 133Ω .

Features

 Two-way asynchronous communication between data buses

Connection Diagram

Order Number DM74LS243WM or DM74LS243N See Package Number M14B or N14A

Function Table

Cor	ntrol	Data	Port
Inp	outs	Sta	atus
G AB	GBA	A	В
н	н	0	I
L	н	(Note 1)	(Note 1)
н	L	ISOL	ATED
L	L	I	0

I = Input, O = Output.

H = High Logic Level, L = Low Logic Level.

Note 1: Possibly destructive oscillation may occur if the transceivers are enabled in both directions at once.

PNP inputs reduce DC loading on bus line

Hysteresis at data inputs improves noise margin

© 1998 Fairchild Semiconductor Corporation DS006412

Absolute Maximum Ratings (Note 2)		A or B	5.5V
Supply Voltage	7V	Operating Free Air Temperature Range	
Input Voltage		DM74LS	0°C to +70°C
Any G	7V	Storage Temperature Range	-65 C 10 +150 C

Recommended Operating Conditions

Symbol	Parameter		DM74LS243			
		Min	Nom	Max		
V _{CC}	Supply Voltage	4.75	5	5.25	V	
V _{IH}	High Level Input Voltage	2			V	
V _{IL}	Low Level Input Voltage			0.8	V	
I _{он}	High Level Output Current			-15	mA	
I _{OL}	Low Level Output Current			24	mA	
T _A	Free Air Operating Temperature	0		70	°C	

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Г

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter		Conditions		Min	Typ	Max	Units
	Input Clamp Voltage	$V_{} = Min L = -18 mA$			(Note 3)	-15	V	
HYS	Hysteresis ($V_{T+} - V_{T-}$) (Data Inputs Only)	$V_{CC} = Min$	10 11/1		0.2	0.4	1.0	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, V_{IL}$ $V_{IL} = Max, I_{C}$	и _н = Min _н = –1 mA		2.7			
		$V_{CC} = Min, V_{IL}$ $V_{IL} = Max, I_{C}$	′ _{IH} = Min _{0H} = −3 mA		2.4	3.4		V
		$V_{CC} = Min, V$ $V_{IL} = 0.5V, I_{C}$	и _н = Min _{он} = Max		2			
V _{OL}	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA				0.4	
		V _{IL} = Max V _{IH} = Min	I _{OL} = Max				0.5	V
I _{OZH}	Off-State Output Current,	V _{CC} = Max	V _O = 2.7V				40	μA
	High Level Voltage Applied	V _{IL} = Max	-					
I _{OZL}	Off-State Output Current,	V _{IH} = Min	V _O = 0.4V				-200	μA
	Low Level Voltage Applied							
l _i	Input Current at Maximum	V _{CC} = Max	V _I = 5.5V	A or B			0.1	mA
	Input Voltage		$V_1 = 7V$	Any G			0.1	mA
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA	
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.2	mA	
los	Short Circuit Output Current	V _{CC} = Max (Note 4)			-40		-225	mA
I _{cc}	Supply Current	V _{CC} = Max	Outputs High			22	38	
		Outputs	Outputs Low			29	50	mA
		Open	Outputs Disa	bled		32	54	

Note 3: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Symbol	Parameter	Conditions	Min	Max	Units
PLH	Propagation Delay Time	C _L = 45 pF		18	ns
	Low to High Level Output	$R_L = 667\Omega$			
PHL	Propagation Delay Time	C _L = 45 pF		18	ns
	High to Low Level Output	$R_L = 667\Omega$			
PZL	Output Enable Time to	C _L = 45 pF		30	ns
	Low Level	$R_L = 667\Omega$			
PZH	Output Enable Time to	C _L = 45 pF		23	ns
	High Level	$R_L = 667\Omega$			
PLZ	Output Disable Time	C _L = 5 pF		25	ns
	from Low Level	$R_L = 667\Omega$			
PHZ	Output Disable Time	C _L = 5 pF		18	ns
	from High Level	$R_L = 667\Omega$			
PLH	Propagation Delay Time	C _L = 150 pF		21	ns
	Low to High Level Output	$R_L = 667\Omega$			
PHL	Propagation Delay Time	C _L = 150 pF		22	ns
	High to Low Level Output	$R_L = 667\Omega$			
PZL	Output Enable Time to	C _L = 150 pF		33	ns
	Low Level	$R_L = 667\Omega$			
PZH	Output Enable Time to	C _L = 150 pF		26	ns
	High Level	R _L = 667Ω			

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
March 1998

FAIRCHILD

DM74LS244 **Octal 3-STATE Buffers/Line Drivers/Line Receivers**

General Description

These buffers/line drivers are designed to improve both the performance and PC board density of 3-STATE buffers/ drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to 133Ω .

Features

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins

Connection Diagram

- Typical I_{OL} (sink current) . 54LS . 12 mA 74LS 24 mA
- Typical I_{OH} (source current) 54LS –12 mA 74LS –15 mA
- Typical propagation delay times Inverting 10.5 ns Noninverting 12 ns
- Typical enable/disable time 18 ns Typical power dissipation (enabled)
- Inverting 130 mW Noninverting 135 mW

Order Number 54LS244DMQB, 54LS244FMQB, 54LS244LMQB, DM74LS244WM or DM74LS244N See Package Number E20A, J20A, M20B, N20A or W20A

Function Table

Inputs		Output
G	Α	Y
L	L	L
L	Н	н
н	Х	Z

- L = Low Logic Level
- H = High Logic Level X = Either Low or High Logic Level

Z = High Impedance

© 1998 Fairchild Semiconductor Corporation DS008442

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	54LS244			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-12			-15	mA
IOL	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions			Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_1 = -$	$V_{CC} = Min, I_I = -18 \text{ mA}$			(-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-})	V _{CC} = Min	$V_{\rm CC} = Min$		0.2	0.4		V
	Data Inputs Only							
V _{OH}	High Level Output Voltage	V _{CC} = Min, V _{IH} =	= Min	DM74	2.7			
		V _{IL} = Max, I _{OH} =	= –1 mA					
		V _{CC} = Min, V _{IH} =	= Min	54LS/DM74	2.4	3.4		V
		V _{IL} = Max, I _{OH} =	= –3 mA					
		V _{CC} = Min, V _{IH} =	= Min	54LS/DM74	2			1
		V _{IL} = 0.5V, I _{OH} =	V _{IL} = 0.5V, I _{OH} = Max					
V _{OL}	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA	54LS/DM74			0.4	
		V _{IL} = Max	I _{OL} = Max	DM74			0.5	l v
		V _{IH} = Min						
I _{OZH}	Off-State Output Current,	V _{CC} = Max	V _O = 2.7V				20	μA
	High Level Voltage Applied	V _{IL} = Max						
I _{OZL}	Off-State Output Current,	V _{IH} = Min	$V_{\rm O} = 0.4 V$				-20	μA
	Low Level Voltage Applied							
I,	Input Current at Maximum	V _{CC} = Max	V _I = 7V (DM74)				0.1	mA
	Input Voltage		V _I = 10V (54LS)					
I _{IH}	High Level Input Current	V _{CC} = Max	V ₁ = 2.7V				20	μA
I _{IL}	Low Level Input Current	V _{CC} = Max	$V_{I} = 0.4V$		-0.5		-200	μA
Ios	Short Circuit Output Current	V _{CC} = Max (Not	e 3)	54LS	-50		-225	mA
				DM74	-40	1		
I _{cc}	Supply Current	V _{CC} = Max,	Outputs High			13	23	
		Outputs Open	Outputs Low			27	46	mA
			Outputs Disable	d		32	54]

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switchin at V _{cc} = 5V,	ng Characteristics				
Symbol	Parameter	Conditions	54LS Max	DM74LS Max	Units
t _{PLH}	Propagation Delay Time	C _L = 45 pF	18	18	ns
	Low to High Level Output	$R_L = 667\Omega$			
t _{PHL}	Propagation Delay Time	C _L = 45 pF	18	18	ns
	High to Low Level Output	$R_L = 667\Omega$			
t _{PZL}	Output Enable Time to	C _L = 45 pF	30	30	ns
	Low Level	$R_L = 667\Omega$			
t _{PZH}	Output Enable Time to	C _L = 45 pF	23	23	ns
	High Level	$R_L = 667\Omega$			
t _{PLZ}	Output Disable Time	C _L = 5 pF	25	25	ns
	from Low Level	$R_L = 667\Omega$			
t _{PHZ}	Output Disable Time	C _L = 5 pF	18	18	ns
	from High Level	$R_L = 667\Omega$			
t _{PLH}	Propagation Delay Time	C _L = 150 pF		21	ns
	Low to High Level Output	$R_L = 667\Omega$			
t _{PHL}	Propagation Delay Time	C _L = 150 pF		22	ns
	High to Low Level Output	$R_L = 667\Omega$			
t _{PZL}	Output Enable Time to	C _L = 150 pF		33	ns
	Low Level	$R_L = 667\Omega$			
t _{PZH}	Output Enable Time to	C _L = 150 pF		26	ns
	High Level	R _L = 667Ω			

Note 4: 54LS Output Load is $C_L = 50 \text{ pF}$ for t_{PLH} , t_{PHL} , t_{PZL} and t_{PZH} .

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

DM74LS245 3-STATE Octal Bus Transceiver

FAIRCHILD

DM74LS245 3-STATE Octal Bus Transceiver

General Description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction control (DIR) input. The enable input (\overline{G}) can be used to disable the device so that the buses are effectively isolated.

Features

 Bi-Directional bus transceiver in a high-density 20-pin package

Connection Diagram

3-STATE outputs drive bus lines directly

- PNP inputs reduce DC loading on bus lines
- Hysteresis at bus inputs improve noise margins
- Typical propagation delay times, port-to-port 8 ns
- Typical enable/disable times 17 ns
- I_{OL} (sink current)
 - 54LS 12 mA 74LS 24 mA
- I_{OH} (source current) 54LS -12 mA -15 mA
 - 74LS
- Alternate Military/Aerospace device (54LS245) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Order Number 54LS245DMQB, 54LS245FMQB, 54LS245LMQB, DM54LS245J, DM54LS245W, DM74LS245WM or DM74LS245N See Package Number E20A, J20A, M20B, N20A or W20A

Function Table

Enable G	Direction Control DIR	Operation
L	L	B data to A bus
L	Н	A data to B bus
н	Х	Isolation

H = High Level, L = Low Level, X = Irrelevant

Absolute Maximum	Ratings (Note 1)
------------------	------------------

7V
7V
5.5V

Operating Free Air Temperature Range	
DM54LS and 54LS	–55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS245		[Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-12			-15	mA
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter		Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I ₁ = -18 mA					-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-})	V _{CC} = Min			0.2	0.4		V
V _{OH}	High Level Output Voltage	V _{CC} = Min, V _{IH}	= Min	DM74	2.7			
		V _{IL} = Max, I _{OH}	= –1 mA					
		V _{CC} = Min, V _{IL}	= Min	DM54/DM74	2.4	3.4		V
		V _{IL} = Max, I _{OH}	= –3 mA					
		V _{CC} = Min, V _{IH}	= Min	DM54/DM74	2			
		V _{IL} = 0.5V, I _{OH}	= Max					
VoL	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA	DM74			0.4	
		V _{IL} = Max	I _{OL} = Max	DM54			0.4	V
		V _{IH} = Min		DM74			0.5	
I _{ozh}	Off-State Output Current,	V _{CC} = Max	V _O = 2.7V				20	μA
	High Level Voltage Applied	V _{IL} = Max	V _{IL} = Max					
I _{OZL}	Off-State Output Current,	V _{IH} = Min	$V_{\rm O} = 0.4 V$				-200	μA
	Low Level Voltage Applied							
I _I	Input Current at Maximum	V _{CC} = Max	A or B	$V_{I} = 5.5V$			0.1	mA
	Input Voltage		DIR or \overline{G}	V ₁ = 7V			0.1	
IIH	High Level Input Current	V_{CC} = Max, V_{I}	= 2.7V				20	μA
IIL.	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V					-0.2	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3)			-40		-225	mA
I _{cc}	Supply Current	Outputs High		V _{CC} = Max		48	70	
		Outputs Low				62	90	mA
		Outputs at Hi-Z				64	95	

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, not to exceed one second duration

Switch _{Vcc} = 5V,	ing Characteristics				
			DM	54/74	
Symbol	Parameter	Conditions	LS	245	Units
			Min	Max	
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output			12	ns
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output	C _L = 45 pF		12	ns
t _{PZL}	Output Enable Time to Low Level	$R_L = 667\Omega$		40	ns
t _{PZH}	Output Enable Time to High Level			40	ns
t _{PLZ}	Output Disable Time from Low Level	C _L = 5 pF		25	ns
t _{PHZ}	Output Disable Time from High Level	$R_L = 667\Omega$		25	ns
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output			16	ns
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output	C _L = 150 pF		17	ns
t _{PZL}	Output Enable Time to Low Level	$R_L = 667\Omega$		45	ns
t _{PZH}	Output Enable Time to High Level			45	ns

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS247 BCD to 7-Segment Decoder/Driver with Open-Collector Outputs

General Description

The 'LS247 has active LOW open-collector outputs guaranteed to sink 24 mA. It has the same electrial characteristics and pin connections as the 'LS47. The only difference is that

the 'LS247 will light the top bar (segment a) for numeral 6 and the bottom bar (segment d) for number 9. For detailed description and specifications please refer to the 'LS47 data sheet.

Connection Diagram

Logic Symbol	

V_{CC} = Pin 16 GND = Pin 8

Pin Names	Description
A0-A3	BCD Inputs
RBI	Ripple Blanking Input (Active LOW)
LT	Lamp Test Input (Active LOW)
BI/RBO	Blanking Input (Active LOW) or
	Ripple Blanking Output (Active LOW)
a-a	Segment Outputs (Active LOW)

© 1998 Fairchild Semiconductor Corporation DS009822

Absolute Maximum Ratings (Note 1)

Supply Voltage Input Voltage

Operating Free Air

Temperature Range

Storage Temperature Range

0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{он}	High Level Output Current BI/RBO			-50	μA
I _{OL}	Low Level Output Current			24	mA
T	Free Air Operating Temperature	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter		Conditions	s		Min	Тур	Max	Units
							(Note 2)		
VI	Input Clamp Voltage	V _{CC} = Min,	I ₁ = - 18 mA					-1.5	V
V _{OH}	High Level Output Voltage	V _{CC} = Min,	I_{OH} = Max, V_{IL} =	Max		2.4	3.4		V
IOFF	Output High Current	$V_{\rm CC} = 5.5 V$	/, V _O = 15V					250	μA
	Segment Outputs								
V _{OL}	Low Level Output Voltage	V _{CC} =	I _{OL} = Max, V _{IH}	= Min			0.35	0.5	V
		Min							
			I _{OL} = 3.2 mA		BI/RBO			0.5	
			I _{OL} = 12 mA		a –g		0.25	0.4	
			I _{OL} = 1.6 mA		BI/RBO			0.4	1
-I _I	Input Current @ Max	V _{CC} = Max	, V _I = 7V					0.1	mA
	Input Voltage								
IIH	High Level Input Current	V _{CC} = Max	, V _I = 2.7V					20	μA
I _{IL}	Low Level Input Current	V _{CC} = Max	, V _I = 0.4V	Other Input	ts			-0.4	mA
		V _{CC} = Max	\overline{E} , $V_{I} = 0.4V$ \overline{E}	BI/RBO Inp	out			-1.2	mA
I _{os}	Short Circuit Output Current	V _{CC} = Max	(Note 3)			-0.3		-2.0	mA
I _{cc}	Supply Current	V _{CC} = Max						13	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

 $V_{CC} = +5V, T_A = +25^{\circ}C$

		RL	= 2 k Ω	
Symbol	Parameter	C _L = 15 pF		Units
		Min	Max	
t _{PLH}	Propagation Delay Time		100	ns
	Low to High Level Output			
t _{PHL}	Propagation Delay Time		100	ns
	High to Low Level Output			

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconducto
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
ww.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

National Semiconductor

DM74LS248 BCD to 7-Segment Decoder with 2 k Ω Pull-Up Resistors

General Description

The 'LS248 has active HIGH outputs with internal 2 k Ω pullup resistors. It has the same electrical characteristics and pin connections as the 'LS48. The only difference is that the 'LS248 will light the top bar (segment a) for numeral 6 and the bottom bar (segment d) for numeral 9. For detailed description and specifications please refer to the 'LS48 data sheet.

© 1995 National Semiconductor Corporation TL/F/10181 RRD-B30M105/Printed in U. S. A.

February 1992

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Voltage			-0.1	mA
I _{OL}	Low Level Output Current			6	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.4			
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max, V_{IH} = Min$			0.5	V
		$I_{OL} = 3.2 \text{ mA}, V_{CC} = Min$			0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
IOS	Short Circuit Output Current	V _{CC} = Max (Note 2)	-0.3		-2.0	mA
Icc	Supply Current	V _{CC} = Max			38	mA
IOFF	Output High Current	Segment Inputs, $V_{O} = 0.85V$	-1.3			μΑ

Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

 $V_{CC} = +5.0V, T_{A} = +25^{\circ}C$

Symbol	Parameter	$R_L = 2 k\Omega$	Unite		
Gymbol	ratameter	Min	Max		
t _{PLH}	Propagation Delay Time Low to High Level Output		100	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output		100	ns	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

DM74LS249 BCD to 7-Segment Decoder with Open-Collector Outputs

©1995 National Semiconductor Corporation TL/F/10213

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current (BI/RBO)			-0.25	mA
I _{OL}	Low Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage (BI/RBO)	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, } I_{OH} = \text{Max} \\ V_{IL} &= \text{Max} \end{split}$		2.7	3.4		v
ICEX	High Level Output Current (a thru g)	$V_{CC} = Min, V_O = 5.5V$				250	μΑ
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min, } I_{OL} = \text{Max,} \\ V_{IH} &= \text{Min} \end{split}$			0.35	0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$			0.25	0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	Inputs			-0.4	mΔ
			BI/RBO			-1.2	Πυχ
IOS	Short Circuit Output Current	V _{CC} = Max (Note 2)		-0.3		-2.0	mA
Icc	Supply Current	$V_{CC} = Max, V_{IN} = 4.5V$				15	mA

Note 1: All typicals are at V_{CC} = 5V, T_A = 25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

			R _L =	= 2 k Ω				
Symbol	Parameter		C L =	15 pF			Units	
		м	Min		Max		1	
t _{PLH}	Propagation Delay Time				100			
t _{PHL}	A_n to a-g (54LS $R_L = 2 k\Omega$)				100		115	
t _{PLH}	Propagation Delay Time		100				-	
t _{PHL}	$\overline{\text{BI}}$ to a-g (54LS R _L = 6 k Ω)				100		ns	
	Numerical Designa	tions—Resultan	t Display	s				

Truth Table

Decimal				Inputs						Output	s			
or														Note
Function	LT	A ₃	A ₂	A ₁	A ₀	BI/RBO	а	b	С	d	е	f	g	
0	н	L	L	L	L	н	н	н	н	н	н	н	L	1
1	н	L	L	L	н	н	L	н	н	L	L	L	L	1
2	н	L	L	н	L	н	н	н	L	н	н	L	н	
3	н	L	L	Н	Н	н	н	Н	Н	Н	L	L	Н	
4	н	L	н	L	L	н	L	н	н	L	L	н	н	
5	н	L	н	L	н	н	н	L	н	н	L	н	н	
6	н	L	н	н	L	н	L	L	н	н	н	н	н	
7	н	L	н	н	н	н	н	н	н	L	L	L	L	
8	н	н	L	L	L	н	н	н	н	н	н	н	Н	
9	н	н	L	L	н	н	н	н	н	L	L	н	н	
10	н	н	L	н	L	н	L	L	L	н	н	L	н	
11	н	н	L	н	н	н	L	L	н	н	L	L	н	
12	н	н	н	L	L	н	L	н	L	L	L	н	н	
13	н	н	Н	L	Н	н	н	L	L	н	L	н	Н	
14	н	н	н	н	L	н	L	L	L	н	н	н	н	
15	н	н	Н	Н	н	н	L	L	L	L	L	L	L	
BI	Х	Х	Х	Х	Х	L	L	L	L	L	L	L	L	2
LT	L	х	х	Х	Х	н	н	н	н	н	н	н	Н	3

Note 1: BI/RBO is wired-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking out (BI) must be open or held at a HIGH level when output functions 0 through 15 are desired. X = input may be HIGH or LOW.

Note 2: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a LOW level, regardless of the state of any other input condition.

Note 3: When the blanking input/ripple-blanking output (BI/RBO) is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a HIGH level.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

DM74LS251 3-STATE Data Selectors/Multiplexers

General Description

These data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources, and feature a strobe-controlled 3-STATE output. The strobe must be at a low logic level to enable these devices. The 3-STATE outputs permit direct connection to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time.

Connection Diagram

Order Number DM54LS251J, DM54LS251W, DM74LS251M or DM74LS251N See Package Number J16A, M16A, N16E or W16A

Features

- 3-STATE version of LS151
- Interface directly with system bus
- Perform parallel-to-serial conversion
- Permit multiplexing from N-lines to one line
- Complementary outputs provide true and inverted data
- Maximum number of common outputs
 - 54LS 49 74LS 129
- Typical propagation delay time (D to Y) 54LS 17 ns 74LS 17 ns
- Typical power dissipation 54LS 35 mW 74LS 35 mW

Function Table

		Out	puts		
Select			Strobe	Y	w
С	в	Α	S		
Х	Х	Х	Н	Z	Z
L	L	L	L	D0	DO
L	L	н	L	D1	D1
L	н	L	L	D2	D2
L	н	н	L	D3	D3
Н	L	L	L	D4	D4
Н	L	н	L	D5	D5
Н	н	L	L	D6	D6
Н	н	н	L	D7	D7

H = High Logic Level, L = Low Logic Level,

X = Don't Care, Z = High Impedance (Off)

D0, D1...D7 = The level of the respective D input

© 1998 Fairchild Semiconductor Corporation DS006415

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS251				Units		
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-1			-2.6	mA
IOL	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.4	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.4	3.1		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
I _{OZH}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.7V					
	with High Level Output	V _{IH} = Min, V _{IL} = Max				20	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4V					
	with Low Level Output	V _{IH} = Min, V _{IL} = Max				-20	μA
	Voltage Applied						
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CC1}	Supply Current	V _{CC} = Max (Note 4)			6.1	10	mA
I _{CC2}	Supply Current	V _{CC} = Max (Note 5)			7.1	12	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC1} is measured with the outputs open, STROBE grounded, and all other inputs at 4.5V.

Note 5: $I_{\rm CC2}$ is measured with the outputs open and all inputs at 4.5V.

Switch	ing Characteristics V and T _A = 25°C								
		From (Input)		R ₁ = 667Ω					
Symbol	Parameter	to (Output)	C _L =	45 pF	C _L =	Units			
			Min	Max	Min	Max			
t _{PLH}	Propagation Delay Time	A, B, C		45		53	ns		
	Low to High Level Output	(4 Levels) to Y							
t _{PHL}	Propagation Delay Time	A, B, C		45		53	ns		
	High to Low Level Output	(4 Levels) to Y							
t _{PLH}	Propagation Delay Time	A, B, C		33		38	ns		
	Low to High Level Output	(3 Levels) to W							
t _{PHL}	Propagation Delay Time	A, B, C		33		42	ns		
	High to Low Level Output	(3 Levels) to W							
t _{PLH}	Propagation Delay Time	D		28		35	ns		
	Low to High Level Output	to Y							
t _{PHL}	Propagation Delay Time	D		28		38	ns		
	High to Low Level Output	to Y							
t _{PLH}	Propagation Delay Time	D		15		25	ns		
	Low to High Level Output	to W							
t _{PHL}	Propagation Delay Time	D		15		25	ns		
	High to Low Level Output	to W							
t _{PZH}	Output Enable Time to	Strobe		45		60	ns		
	High Level Output	to Y							
t _{PZL}	Output Enable Time to	Strobe		40		51	ns		
	Low Level Output	to Y							
t _{PHZ}	Output Disable Time from	Strobe		45			ns		
	High Level Output (Note 6)	to Y							
t _{PLZ}	Output Disable Time from	Strobe		25			ns		
	Low Level Output (Note 6)	to Y							
t _{PZH}	Output Enable Time to	Strobe		27		40	ns		
	High Level Output	to W							
t _{PZL}	Output Enable Time to	Strobe		40		47	ns		
	Low Level Output	to W							
t _{PHZ}	Output Disable Time from	Strobe		55			ns		
	High Level Output (Note 6)	to W							
t _{PLZ}	Output Disable Time from	Strobe		25			ns		
	Low Level Output (Note 6)	to W							

Note 6: C_L = 5 pF

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconducto	r Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Cen	er Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS253 3-STATE Data Selectors/Multiplexers

General Description

Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR gates. Separate output control inputs are provided for each of the two four-line sections.

The 3-STATE outputs can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

Features

■ 3-STATE version of LS153 with same pinout

Connection Diagram

- Schottky-diode-clamped transistors
- Permit multiplexing from N-lines to one line
- Performs parallel-to-serial conversion
- Strobe/output control
- High fanout totem-pole outputs
- Typical propagation delay Data to output 12 ns Select to output 21 ns
- Typical power dissipation 35 mW
- Alternate Military/Aerospace device (54LS253) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Function Table

Sel Inp	ect uts		Data I	nputs		Output Control	Output
в	Α	C0	C1	C2	C3	G	Y
Х	Х	Х	Х	Х	Х	Н	Z
L	L	L	Х	Х	Х	L	L
L	L	н	Х	Х	Х	L	н
L	н	Х	L	Х	Х	L	L
L	н	Х	н	Х	Х	L	н
н	L	Х	Х	L	Х	L	L
Н	L	х	Х	н	Х	L	н
н	н	х	Х	Х	L	L	L
н	н	х	Х	Х	н	L	н

Address Inputs A and B are common to both sections. H = High Level, L = Low Level, X = Don't Care, Z = High Impedance (off).

© 1998 Fairchild Semiconductor Corporation DS006416

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS253		DM74LS253			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-1			-2.6	mA
IOL	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.4	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.4	3.1		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54			0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74			0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74			0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
IIL	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
I _{OZH}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.7V					
	with High Level Output	V _{IH} = Min, V _{IL} = Max				20	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4					
	with Low Level Output	V _{IH} = Min, V _{IL} = Max				-20	μA
	Voltage Applied						
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CC1}	Supply Current	V _{CC} = Max (Note 4)	·		7	12	mA
I _{CC2}	Supply Current	V _{CC} = Max (Note 5)			8.5	14	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC1} is measured with all outputs open, and all the inputs grounded.

Note 5: I_{CC2} is measured with the outputs open, OUTPUT CONTROL at 4.5V and all other inputs grounded.

		From (Input)		R _L =	667 Ω		
Symbol	Parameter	To (Output)	C _L =	45 pF	C _L = 150 pF		Units
			Min	Max	Min	Max]
t _{PLH}	Propagation Delay Time	Data		25		35	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Data		20		30	ns
	High to Low Level Output	to Y					
t _{PLH}	Propagation Delay Time	Select		45		54	ns
	Low to High Level Output	to Y					
t _{PHL}	Propagation Delay Time	Select		32		44	ns
	High to Low Level Output	to Y					
t _{PZH}	Output Enable Time	Output		18		32	ns
	to High Level Output	Control to Y					
t _{PZL}	Output Enable Time	Output		23		35	ns
	to Low Level Output	Control to Y					
t _{PHZ}	Output Disable Time	Output		41			ns
	from High Level Output (Note 6)	Control to Y					
t _{PLZ}	Output Disable Time	Output		27			ns
	from Low Level Output (Note 6)	Control to Y					

L .

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

54LS256/DM74LS256 Dual 4-Bit Addressable Latch

General Description

The 'LS256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (A0, A1), an active LOW enable input (\overline{E}) and an active LOW Clear input (\overline{CL}). Each latch has a Data input (D) and four outputs (Q0–Q3).

When the Enable (\overline{E}) is HIGH and the Clear input (\overline{CL}) is LOW, all outputs (Q0–Q3) are LOW. Dual 4-channel demultiplexing occurs when the \overline{CL} and \overline{E} are both LOW. When \overline{CL} is HIGH and \overline{E} is LOW, the selected output (Q0–Q3), determined by the Address inputs, follows D. When the \overline{E} goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode (\overline{E} = LOW, \overline{CL} = HIGH), changing more than one bit of the Address (A0, A1)

could impose a transient wrong address. Therefore, this should be done only while in the memory mode ($\overline{E}=\overline{CL}=HIGH$).

Features

- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Active low common clear

54LS256/DM74LS256 Dual 4-Bit Addressable Latch

June 1989

©1995 National Semiconductor Corporation TL/F/9823

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 7V

cappi) renage	
Input Voltage	7۷
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions 54LS256 DM74LS256 Symbol Parameter Units Min Nom Мах Min Nom Max V_{CC} Supply Voltage 4.5 5 5.5 4.75 5 5.25 ٧ High Level Input Voltage VIH 2 2 ٧ VIL Low Level Input Voltage 0.7 0.8 ٧ -0.4 -0.4 High Level Output Current mΑ IOH IOL Low Level Output Current 4 8 mΑ °C Free Air Operating Temperature -55 125 0 70 T_A Setup Time HIGH, D_n to $\overline{\mathsf{E}}$ 20 t_s (H) 20 ns t_h (H) Hold Time HIGH, D_n to \overline{E} 0 0 ns Setup Time LOW, D_n to $\overline{\mathsf{E}}$ 15 15 t_s (L) ns Hold Time LOW, D_n to \overline{E} 0 0 t_h (L) ns t_s (H) Setup Time HIGH or LOW, 0 0 ns A_n to \overline{E} t_s (L) t_w (L) $\overline{\mathsf{E}}$ Pulse Width LOW 17 17 ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	h Level Output V _{CC} = Min, I _{OH} = Max 54LS		2.5			V
	Voltage	$V_{IL} = Max$	DM74	2.7	3.4		
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	54LS			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 10V$	Inputs			0.1	mA
			Ē			0.2	
I _{IH}	High Level Input Current	h Level Input Current $V_{CC} = Max, V_I = 2.7V$	Inputs			20	μΑ
			Ē			40	
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	Inputs			-0.4	mA
			Ē			-0.8	
los	Short Circuit	V _{CC} = Max	54LS	-20		-100	m۵
	Output Current	(Note 2)	DM74	-20		-100	
Icc	Supply Current	V _{CC} = Max				25	mA
Note 1: All ty Note 2: Not	picals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.	ted at a time, and the duration should	not exceed one	second.			

witching Chara	itching Characteristics				
$_{CC} = +5.0V, T_A = +2$	= $+5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for waveforms and load configurations)				
Symbol	Parameter	$\label{eq:RL} \begin{array}{l} \textbf{R}_{\textbf{L}} = \textbf{2} \textbf{k} \Omega \\ \textbf{C}_{\textbf{L}} = \textbf{15} \textbf{pF} \end{array}$	Units		
		Мах			
t _{PLH}	Propagation Delay	27	ns		
t _{PHL}	Ē to Q _n	24			
t _{PLH}	Propagation Delay	30	ns		
t _{PHL}	D _n to Q _n	20			
t _{PLH}	Propagation Delay	30	ns		
t _{PHL}	A _n to Q _n	29			
tPLH	Propagation Delay CL to Q _n	18	ns		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

54LS257A/DM54LS257B/DM74LS257B, 54LS258A/DM54LS258B/DM74LS258B TRI-STATE® Quad 2-Data Selectors/Multiplexers

General Description

These Schottky-clamped high-performance multiplexers feature TRI-STATE outputs that can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output enable circuitry is designed such that the output disable times are shorter than the output enable times.

This TRI-STATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

TL/F/6417-1 Order Number 54LS257ADMQB, 54LS257AFMQB, 54LS257ALMQB, DM54LS257BJ, DM54LS257BW, DM74LS257BM or DM74LS257BN See NS Package Number E20A, J16A, M16A, N16E or W16A

Function Table

Inputs				Outpu	t Y
Output Control	Select	A	в	LS257	LS258
Н	Х	Х	Х	Z	Z
L	L	L	Х	L	н
L	L	н	Х	Н	L
L	Н	X	L	L	н
	ы		н	н	1

TRI-STATE® is a registered trademark of National Semiconductor Corporation

©1995 National Semiconductor Corporation TL/F/6417

Features

- TRI-STATE versions LS157 and LS158 with same pinouts
- Schottky-clamped for significant improvement in A-C performance
- Provides bus interface from multiple sources in highperformance systems
- Average propagation delay from data input 12 ns
 - Typical power dissipation LS257B 50 mW
 - LS258B 35 mW
- Alternate military/aerospace devices (54LS257A/ 54LS258A) are available. Contact a National Semiconductor Sales Office/Distributor for specifications.

Order Number 54LS258ADMQB, 54LS258AFMQB, 54LS258ALMQB, DM54LS258BJ, DM54LS258BW, DM74LS258BM or DM74LS258BN See NS Package Number E20A, J16A, M16A, N16E or W16A

RRD-B30M105/Printed in U. S. A.

RI-STATE LS257A/DM54LS257B/DM74LS257B Quad 2-Data Selectors/Multiplexers 54LS258A/DM54LS258B/DM74LS258B

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS and 54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	D	DM54LS257B			DM74LS257B		
Cymbol	i arameter	Min	Nom	Max	Min	Nom	Max	Onits
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-1			-2.6	mA
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
								-

'LS257B Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				- 1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.4	3.4		v
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.4	3.1		ľ
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	v
		$I_{OL} = 12 \text{ mA}, V_{CC} = \text{Min}$	DM74		0.25	0.4	
lj –	Input Current @ Max	$V_{CC} = Max,$	Select			0.2	mΔ
	Input Voltage	$V_{I} = 7V$	Other			0.1	IIIA
I _{IH}	High Level Input	$V_{CC} = Max,$	Select			40	μA
	Current	$V_{I} = 2.7V$	Other			20	
IIL	Low Level Input	V _{CC} = Max,	Select			-0.8	mΔ
	Current	$V_{I} = 0.4V$	Other			-0.4	
I _{OZH}	Off-State Output Current with High Level Output Voltage Applied	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Max, V_{O} = 2.7V \\ V_{IH} = Min, V_{IL} = Max \end{array}$				20	μΑ
I _{OZL}	Off-State Output Current with Low Level Output Voltage Applied	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Max, V_O = 0.4V \\ V_{IH} = Min, V_{IL} = Max \end{array}$				-20	μΑ
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mΔ
	Output Current	(Note 2)	DM74	-20		-100	
Іссн	Supply Current with Outputs High	V _{CC} = Max (Note 3)			5.9	10	mA
ICCL	Supply Current with Outputs Low	V _{CC} = Max (Note 3)			9.2	16	mA
ICCZ	Supply Current with Outputs Disabled	V _{CC} = Max (Note 3)			12	19	mA

Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.

		From (Input)		R _L =	667 Ω		
Symbol	Parameter	To (Output)	C _L =	45 pF	C _L = 1	150 pF	Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Output		18		27	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Output		18		27	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Select to Output		28		35	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Select to Output		35		42	ns
t _{PZH}	Output Enable Time to High Level Output	Output Control to Y		15		27	ns
t _{PZL}	Output Enable Time to Low Level Output	Output Control to Y		28		38	ns
t _{PHZ}	Output Disable Time from High Level Output (Note 1)	Output Control to Y		26			ns
t _{PLZ}	Output Disable Time from Low Level Output (Note 1)	Output Control to Y		25			ns

Note 1: $C_L = 5 \text{ pF}.$

Recommended Operating Conditions

Symbol	Parameter	DM54LS258B			D	Units		
- Cymbol	i arameter	Min	Nom	Max	Min	Nom	Max	onita
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-1			-2.6	mA
IOL	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

'LS258B Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units	
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.4	3.4		v
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.4	3.1		1
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	v
		$I_{OL} = 12 \text{ mA}, V_{CC} = \text{Min}$	DM74		0.25	0.4	
lj	Input Current @ Max	V _{CC} = Max,	Select			0.2	mA
	Input Voltage	$V_{I} = 7V$	Other			0.1	
IIH	High Level Input	V _{CC} = Max,	Select			40	μΑ
	Current	$V_{I} = 2.7V$	Other			20	

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units	
IIL	Low Level Input	V _{CC} = Max,	Select			-0.8	mA
	Current	$V_{I} = 0.4V$	Other			-0.4	
I _{OZH}	Off-State Output Current with High Level Output Voltage Applied	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Max, V_O = 2.7V \\ V_{IH} = Min, V_{IL} = Max \end{array}$				20	μΑ
I _{OZL}	Off-State Output Current with Low Level Output Voltage Applied	$\label{eq:V_CC} \begin{split} V_{CC} &= Max, V_O = 0.4V \\ V_{IH} &= Min, V_{IL} = Max \end{split}$				-20	μΑ
I _{OS}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 2)	DM74	-20		-100	
Іссн	Supply Current with Outputs High	V _{CC} = Max (Note 3)			4.1	7	mA
ICCL	Supply Current with Outputs Low	V _{CC} = Max (Note 3)			9	14	mA
I _{CCZ}	Supply Current with Outputs Disabled	V _{CC} = Max (Note 3)			12	19	mA

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.

'LS258B Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

		From (Input)		$R_L = 667\Omega$				
Symbol	Parameter	To (Output)	C _L =	45 pF	C _L = 1	Units		
			Min	Min Max		Max		
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Output		18		27	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Output		18		27	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Select to Output		28		35	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Select to Output		35		42	ns	
t _{PZH}	Output Enable Time to High Level Output	Output Control to Y		15		27	ns	
t _{PZL}	Output Enable Time to Low Level Output	Output Control to Y		28		38	ns	
t _{PHZ}	Output Disable Time from High Level Output (Note 4)	Output Control to Y		26			ns	
t _{PLZ}	Output Disable Time from Low Level Output (Note 4)	Output Control to Y		25			ns	

Note 4: $C_L = 5 \text{ pF}.$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

March 1998

DM74LS259 8-Bit Addressable Latches

FAIRCHILD

DM74LS259 8-Bit Addressable Latches

General Description

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1-of-8 decoder or demultiplexer with active-high outputs.

Four distinct modes of operation are selectable by controlling the clear and enable inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held high (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

Connection Diagram Dual-In-Line Package V_{CC} CLEAR 16 15 13 5 6 8 с QO Q1 Q2 Q3 GND DS006418-Order Number DM54LS259E, DM54LS259J, DM54LS259W, DM74LS259M, DM74LS259WM or DM74LS259N See Package Number E20A, J16A, M16A, M16B, N16E or W16A

Active high decoder Enable/disable input

Features

Enable/disable input simplifies expansion

■ 8-Bit parallel-out storage register performs

serial-to-parallel conversion with storage

- Direct replacement for Fairchild 9334
- Expandable for N-bit applications

Asynchronous parallel clear

- Four distinct functional modes
 Typical propagation delay times: Enable-to-output 18 ns Data-to-output 16 ns Address-to-output 21 ns Clear-to-output 17 ns
- Fan-out I_{OL} (sink current) 54LS259 4 mA 74LS259 8 mA I_{OH} (source current) –0.4 mA
- Typical I_{CC} 22 mA
- .)piour (cc **__** ...,

Function Table

Inputs		Output of	Each	
		Addressed	Other	Function
Clear	Ē	Latch	Output	
н	L	D	Q _{i0}	Addressable Latch
н	н	Q _{i0}	Q _{i0}	Memory
L	L	D	L	8-Line Demultiplexer
L	Н	L	L	Clear

Latch Selection Table

S	elect Inpu	ts	Latch
С	в	Α	Addressed
L	L	L	0
L	L	Н	1
L	н	L	2
L	н	Н	3
н	L	L	4
н	L	н	5
н	н	L	6
н	н	Н	7

H = High Level, L = Low LevelD = the Level of the Data Input

 Q_{i0} = the Level of Q_i (i = 0, 1,...7, as Appropriate) before the Indicated Steady-State Input Conditions Were Established.

© 1998 Fairchild Semiconductor Corporation DS006418

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54 DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter			DM54LS2	59		DM74LS25	9	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
I _{он}	High Level Output Current				-0.4			-0.4	mA
IOL	Low Level Output Current				4			8	mA
t _w	Pulse Width	Enable	17			15			ns
	(Note 8)	Clear	17			15			
t _{s∪}	Setup Time	Data	20↑			15↑			ns
	(Notes 2, 3, 4, 8)	Select	15↓			15↓			1
t _H	Hold Time	Data	5↑			2.5↑			ns
	(Notes 2, 3, 8)	Select	0↑			2.5↑			
T _A	Free Air Operating Temp	berature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_1 = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.5			V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54			0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	V ₁ = 10V	DM54				
IIH	High Level Input	V_{CC} = Max, V_{I} = 2.7V				20	μA
	Current						
IIL.	Low Level Input	$V_{CC} = Max, V_I = 0.4V$				-0.4	
	Current						mA
	Enable	$V_{CC} = Max, V_I = 0.4V$				-0.8	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 6)	DM74	-20		-100	
I _{CC}	Supply Current	V _{CC} = Max (Note 7)			22	36	mA

Note 2: The symbols (\downarrow, \uparrow) indicate the edge of the clock pulse used for reference: \uparrow for rising edge, \downarrow for falling edge.

Note 3: Setup and hold times are with reference to the enable input.

Note 4: The select-to-enable setup time is the time before the High-to-Low enable transition that the select must be stable so that the correct latch is selected and the others not affected.

Note 5: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: I_{CC} is measured with all inputs at 4.5V, and all outputs open.

Note 8: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Switcl at V _{cc} = {	hing Characteristics 5V and T _A = 25°C						
	Parameter	From (Input)	DM	DM54LS		DM74LS	
Symbol			C _L = 15 pF		C _L = 50 pF R _L = 2 kΩ		Units
		To (Output)					
		-	Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Enable to		27		38	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Enable to		24		32	ns
	High to Low Level Output	Output					
t _{PLH}	Propagation Delay Time	Data to		30		35	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Data to		20		30	ns
	High to Low Level Output	Output					
t _{PLH}	Propagation Delay Time	Select to		30		41	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Select to		29		38	ns
	High to Low Level Output	Output					
t _{PHL}	Propagation Delay Time	Clear to		18		36	ns
	High to Low Level Output	Output					

© 1998 Fairchild Semiconductor Corporation DS009824

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS260			DM74LS260			Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = - 18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7			1
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54			0.4	
	Voltage	V _{IH} = Min	DM74			0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74			0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	•			0.1	mA
	Input Voltage	$V_{I} = 10V$	DM54				
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	DM54			-0.40	mA
			DM74			-0.36	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 2)	DM74	-20		-100	
I _{CCH}	Supply Current with Outputs High	V _{CC} = Max, V _{IN} = GND				4.0	mA
I _{CCL}	Supply Current with Outputs Low	V _{CC} = Max, V _{IN} = Open				5.5	mA

Note 2: All typicals are at V_{CC} = 5V, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$V_{CC} = +5V, T_A = +25^{\circ}C$

Symbol	Parameter	R _L = 2 kΩ,	R _L = 2 kΩ, C _L = 15 pF		
		Min	Max		
t _{PLH}	Propagation Delay Time		10	ns	
	Low to High Level Output				
t _{PHL}	Propagation Delay Time		12	ns	
	High to Low Level Output				

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM74LS266 Quad 2-Input Exclusive-NOR Gate with Open-Collector Outputs

Absolute Maximum Ratings (Note 1)

Supply Voltage	7V 7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
V _{OH}	High Level Output Voltage			5.5	V
I _{OL}	Low Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA			-1.5	V
ICEX	High Level Output	$V_{\rm CC}$ = Min, $V_{\rm O}$ = 5.5V,			100	μA
	Current	V _{IL} = Max				
V _{OL}	Low Level Output	V_{CC} = Min, I_{OL} = Max,			0.5	
	Voltage	V _{IH} = Min				V
		I_{OL} = 4 mA, V_{CC} = Min			0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$			0.2	mA
	Input Voltage					
I _{IH}	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$			40	μA
I	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$			-0.8	mA
l _{os}	Short Circuit	V _{CC} = Max	-20		-100	mA
	Output Current	(Note 3)				
I _{cc}	Supply Current	V _{CC} = Max			13	mA

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	R _L = C _L =	Units	
		Min	Max	
t _{PLH}	Propagation Delay Time		23	ns
	Low to High Level Output			
t _{PHL}	Propagation Delay Time		23	ns
	High to Low Level Output			

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
ww.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

SEMICONDUCTOR TM

DM74LS273 8-Bit Register with Clear

General Description

The 'LS273 is a high speed 8-bit register, consisting of eight D-type flip-flops with a common Clock and an asynchronous active LOW Master Reset. This device is supplied in a 20-pin package featuring 0.3 inch row spacing.

Features

- Edge-triggered
- 8-bit high speed register
- Parallel in and out
- Common clock and master reset

Connection Diagram

Order Number DM54LS273E, DM54LS273J, DM54LS273W, DM74LS273M or DM74LS273N See Package Number E20A, J20A, M20B, N20A or W20A

Pin	Description				
Names					
CP	Clock Pulse Input (Active Rising Edge)				
D0-D7	Data Inputs				
MR	Asynchronous Master Reset Input				
	(Active LOW)				
Q0-Q7	Flip-Flop Outputs				

DM74LS273 8-Bit Register with Clear

© 1998 Fairchild Semiconductor Corporation DS009825

Absolute Maximum Ra	tings (Note 1)
---------------------	----------------

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		DM54LS2	73	DM74LS273		3	Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H)	Setup Time HIGH or LOW	15			15			ns
t _s (L)	D _n to CP	15			15			
t _h (H)	Hold Time HIGH or LOW	5			5			ns
t _h (L)	D _n to CP	5			5			
t _w (H)	CP Pulse Width HIGH or LOW	20			20			ns
t _w (L)		20			20			
t _w (L)	MR Pulse Width LOW	20			20			ns
t _{rec}	Recovery Time	15			15			ns
	MR to CP							

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
					(Note 2)		
Vi	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V_{CC} = Min, I_{OH} = Max,	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
Vol	Low Level Output	V_{CC} = Min, I_{OL} = Max,	DM54			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage	V _I = 10V (DM54)					
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max				27	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

$V_{\rm CC} = +5.0V,$	A =+25°C					
			C _∟ =	15 pF		
Symbol	Parameter	DM	DM54LS DM74LS		'4LS	Units
				R _L =	2 k Ω	
		Min	Max	Min	Max	
f _{max}	Maximum Clock Frequency	30		30		MHz
t _{PLH}	Propagation Delay		24		24	ns
t _{PHL}	CP to Q _n		24		24	
t _{PLH}	Propagation Delay		27		27	ns
	MR to Q _n					

Functional Description

The 'LS273 is an 8-bit parallel register with a common Clock and common Master Reset. When the MR input is LOW, the Q outputs are LOW, independent of the other inputs. Infor-mation meeting the setup and hold time requirements of the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock input.

Truth Table

	Inputs	Outputs	
MR	СР	Dn	Q _n
L	Х	Х	L
Н	~	н	н
н	~	L	L

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Logic Symbol

V_{CC} = Pin 20 GND = Pin 10

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

DM74LS279 Quad S -R Latches

latches have an additonal \overline{S} input ANDed with the primary \overline{S} Features input. A low on any \overline{S} input while the \overline{R} input is high will be ■ Alternate military/aerospace device (54LS279) is stored in the latch and appear on the corresponding Q output as a high. A low on the \overline{R} input while the \overline{S} input is high will available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications. clear the Q output to a low. Simultaneous transistion of the \overline{R} **Connection Diagram Dual-In-Line Package** 4S 4Q 3<u>\$</u>2 351 4R ЗŔ 30 16 15 14 13 12 10 2 4 5 6 8 1 3 1Ř 1<u>5</u>1 1<u>5</u>2 1Q 2R 2S 2Q GND Order Number 54LS279DMQB, 54LS279FMQB, 54LS279LMQB, DM54LS279J, DM74LS279M or DM74LS279N See Package Number E20A, J16A, M16A, N16E or W16A **Function Table** Inputs Output S (Note 2) R Q L L H (Note 1) L. н н н L 1 Н н Q_0 H = High Level L = Low Level Q0 = The Level of Q before the indicated input conditions were established. Note 1: This output level is pseudo stable; that is, it may not persist when the S and R inputs return to their inactive (high) level. Note 2: For latches with double S inputs: $H = both \overline{S}$ inputs high L = one or both \overline{S} inputs low

© 1998 Fairchild Semiconductor Corporation DS006420

DM74LS279

Quad S -R Latches

The 'LS279 consists of four individual and independent

Set-Reset Latches with active low inputs. Two of the four

General Description

www.fairchildsemi.com

and \overline{S} inputs from low to high will cause the Q output to be in-

determinate. Both inputs are voltage level triggered and are

not affected by transition time of the input data.

March 1998

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range

–55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS279			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 4)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.5		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.5		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$	·			0.1	mA
	Input Voltage						
I _{IH}	High Level Input	V _{CC} = Max, V _I = 2.7V				20	μA
	Current						
I _{IL}	Low Level Input	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
	Current						
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 5)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 6)			3.8	7	mA

Note 4: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: I_{CC} is measured with all \overline{R} inputs grounded, all \overline{S} inputs at 4.5V and all outputs open.

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

Demonster						
Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
		Min	Max	Min	Max	1
opagation Delay Time	S to		22		25	ns
ow to High Level Output	Q					
opagation Delay Time	S to		15		23	ns
gh to Low Level Output	Q					
	opagation Delay Time w to High Level Output opagation Delay Time gh to Low Level Output	opagation Delay Time \$\overline{S}\$ to w to High Level Output Q opagation Delay Time \$\overline{S}\$ to gh to Low Level Output Q	Min opagation Delay Time \$\overline{S}\$ to w to High Level Output Q opagation Delay Time \$\overline{S}\$ to gh to Low Level Output Q	Min Max opagation Delay Time \$\overline{S}\$ to 22 w to High Level Output Q 15 opagation Delay Time \$\overline{S}\$ to 15 gh to Low Level Output Q 15	Min Max Min opagation Delay Time \$\overline{S}\$ to 22 \$\overline{S}\$ \$\overline{S}\$	MinMaxMinMaxopagation Delay Time\$\overline{S}\$ to2225w to High Level OutputQ1523opagation Delay Time\$\overline{S}\$ to1523gh to Low Level OutputQ1523

Switching Characteristics (Continued)

at V_{CC} = 5V and T_A = 25°C

		From (Input)					
Symbol	Parameter	To (Output)	С _L = 15 рF		C _L = 50 pF		Units
			Min	Max	Min	Max	
t _{PHL}	Propagation Delay Time	R to		27		33	ns
	High to Low Level Output	Q					

4

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

DM74LS283 4-Bit Binary Adders with Fast Carry

General Description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Features

Full-carry look-ahead across the four bits

Connection Diagram

- Systems achieve partial look-ahead performance with the economy of ripple carry
- Typical add times
 Two 8-bit words 25 ns
 - Two 16-bit words 45 ns
- Typical power dissipation per 4-bit adder 95 mW

Office/Distributor for specifications.

 Alternate Military/Aerospace device (54LS283) is available. Contact a Fairchild Semiconductor Sales

Order Number 54LS283DMQB, 54LS283FMQB, 54LS283LMQB, DM54LS283J, DM54LS283W, DM74LS283M or DM74LS283N See Package Number E20A, J16A, M16A, N16E or W16A

© 1998 Fairchild Semiconductor Corporation DS006421

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS283			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter Conditions		Min	Тур	Max	Units	
					(Note 2)		
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	V _{CC} = Max	A, B			0.2	mA
	Input Voltage	$V_1 = 7V$	C0			0.1	
IIH	High Level Input	V _{CC} = Max	A, B			40	μA
	Current	V ₁ = 2.7V	C0			20	
I	Low Level Input	V _{CC} = Max	A, B			-0.8	mA
	Current	$V_1 = 0.4V$	C0			-0.4	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current		DM74	-20		-100	
I _{CC1}	Supply Current	V _{CC} = Max (Note 4)	•		19	34	mA
I _{CC2}	Supply Current	V _{CC} = Max (Note 5)			22	39	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC1} is measured with all outputs open, all B inputs low and all other inputs at 4.5V, or all inputs at 4.5V.

Note 5: $I_{CC2} \mbox{ is measured with all outputs open and all inputs grounded.}$

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L = 50 pF		Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	C0 to		24		28	ns
	Low to High Level Output	Σ1, Σ2					
t _{PHL}	Propagation Delay Time	C0 to		24		30	ns
	High to Low Level Output	Σ1, Σ2					
t _{PLH}	Propagation Delay Time	C0 to		24		28	ns
	Low to High Level Output	Σ3					
t _{PHL}	Propagation Delay Time	C0 to		24		30	ns
	High to Low Level Output	Σ3					
t _{PLH}	Propagation Delay Time	C0 to		24		28	ns
	Low to High Level Output	Σ4					
t _{PHL}	Propagation Delay Time	C0 to		24		30	ns
	High to Low Level Output	Σ4					
t _{PLH}	Propagation Delay Time	A _i or B _i		24		28	ns
	Low to High Level Output	to Σ_i					
t _{PHL}	Propagation Delay Time	A _i or B _i		24		30	ns
	High to Low Level Output	to Σ_i					
t _{PLH}	Propagation Delay Time	C0 to		17		24	ns
	Low to High Level Output	C4					
t _{PHL}	Propagation Delay Time	C0 to		17		25	ns
	High to Low Level Output	C4					
t _{PLH}	Propagation Delay Time	A _i or B _i		17		24	ns
	Low to High Level Output	to C4					
t _{PHL}	Propagation Delay Time	A _i or B _i		17		26	ns
	High to Low Level Output	to C4					

Function Table

						Out	puts		
	Input			When C0 =	=L		When C0 =	= H	
					W	nen C2 = L		Wh	nen C2 = H
A1 /	B1	A2	B2	Σ1	Σ2	C2	Σ1	Σ2	C2 /
A3	В3	A4	B4	Σ3	Σ4	C4	Σ3	Σ4	C4
L	L	L	L	L	Ĺ	L	н	L	L
н	L	L	L L	н	L	L	L	н	L L
L	н	L	L L	н	L	L	L	н	L
н	н	L	L	L	н	L	н	н	L
L	L	н	L L	L	н	L	н	н	L L
н	L	н	L	н	н	L	L	L	н
L	н	н	L	н	н	L	L	L	н
н	н	н	L	L	L	н	н	L	н
L	L	L	н	L	н	L	н	н	L
н	L	L	Н	н	н	L	L	L	н
L	н	L	н	н	н	L	L	L L	н
н	Н	L	н	L L	L	н	н	L	н
L	L	н	н	L	L	н	н	L	н
н	L	н	н	н	L	н	L	н	н
L	н	н	Н	н	L	н	L	н	н
н	н	н	н	L	н	н	н	н	н

H = High Level, L = Low Level

Note 6: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs Σ 1 and Σ 2 and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs Σ 3, Σ 4, and C4.

6

L Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

DM74LS290 4-Bit Decade Counter

General Description

The 'LS290 counter is electrically and functionally identical to the 'LS90. Only the arrangement of the terminals has been changed for the 'LS290.

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five.

This counter has a gated zero reset and gated set-to-nine inputs for use in BCD nine's complement applications.

To use the maximum count length (decade) of this counter, the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are as de-

scribed in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the 'LS290 counter by connecting the Q_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_A .

Features

- GND and V_{CC} on Corner Pins
- (Pins 7 and 14 respectively) ■ Typical power dissipation 45 mW
- Typical power dissipation 45 fr
 Count frequency 42 MHz

© 1995 National Semiconductor Corporation

TL/F/6422

RRD-B30M105/Printed in U. S. A.

DM74LS290 4-Bit Decade Counter

May 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply vollage	/ V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter			DM74LS290		Unite
Symbol	Falameter		Min	Nom	Max	
V _{CC}	Supply Voltage		4.75	5	5.25	V
VIH	High Level Input Voltage		2			V
VIL	Low Level Input Voltage				0.8	V
I _{OH}	High Level Output Current	:			-0.4	mA
I _{OL}	Low Level Output Current				8	mA
f _{CLK}	Clock Freq. (Note 1)	A to Q _A	0		32	MHz
		B to Q _B	0		16	
f _{CLK}	Clock Freq. (Note 2)	A to Q _A	0		20	MHz
		B to Q _B	0		10	
tw	Pulse Width (Note 6)	A	15			
		В	30			ns
		Reset	15			
t _{REL}	Reset Release Time (Note	e 6)	25			ns
T _A	Free Air Operating Tempe	rature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Typ (Note 3)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OH} = \text{Max} \\ V_{IL} &= \text{Max}, \text{V}_{IH} = \text{Min} \end{split}$		2.7	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$			0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$			0.25	0.4	
lı	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Reset			0.1	
	Input Voltage		А			0.2	mA
			В			0.4	
IIH	High Level Input	$V_{CC} = Max, V_I = 2.7V$	Reset			20	
	Current		А			40	μA
			В			80	
۱ _{IL}	Low Level Input	V _{CC} = Max	Reset			-0.4	
Current	Current	Current $V_{I} = 0.4V$	А			-2.4	mA
			В			-3.2	
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 4)		-20		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 5)			9	15	mA

Symbol		F	$R_L = 2 k\Omega$				
	Parameter	From (Input)	C _L =	15 pF	C _L = 50 pF		Units
		To (Output)	Min	Max	Min	Max	1
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to QB	16		10		101112
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _A		16		23	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _A		18		30	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _D		48		60	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _D		50		68	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _B		16		23	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _B		21		35	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _C		32		48	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _C		35		53	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _D		32		48	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _D		35		53	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	SET-9 to Q _A , Q _D		30		38	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	SET-9 to Q _B , Q _C		40		53	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		53	ns

Note 3: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 5: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded. Note 6: T_{A} = 25°C and V_{CC} 5V.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

DM74LS293 4-Bit Binary Counter

General Description

The 'LS293 counter is electrically and functionally identical to the 'LS93. Only the arrangement of the terminals has been changed for the 'LS293.

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-eight.

All of these counters have a gated zero reset.

To use the maximum count length (four-bit binary) of these counters, the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table.

Features

- GND and V_{CC} on Corner Pins (Pins 7 and 14 respectively)
- Typical power dissipation 45 mW
- Count frequency 42 MHz

Connection Diagram

© 1995 National Semiconductor Corporation TL/F/6423

RRD-B30M105/Printed in U. S. A.

DM74LS293 4-Bit Binary Counter

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Vollage	/ V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parame	tor		DM74LS293		Unite
Symbol	Falanc		Min	Nom	Max	
V _{CC}	Supply Voltage		4.75	5	5.25	V
VIH	High Level Input Voltag	High Level Input Voltage				V
VIL	Low Level Input Voltage	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Curre	ent			-0.4	mA
I _{OL}	Low Level Output Curre	ent			8	mA
f _{CLK}	Clock Frequency	A to Q _A	0		32	MHz
	(Note 1)	B to Q _B	0		16	
f _{CLK}	Clock Frequency	A to Q _A	0		20	MHz
	(Note 2)	B to Q _B	0		10	
tw	Pulse Width	A	15			
	(Note 6)	В	30			ns
		Reset	15			
t _{REL}	Reset Release Time (N	Reset Release Time (Note 6)				ns
T _A	Free Air Operating Tem	perature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$\begin{array}{l} V_{CC} = \text{Min, I}_{OH} = \text{Max} \\ V_{IL} = \text{Max, V}_{IH} = \text{Min} \end{array}$		2.7	3.4		V
V _{OL}	Low Level Output Voltage	$\begin{array}{l} V_{CC} = \text{Min}, \text{I}_{OL} = \text{Max} \\ V_{IL} = \text{Max}, \text{V}_{IH} = \text{Min} \end{array}$			0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$			0.25	0.4	
l _l	Input Current @ Max	V _{CC} = Max	Reset			0.1	
	Input Voltage	$V_{I} = 7V$	А			0.2	mA
			В			0.2	
I _{IH}	High Level Input	$V_{CC} = Max$ $V_1 = 2.7V$	Reset			20	
	Current		А			40	μΑ
			В			40	
۱ _{IL}	Low Level Input	V _{CC} = Max	Reset			-0.4	
	Current	$V_{I} = 0.4V$	Α			-2.4	mA
			В			-1.6	
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 4)		-20		-100	mA
	Supply Current	$V_{CC} = Max$ (Note 5)			9	15	mA

Symbol		From (Input)	$R_L = 2 k\Omega$				
	Parameter		C _L =	15 pF	C _L = 50 pF		Units
		i o (output)	Min	Max	Min	Max	
t _{MAX}	Maximum Clock	A to Q _A	32		20		MH7
	Frequency	B to Q _B	16		10		1411 12
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _A		16		23	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _A		18		30	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _D		70		87	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _D		70		93	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _B		16		23	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _B		21		35	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _C		32		48	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _C		35		53	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _D		51		71	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _D		51		71	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		53	ns

Note 1: $C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$. Note 2: $C_L = 50 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ and $V_{CC} = 5\text{V}$.

Note 3: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 5: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded. Note 6: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

General Description

The 'LS295A is a 4-bit shift register with serial and parallel synchronous operating modes, and independent TRI-STATE output buffers. The Parallel Enable input (PE) controls the shift-right or parallel load operation. All data transfers and shifting occur synchronous with the HIGH-to-LOW clock transition.

The TRI-STATE output buffers are controlled by an active HIGH Output Enable input (OE). Disabling the output buffers does not affect the shifting or loading of input data, but it does inhibit serial expansion. The device is fabricated with the Schottky barrier diode process for high speed.

Features

- Fully synchronous serial or parallel data transfers
- Negative edge-triggered clock input
- Parallel enable mode control input
- TRI-STATE bussable output buffers

© 1995 National Semiconductor Corporation TL/F/10183

RRD-B30M105/Printed in U. S. A.

April 1992

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS295A			DM74LS295A			
Symbol	Farameter	Min	Nom	Max	Min	Nom	Max	2	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High Level Input Voltage	2			2			V	
VIL	Low Level Input Voltage			0.7			0.8	V	
IOH	High Level Output Current			-1.0			-2.6	mA	
I _{OL}	Low Level Output Current			4			8	mA	
T _A	Free Air Operating Temperature	-55		125	0		70	°C	
t _s (H) t _s (L)	Setup Time HIGH or LOW D_S , P_n to \overline{CP}	20 20			20 20			ns	
t _h (H) t _h (L)	Hold Time HIGH or LOW D _S , P _n to CP	10 10			10 10			ns	
t _s (H) t _s (L)	Setup Time HIGH or LOW PE to CP	20 20			20 20			ns	
t _h (H) t _h (L)	Hold Time HIGH or LOW PE to CP	0			0 0			ns	
t _w (L)	CP Pulse Width LOW	20			20			ns	

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units	
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max,$	DM54	2.4			v
	Voltage	V _{IL} = Max	DM74	2.4			
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	DM54			0.4	
	Voltage	V _{IH} = Min	DM74			0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74			0.4	
I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$ $V_I = 10V (DM54)$				0.1	mA
Ін	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μA
IL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
os	Short Circuit	V _{CC} = Max	DM54	-20		-100	mΑ
	Output Current	(Note 2)	DM74	-20		-100	
СС	Supply Current Outputs ON	$V_{CC} = Max, P_n = GND$ PE, DS, OE = 4.5V, $\overline{CP} = \overline{\ }$				23	mA
	Outputs OFF	$V_{CC} = Max, PE, DS = 4.5V$ P _n , OE, $\overline{CP} = GND$				25	mA

ymbol		Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
OZH Off-S with F Volta		ate Output Current igh Level Output le Applied	$\label{eq:VC} \begin{array}{l} V_{CC} = Max, V_O = 2.7V \\ V_{IH} = Min, V_{IL} = Max \end{array}$				20	μΑ
OZL	Off-Sta with Lo Voltag	ate Output Current ow Level Output le Applied	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Max, V_O = 0.4V \\ V_{IH} = Min, V_{IL} = Max \end{array}$				-20	μΑ
Note 2: Not n Switch	nore than or	he output should be shorted haracteristic	d at a time, and the d ${\sf S}$ V _{CC} $=$ $+5.0$ V	uration should not exceed $r_A = +25^{\circ}C$	one second.			
lote 2: Not n Switch Symbo	nore than or	haracteristic	d at a time, and the d S $V_{CC} = +5.0V$	$T_{A} = +25^{\circ}C$	bone second. $\mathbf{k}_{L} = 2 \mathbf{k} \Omega,$ $\mathbf{k}_{L} = 15 \mathbf{pF}$			Jnits
Note 2: Not n Switch Symbo	nore than or	haracteristic: Parame	d at a time, and the d ${f S}$ V _{CC} = $+5.0$ V eter	T _A = +25°C	bone second. $R_L = 2 k\Omega,$ $R_L = 15 pF$	Max		Jnits
Note 2: Not n Switch Symbo f _{max}	hing C	haracteristic Parame Maximum Shift	d at a time, and the d $\mathbf{S} V_{CC} = +5.0V$ eter Frequency	$T_{A} = +25^{\circ}C$ F_{C} Min 30	$h_{L} = 2 k_{\Omega},$ $h_{L} = 15 \text{ pF}$	Max		Units MHz
Symbo fmax tPLH tPHL	hing C	Maximum Shift Propagation De CP to Q _n	d at a time, and the d S $V_{CC} = +5.0V$ eter Frequency elay	T _A = +25°C F C Min 30	$h_{L} = 2 k\Omega,$ $h_{L} = 15 \text{ pF}$	Max 30 26		Jnits MHz ns
Note 2: Not n Switch Symbo fmax tPLH tPHL tPZH tPZL	hing C	Maximum Shift Propagation De CP to Qn Output Enable	d at a time, and the d $\mathbf{S} V_{CC} = +5.0V$ eter Frequency elay Time	T _A = +25°C F C Min 30	he second. h _L = 2 kΩ, h _L = 15 pF	Max 30 26 18 20		Jnits MHz ns

Functional Description

This device is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial Data (D_S) and four Parallel Data (P0–P3) inputs and four parallel TRI-STATE output buffers (O0–O3). When the Parallel Enable (PE) input is HIGH, data is transferred from the Parallel Data inputs (P0–P3) into the register synchronous with the HIGH-to-LOW transition of the Clock (CP). When the PE is LOW, a HIGH-to-LOW transition on the clock transfers the serial data on the D_S input to the register Q0, and shifts data from Q0 to Q1, Q1 to Q2 and Q2 to Q3. The input data and parallel enable are fully edge-triggered and must be stable only one setup time before the HIGH-to-LOW clock transition.

The TRI-STATE output buffers are controlled by an active HIGH Output Enable input (OE). When the OE is HIGH, the four register outputs appear at the O0–O3 outputs. When OE is LOW, the outputs are forced to a high impedance OFF state. The TRI-STATE output buffers are completely independent of the register operation, i.e., the input transitions on the OE input do not affect the serial or parallel data transfers of the register. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRI-STATE devices whose outputs are tied together are designed so there is no overlap.

Mode Select Table

Operating	Inputs				Outputs			
Mode	PE	CP	D_{S}	Pn	Q0	Q1	Q2	Q3
Shift Right	 	\sim	l h	X X	L H	q ₀ q ₀	q ₁ q ₁	q ₂ q ₂
Parallel Load	h		х	pn	p0	p1	p2	р3

*The indicated data appears at the Q outputs when OE is HIGH. When OE is LOW, the indicated data is loaded into the register, but the outputs are all forced to the high impedance OFF state.

 p_n (q_n) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH-to-LOW clock transition.

 $\mathsf{I}=\mathsf{LOW}$ Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.

h = HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

March 1998

FAIRCHILD

DM74LS298 Quad 2-Port Register Multiplexer with Storage

General Description

The 'LS298 is a quad 2-port register. It is the logical equivalent of a quad 2-input multiplexer followed by a quad 4-bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources). The selected data is transferred to the output register synchronous with the HIGH-to-LOW transition of the Clock input.

Features

- Select from two data sources
- Fully edge-triggered operation
- Typical power dissipation of 65 mW

Connection Diagram

Logic Symbol

GND = Pin 8

Order Number DM54LS298J, DM54LS298W, DM74LS298M or DM74LS298N See Package Number J16A, N16E or W16A

Pin	Description					
Names						
S	Common Select Inputs					
CP	Clock Pulse Input (Active Falling Edge)					
10 _a , 10 _d	Source 0 Data Inputs					
11 _a , 11 _d	Source 1 Data Inputs					
Q _a , Q _d	Flip-Flip Outputs					

DM74LS298 Quad 2-Port Register Multiplexer with Storage

© 1998 Fairchild Semiconductor Corporation DS009826

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter DM54LS298				Units			
		Min	Nom	Max	Min	Nom	Max	1
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H)	Setup Time HIGH or LOW	25			25			ns
t _s (L)	S to CP	25			25			
t _h (H)	Hold Time HIGH or LOW	0			0			ns
t _h (L)	S to CP	0			0			
t _s (H)	Setup Time HIGH or LOW	15			15			ns
t _s (L)	10_x or 11_x to \overline{CP}	15			15			
t _h (H)	Hold Time HIGH or LOW	5.0			5.0			ns
t _h (L)	10_x or 11_x to \overline{CP}	5.0			5.0			
t _w (H)	CP Pulse Width HIGH or LOW	20			20			ns
t _w (L)		20			20			

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	V ₁ = 10V	DM54]			
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
I	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CC}	Supply Current	$V_{\rm CC} = Max, 10_{\rm n}, 11_{\rm n},$				21	mA
		S = GND, CP = ~_					

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at V_{cc} = +5V and T_A = +25°C						
Symbol	Parameter	R _L = 2 kΩ	, C _L = 15 pF	Units		
		Min	Max			
t _{PLH}	Propagation Delay Time					
	Low to High Level Output		25	ns		
	CP to Q _n					
t _{PHL}	Propagation Delay Time					
	High to Low Level Output		25	ns		
	\overline{CP} to Q_n					

Functional Description

Logic Diagram

This device is a high speed quad 2-port register. It selects four bits of data from two sources (ports) under the control of a Common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input (\overline{CP}). The 4-bit output register is fully edge-triggered. The Data inputs (I_{nx}) and Select input (S) need be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predictable operation.

Truth Table

	Inputs		Output
s	10 _x	l1 _x	Q _x
Ι	I	Х	L
I	h	х	н
h	х	I	L
h	Х	h	н

I = LOW Voltage Level one setup time prior to the HIGH-to-LOW clock transition. h = HIGH Voltage Level one setup time prior to the HIGH-to-LOW clock tran-

sition. H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

March 1998

FAIRCHILD

SEMICONDUCTOR IM

DM74LS299 8-Input Universal Shift/Storage Register with Common Parallel I/O Pins

General Description

The 'LS299 is an 8-bit universal shift/storage register with 3-STATE outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Separate outputs are provided for flip-flops Q0 and Q7 to allow easy cascading. A separate active LOW Master Reset is used to reset the register.

Features

- Common I/O for reduced pin count
- Four operation modes: shift left, shift right, load and store
- Separate shift right serial input and shift left serial input for easy cascading
- 3-STATE outputs for bus oriented applications

Connection Diagram

Order Number DM54LS299E, DM54LS299J, DM54LS299W, DM74LS299WM or DM74LS299N See Package Number E20A, J20A, M20B, N20A or W20A

Pin	Description						
Names							
СР	Clock Pulse Input (Active Rising Edge)						
D _{S0}	Serial Data Input for Right Shift						
D _{S7}	Serial Data Input for Left Shift						
S0, S1	Mode Select Inputs						
MR	Asynchronous Master Reset Input (Active LOW)						
<u>OE</u> 1, <u>OE</u> 2	3-STATE Output Enable Inputs (Active LOW)						
I/O0–I/O7	Parallel Data Inputs or 3-STATE Parallel Outputs						
Q0–Q7	Serial Outputs						

DM74LS299 8-Input Universal Shift/Storage Register with Common Parallel I/O Pins

© 1998 Fairchild Semiconductor Corporation DS009827

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		DM54LS29	9	I	Units			
		Min	Nom	Max	Min	Nom	Max		
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.7			0.8	V
I _{он}	High Level Output Current	Q0, Q7			-0.4			-0.4	mA
		I/00–I/07			-2.6			-2.6	mA
I _{OL}	Low Level Output Current	Q0, Q7			4			8	mA
		I/00–I/07			12			24	mA
T _A	Free Air Operating Temperatur	e	-55		125	0		70	°C
t _s (H)	Setup Time HIGH or LOW		24			24			ns
t _s (L)	S0 or S1 to CP		24			24			
t _h (H)	Hold Time HIGH or LOW		5			0			ns
t _h (L)	S0 or S1 to CP		5			0			
t _s (H)	Setup Time HIGH or LOW		15			10			ns
t _s (L)	I/O _n , D _{S0} , D _{S7} to CP		15			10			
t _h (H)	Hold Time HIGH or LOW		5			0			ns
t _h (L)	I/O _n , D _{S0} , D _{S7} to CP		5			0			
t _w (H)	CP Pulse Width HIGH or LOW		15			15			ns
t _w (L)			15			15			
t _w (L)	MR Pulse Width LOW		15			15			ns
t _{rec}	Recovery Time		10			10			ns
	MR to CP								

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions				Тур	Max	Units
						(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA			-1.5	V		
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		DM54	2.5			
	Voltage	V _{IL} = Max	Q0, Q7	DM74	2.7	3.4		V
			I/00–I/07		2.4			
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max		DM54			0.4	
	Voltage	V _{IH} = Min		DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min		DM74		0.25	0.4	1
l _i	Input Current @ Max	V _{CC} = Max, V _I = 10V (D	M54)	Inputs			0.1	mA
	Input Voltage	V ₁ = 7V (DM74)		Sn			0.2	mA
IIH	High Level Input Current	V _{CC} = Max, V _I = 2.7V		Sn			40	μA
				Inputs			20	μA
I _{IL}	Low Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V		Sn			-0.8	mA
				Inputs			-0.4	mA

Symbol	Pa	rameter	Conditions			Min	Typ	Max	Unit
05	Short Circuit	t	V _{CC} = Max	V _{CC} = Max			(11010 2)	-100	mA
00	Output Curr	ent	(Note 3)			-30		-130	
c	Supply Curr	ent	$V_{CC} = Max, \overline{OE} = 4.5V$					60	mA
DZH	3-STATE O	utput Off	V _{CC} = Max					40	μA
	Current High	h	V _O = 2.7V						
DZL	3-STATE O	utput Off	V _{CC} = Max					-400	μA
	Current Low	1	$V_{O} = 0.4V$						
V _{cc} =	+5.0V, T _A = + /mbol	-25°C (See Sect	ion 1 for waveforms and loa Parameter	ad configuration	$R_L = 2 k\Omega$ $R_L = 15 pE$			Unit	s
					1 = 13 DE				
				Min		Max			
max		Maximum Inp	ut Frequency	Min 35		Max		MH	z
max PLH		Maximum Inp Propagation I	ut Frequency Delay	Min 35		Max 26		MH: ns	Z
max PLH PHL		Maximum Inp Propagation I CP to Q0 or 0	ut Frequency Delay Q7	Min 35		Max 26 28		MH: ns	Z
PLH PLH		Maximum Inp Propagation I CP to Q0 or 0 Propagation I	ut Frequency Delay Q7 Delay	Min 35		Max 26 28 25		MH: ns	Z
^t рLH ^t PHL ^t PHL		Maximum Inp Propagation I CP to Q0 or Propagation I CP to I/O _n	ut Frequency Delay Q7 Delay	Min 35		Max 26 28 25 35		MH; ns ns	z
PLH PLH PLH PLH		Maximum Inp Propagation I CP to Q0 or 0 Propagation I CP to I/O _n Propagation I MR to Q0 or	ut Frequency Delay Q7 Delay Delay Q7	Min 35		Max 26 28 25 35 28		MH: ns ns	z
max PLH PHL PHL PHL PHL		Maximum Inp Propagation I CP to Q0 or 0 Propagation I CP to I/O _n Propagation I MR to Q0 or Propagation I MR to I/O _n	ut Frequency Delay Q7 Delay Delay Q7 Delay	Min 35		Max 26 28 25 35 28 35		MH: ns ns ns	2
max PLH PHL PHL PHL PHL PHL		Maximum Inp Propagation I CP to Q0 or 4 Propagation I CP to I/O _n Propagation I MR to Q0 or Propagation I MR to I/O _n Output Enabl	ut Frequency Delay Q7 Delay Delay Q7 Delay e Time	Min 35		Max 26 28 25 35 28 35 35 35		MH: ns ns ns ns	Z
тах РНН РНЦ РНЦ РНЦ РНЦ РНЦ РНЦ		Maximum Inp Propagation I CP to Q0 or (Propagation I CP to I/O _n Propagation I MR to Q0 or Propagation I MR to I/O _n Output Enabl	ut Frequency Delay Delay Delay Q7 Delay e Time	Min 35		Max 26 28 25 35 28 35 35 35 18 25		MH; ns ns ns ns	z
тах РНН РНL РНL РНL РНL РНL РНL РДН РДН		Maximum Inp Propagation I CP to Q0 or 0 Propagation I CP to I/O _n Propagation I MR to Q0 or Propagation I MR to I/O _n Output Enabl	ut Frequency Delay Q7 Delay Delay Q7 Delay e Time le Time	Min 35		Max 26 28 25 35 28 35 35 35 18 25 15		MH: ns ns ns ns ns	Z

Functional Description

The 'LS299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by the S0 and S1, as shown in the Mode Select Table. All flip-flop outputs are brought out through 3-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q0 and Q7 are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on $\overline{\text{MR}}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either $\overline{\text{OE1}}$ or $\overline{\text{OE2}}$ disables the 3-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-STATE buffers are also disabled by HIGH signals on both S0 and S1 in preparation for a parallel load operation.

Mode Select Table

Inputs				Response
MR	S 1	S0	СР	
L	X	Х	X	Asynchronous Reset; Q0–Q7 = LOW
н	н	н	~	Parallel Load; I/O _n →Q _n
н	L	н	~	Shift Right; D _{S0} →Q0, Q0→Q1, etc.
н	н	L	~	Shift Left; D _{S7} →Q7, Q7→Q6, etc.
н	L	L	X	Hold

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

National Semiconductor

DM54LS322/DM74LS322 8-Bit Serial/Parallel Register with Sign Extend

General Description

The 'LS322 is an 8-bit shift register with provision for either serial or parallel loading and with TRI-STATE® parallel outputs plus a bi-state serial output. Parallel data inputs and parallel outputs are multiplexed to minimize pin count. State changes are initiated by the rising edge of the clock. Four synchronous modes of operation are possible: hold (store),

shift right with serial entry, shift right with sign extend and parallel load. An asynchronous Master Reset (MR) input overrides clocked operation and clears the register. The '322 is specifically designed for operation with the '384 Multiplier and provides the sign extend function required for the '384

© 1995 National Semiconductor Corporation TL/F/9828

RRD-B30M115/Printed in U. S. A.

April 1992

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS32	2		Units		
Cymbol	rarameter	Min	Nom	Мах	Min	Nom	Max	onita
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW RE to CP	24 24			24 24			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW RE to CP	5 5			0 0			ns
t _s (H) t _s (L)	Setup Time HIGH or LOW D0, D1 or I/O _n to CP	15 15			10 10			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW D0, D1 or I/O _n to CP	5 5			0			ns
t _s (H) t _s (L)	Setup Time HIGH or LOW SE to CP	15 15			15 15			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW SE to CP	0 0			0 0			ns
t _s (H) t _s (L)	Setup Time HIGH or LOW SP to CP	24 24			24 24			ns
t _s (H) t _s (L)	Setup Time HIGH or LOW S to CP	15 15			15 15			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW S or SP to CP	0 0			0			ns
t _w (H)	CP Pulse Width HIGH	15			15			ns
t _w (L)	MR Pulse Width LOW	15			15			ns
t _{rec}	Recovery Time MR to CP	15			15			ns

Symbol	Parameter		Conditions				Typ (Note 1)	Мах	Units	
VI	Input Clamp Voltage	V _{CC} = Min, I	$_{\rm I} = -18 {\rm mA}$					-1.5	V	
V _{OH}	High Level Output	V _{CC} = Min, I	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max$			2.5			v	
	Voltage	V _{IL} = Max				2.7	3.4			
V _{OL}	Low Level Output	$V_{\rm CC} = Min, I$	_{OL} = Max	DM54				0.4	-	
	Voltage	V _{IH} = Min		DM74			0.35	0.5	V	
		$I_{OL} = 4 \text{ mA},$	$V_{CC} = Min$	DM74			0.25	0.4		
lj –	Input Current @ Max	$V_{\rm CC} = Max,$	$V_{I} = 7V$	Others				0.1	-	
	Input voitage	$v_{l} = 100$ (Dr	VI54)	S Input				0.2	mA	
				SE Input	t			0.3		
IIH	High Level Input Curre	h Level Input Current $ V_{CC} = Max, V_{I}$		Others				20		
								40	μΑ	
				SE Input	t			60		
Ι _{ΙL}	Low Level Input Curre	$V_{\rm CC} = Max,$	$V_{CC} = Max, V_I = 0.4V$					-0.4	-	
					S Input			-0.8	8 mA	
				SE Input				-1.2		
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	V _{CC} = Max (Note 2)		I/On	-30		-130		
		(1010 2)						-100	mA	
	Quarte Quart			DM74		-20		-100		
	Supply Current	$V_{CC} = Max$						60	mA	
IOZH	Current HIGH	$V_{\rm CC} = Max$ $V_{\rm O} = 2.7V$						40	μΑ	
I _{OZL}	TRI-STATE Output Of Current LOW	$V_{CC} = Max$ $V_{O} = 0.4V$						-0.4	mA	
Note 1: All Note 2: Not Switc V _{CC} = +	typicals are at $V_{CC} = 5V$, $T_A = t$ more than one output should hing Character $F = 5.0V$, $T_A = +25^{\circ}C$	= 25°C. be shorted at a time, and	I the duration sh	ould not excee	ed one sec	cond.	·			
				R L =	2 kΩ, C	_ = 15 pF				
Symbo	ol Para	meter	Di	M54LS	_	D	M74LS	'	Units	
franci	Maximum Cl	ock Frequency	35	мах		35				
tnax	Propagation	Delay		25			25			
t _{PHL}	CP to I/On**	2014		35			34		ns	
t _{PLH}	Propagation	Delay		26			26		ns	
t _{PHL}	CP to Q0			28			29		113	

35

28

18

25

ns

ns

ns

34

28

21

23

t_{PHL}

t_{PHL}

t_{PHL}

t_{PZH}

t_{PZL} $**C_{L} = 50 \text{ pF}$ $\frac{\text{Propagation Delay}}{\text{MR} \text{ to I/O}_{n}^{**}}$

Propagation Delay $\overline{\text{MR}}$ to Q0

Output Enable Time \overline{OE} to I/O_n**

Switching Characteristics

$V_{CC} = +5.0V, T_{A} = +25^{\circ}C$										
Symbol										
	Parameter	DM	54LS	DM	Units					
		Min	Max	Min	Max					
t _{PHZ} t _{PLZ}	Output Disable Time \overline{OE} to I/O _n *		15 20		15 15	ns				
t _{PZH} t _{PZL}	Output Enable Time S/P to I/O _n **		22 30		25 25	ns				
t _{PHZ} t _{PLZ}	Output Disable Time SP to I/O _n *		23 23		40 26	ns				

 $*C_L = 5 \text{ pF}$

 $**C_{L} = 50 \text{ pF}$

Functional Description

The 'LS322 contains eight D-type edge triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on RE enables shifting or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on S/P enables shift right, while a LOW signal disables the TRI-STATE output buffers and enables parallel loading. In the shift right mode a HIGH signal

on \overline{SE} enables serial entry from either D0 or D1, as determined by the S input. A LOW signal on \overline{SE} enables shift right but Q7 reloads its contents, thus performing the sign extend function required for the '384 Twos Complement Multiplier. A HIGH signal on \overline{OE} disables the TRI-STATE output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

Mode Table																
Mode	Inputs				Outputs											
moue	MR	RE	S/P	SE	s	ŌE*	СР	I/07	I/O6	I/05	I/O4	I/O3	I/O2	I/01	I/O0	Q0
Clear	L L	X X	X X	X X	x x	L H	X X	L Z	L Z	L Z	L Z	L Z	L Z	L Z	L Z	L L
Parallel Load	н	L	L	x	x	х	~	17	16	15	14	13	12	11	10	10
Shift Right	н н	L L	н н	н н	L H	L	\ \	D0 D1	07 07	O6 O6	O5 O5	04 04	O3 O3	O2 O2	01 01	01 01
Sign Extend	н	L	н	L	x	L	~	07	07	O6	O5	O4	О3	O2	O1	01
Hold	Н	Н	Х	х	x	L	~	NC								

*When the OE input is HIGH, all I/On terminals are at the high-impedance state; sequential operation or clearing of the register is not affected. I7-I0 = The level of the steady-state input at the respective I/O terminal is loaded into the flip-flop while the flip-flop outputs (except Q0) are isolated from the I/O

17-10 = The level of the steady-state input at the respective 1/O terminal is loaded into the hip-hop while the hip-hop outputs (except Q0) are isolated from the literminal.

D0, D1 = The level of the steady-state inputs to the serial multiplexer input.

O7–O0 = The level of the respective Q_n flip-flop prior to the last Clock LOW-to-HIGH transition.

 $NC = No \ Change \ \ Z = \ High-Impedance \ Output \ State \ \ H = \ HIGH \ Voltage \ Level \ \ L = \ LOW \ Voltage \ Level$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

The 'LS323 is an 8-bit universal shift/storage register with TRI-STATE® outputs. Its function is similar to the 'LS299

with the exception of Synchronous Reset. Parallel load in-

puts and flip-flop outputs are multiplexed to minimize pin

count. Separate inputs and outputs are provided for flip-

flops Q0 and Q7 to allow easy cascading. Four operation

modes are possible: hold (store), shift left, shift right, and

parallel load. All modes are activated on the LOW-to-HIGH

DM54LS323/DM74LS323 8-Bit Universal Shift/Storage Register with Synchronous Reset and Common I/O Pins

General Description

Features

- Common I/O for reduced pin count
- Four operation modes: shift left, shift right, parallel load
- and store Separate continuous inputs and outputs from Q0 and Q7 allow easy cascading
- Fully synchronous reset
- TRI-STATE outputs for bus oriented applications

TL/F/9829-1

Connection Diagram

transition of the Clock.

Pin Names	Description
CP	Clock Pulse Input (Active Rising Edge)
D _S 0	Serial Data Input for Right Shift
D _S 7	Serial Data Input for Left Shift
S0, S1	Mode Select Inputs
SR	Synchronous Reset Input (Active LOW)
OE1, OE2	TRI-STATE Output Enable Inputs (Active LOW)
1/00-1/07	Parallel Data Inputs or TRI-STATE
	Parallel Outputs
Q0, Q7	Serial Outputs

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

©1995 National Semiconductor Corporation TL/F/9829

RRD-B30M115/Printed in U. S. A.

DM54LS323/DM74LS323 8-Bit Universal Shift/Storage Register with Synchronous Reset and Common I/O Pins

April 1992

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS32	3		Unite			
Symbol	Farameter	Min	Nom	Мах	Min	Nom	Max		
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V	
V _{IH}	High Level Input Voltage	2			2			V	
VIL	Low Level Input Voltage			0.7			0.8	V	
IOH	High Level Output Current			-0.4			-0.4	mA	
IOL	Low Level Output Current			4			8	mA	
T _A	Free Air Operating Temperature	-55		125	0		70	°C	
t _s (H) t _s (L)	Setup Time HIGH or LOW S0 or S1 to CP	24 24			24 24			ns	
t _h (H) t _h (L)	Hold Time HIGH or LOW S0 or S1 to CP	5 5			0			ns	
t _s (H) t _s (L)	Setup Time HIGH or LOW I/O _n , D _S 0, D _S 7 to CP	15 15			10 10			ns	
t _h (H) t _h (L)	Hold Time HIGH or LOW I/O _n , D _S 0, D _S 7 to CP	5 5			0 0			ns	
t _s (H) t _s (L)	Setup Time HIGH or LOW SR to CP	30 20			15 15			ns	
t _h (H) t _h (L)	Hold Time HIGH or LOW SR to CP	0 0			0 0			ns	
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	15 15			15 15			ns	

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				- 1.5	V
V _{OH} High Level Output Voltage	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.5			v
	Voltage	$V_{IL} = Max$	DM74	2.7	3.4		
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	DM54			0.4	v
	Voltage	V _{IH} = Min	DM74		0.35	0.5	
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
lj –	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$	Others			0.1	mA
		V _I = 10V (DM54)	S _n Inputs			0.2	mA
I _{IH} High Level Input C	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$	Others			20	μΑ
			S _n Inputs			40	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	Others			-0.4	mA
			S _n Inputs			-0.8	mA
I _{OS}	Short Circuit Output Current	$V_{CC} = Max$	DM54	-20		-100	- mA
		(Note 2)	DM74	-20		-100	
ICC	Supply Current	$V_{CC} = Max$				60	mA
I _{OZH}	TRI-STATE Output Off Current HIGH	$V_{CC} = Max$ $V_{O} = 2.7V$				40	μΑ
I _{OZL}	TRI-STATE Output Off Current LOW	$V_{CC} = Max$ $V_{O} = 0.4V$				-400	μA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics $v_{CC}=+5.0V, \tau_{A}=+25^{\circ}C$

		DM54	4LS323	DM74		
Symbol	Parameter	C _L =	15 pF	$R_L = 2 k\Omega$	Unite	
	runnotor	Min	Max	Min	Мах	onno
f _{max}	Maximum Input Frequency	35		35		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to Q0 or Q7		26 28		23 25	ns
t _{PLH} t _{PHL}	Propagation Delay CP to I/O _n		25 35		25 29	ns
t _{PZH} t _{PZL}	Output Enable Time $C_L = 50 \text{ pF}$		18 25		18 23	ns
t _{PHZ} t _{PLZ}	Output Disable Time $C_L = 5 \text{ pF}$		15 20		15 15	ns

Functional Description

The 'LS323 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S0 and S1 as shown in the Mode Select Table. All flip-flop outputs are brought out through TRI-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q0 and Q7 are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on \overline{SR} overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either $\overline{OE1}$ or $\overline{OE2}$ disables the TRI-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The TRI-STATE buffers are also disabled by HIGH signals on both S0 and S1 in preparation for a parallel load operation.

Mode Select Table

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

©1995 National Semiconductor Corporation TL/F/10184

RRD-B30M105/Printed in U. S. A.

DM54LS347/DM74LS347 BCD to 7-Segment Decoder/Driver

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS347			DM74LS347			
	i arameter	Min	Nom	Мах	Min	Nom	Max	Onita	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High Level Input Voltage	2			2			V	
V _{IL}	Low Level Input Voltage			0.7			0.8	V	
I _{OH}	High Level Output Voltage			-50			-50	μΑ	
I _{OL}	Low Level Output Current			12			24	mA	
T _A	Free Air Operating Temperature	-55		125	0		70	°C	

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	~
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max,$	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7			v
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	DM54			0.4	
	Voltage	V _{IH} = Min	DM74			0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74			0.4	
lj –	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	V _I = 10V	DM54				
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
Ι _{ΙL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	Other Input			-0.4	mA
			BI/RBO Input			-1.2	mA
I _{OS}	Short Circuit	V _{CC} = Max	DM54	-0.3		-2.0	mΑ
	Output Current	(Note 2)	DM74	-0.3		-2.0	ША
ICC	Supply Current	V _{CC} = Max				13	mA
IOFF		Segment Outputs, $V_O = 7V$				250	μA

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$:

Symbol	Parameter	C _L =	C _L = 15 pF			
oymbol	rarameter	Min	Мах	Units		
^t PLH ^t PHL	Propagation Delay A_n to $\overline{a} - \overline{g}$		100 100	ns ns		
t _{PLH}	Propagation Delay \overline{RBI} to $\overline{a} - \overline{g}$		100 100	ns ns		
Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.						

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

54LS352/DM74LS352 Dual 4-Line to 1-Line Data Selectors/Multiplexers

General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

Features

- Inverting version of DM54/74LS153
- Permits multiplexing from N lines to 1 line

- Performs parallel-to-serial conversion
- Strobe (enable) line provided for cascading (N lines to n lines)
- High fan-out, low-impedance, totem-pole outputs
- Typical average propagation delay times
 - From data 15 ns
 - From strobe 19 ns From select 22 ns

Function Table

Typical power dissipation 31 mW

Connection Diagram

		_					
Select Inputs		Data Inputs			Strobe	Output	
в	Α	C0	C1	C2	C3	G	Y
Х	х	х	х	х	х	н	н
L	L	L	X	Х	X	L	н
L	L	н	X	Х	X	L	L
L	н	X	L	Х	X	L	н
L	н	X	н	Х	X	L	L
н	L	X	X	L	X	L	н
н	L	X	X	н	X	L	L
н	н	X	X	Х	L	L	н
Н	н	x	X	x	Η	L	L

Select inputs A and B are common to both sections. H = High Level, L = Low Level, X = Don't Care

© 1995 National Semiconductor Corporation TL/F/6425

RRD-B30M105/Printed in U. S. A.

54LS352/DM74LS352 Dual 4-Line to 1-Line Data Selectors/Multiplexers

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55° C to +125°C
DM74LS	0° C to +70°C
Storage Temperature Range	-65^\circC to $+150^\circC$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		54LS352			DM74LS352			
	i di dificici	Min	Nom	Max	Min	Nom	Max	onita	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V	
V _{IH}	High Level Input Voltage	2			2			V	
VIL	Low Level Input Voltage			0.7			0.8	V	
Іон	High Level Output Current			-0.4			-0.4	mA	
IOL	Low Level Output Current			12			8	mA	
T _A	Free Air Operating Temperature	-55		125	0		70	°C	

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				- 1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	54LS	2.5			v
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	54LS			0.4	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	v
		$I_{OL} = 4 \text{ mA}$ $V_{CC} = Min$	DM74		0.25	0.4	
lj –	Input Current @ Max	$V_{CC} = Max, V_I = 10V$	54LS			0.1	mΑ
	Input Voltage	$V_{CC} = Max, V_I = 7V$	DM74			0.1	
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$				20	μΑ
ЦL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
I _{OS}	Short Circuit	V _{CC} = Max	54LS	-20		-100	mΑ
	Output Current	(Note 2)	DM74	-20		-100	
ICC	Supply Current	V _{CC} = Max (Note 3)			6.2	10	mA

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open and all other inputs at ground.

		From	54	ILS	DM	74LS		
Symbol	Parameter	(Input) To (Output)	C _L = 15 pF		$C_L = 50 \text{ pF}$ $R_L = 2 \text{ k}\Omega$		Units	
			Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Y		12		24	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Y		12		35	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Select to Y		22		33	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Select to Y		38		47	ns	
t _{PLH}	Propagation Delay Time Low to High Level Output	Strobe to Y		15		29	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Strobe to Y		20		41	ns	

Logic Diagram

TL/F/6425-2

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

DM74LS353 Dual 4-Input Multiplexer with TRI-STATE Outputs

©1995 National Semiconductor Corporation TL/F/10185

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Мах	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-2.6	mA
I _{OL}	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.7			V
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OL} = \text{Max}, \\ V_{IH} &= \text{Min} \end{split}$			0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$			0.4	
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	-30		-130	mA
ICCL	Supply Current Outputs HIGH	$V_{CC} = Max,$ In, Sn, $\overline{OE}n = GND$			12	mA
I _{CCZ}	Supply Current Outputs OFF	$V_{CC} = Max, \overline{OE}n = 4.5V$ In, Sn = GND			14	mA
I _{OZH}	TRI-STATE Output OFF Current HIGH	$V_{CC} = V_{CCH}$ $V_{OZH} = 2.7V$	-		20	μΑ
I _{OZL}	TRI-STATE Output OFF Current LOW	$V_{CC} = V_{CCH}$ $V_{OZL} = 0.4V$			-20	μΑ

Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

itching Cha = +5.0V, T _A =	aracteristics			
Symbol	Parameter	$R_L = 2 k \Omega$	2, C _L = 50 pF	Unite
oymbol	i alameter	Min	Max	onita
t _{PLH} t _{PHL}	Propagation Delay Sn to Zn		24 32	ns
t _{PLH} t _{PHL}	Propagation Delay In to $\overline{Z}n$		15 15	ns
t _{PZH} t _{PZL}	Output Enable Time OE to Zn		18 18	ns
t _{PHZ} t _{PLZ}	Output Disable Time OE to Zn		18 18	ns

Functional Description

The 'LS353 contains two identical 4-input multiplexers with TRI-STATE outputs. They select two bits from four sources selected by common Select inputs (S0, S1). The 4-input multiplexers have individual Output Enable $(\overline{OE}_a), \overline{OE}_b)$ inputs which when HIGH, force the outputs to a high impedance (high Z) state. The logic equations for the outputs are shown below:

If the outputs of TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRI-STATE devices whose outputs are tied together are designed so that there is no overlap.

$$\overline{Z}_{a} = \overline{OEa} \bullet (I0a \bullet \overline{S}1 \bullet \overline{S}0 + I1a \bullet \overline{S}1 \bullet S0 + I2a \bullet S1 \bullet \overline{S}0 + I3a \bullet S1 \bullet S0)$$
$$\overline{Z}_{b} = \overline{OE_{b}} \bullet (I0b \bullet \overline{S}1 \bullet \overline{S}0 + I1b \bullet \overline{S}1 \bullet S0 + I2b \bullet S1 \bullet \overline{S}0 + I3b \bullet S1 \bullet S0)$$

Truth Table

Sel Inp	ect uts	Data Inputs		Output Enable	Output		
S0	S1	10	11	12	13	ŌĒ	Ī
х	Х	х	Х	Х	Х	н	(Z)
L	L	L	Х	Х	Х	L	н
L	L	н	Х	Х	Х	L	L
н	L	x	L	х	Х	L	н
н	L	x	н	х	Х	L	L
L	н	X	Х	L	Х	L	н
L	Н	X	Х	Н	Х	L	L
н	Н	X	Х	Х	L	L	н
н	Н	X	Х	Х	н	L	L

Address inputs S0 and S1 are common to both sections.

H = HIGH Voltage Level

 $\begin{array}{l} L = LOW \ \mbox{Voltage Level} \\ L = LOW \ \mbox{Voltage Level} \\ X = Immaterial \\ (Z) = High \ \mbox{Impedance} \end{array}$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

March 1998

DM74LS365A Hex 3-STATE Buffers

FAIRCHILD

DM74LS365A **Hex 3-STATE Buffers**

General Description

This device contains six independent gates each of which performs a non-inverting buffer function. The outputs have the 3-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Features

 Alternate Military/Aerospace device (54LS365A) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS365ADMQB, 54LS365AFMQB, 54LS365ALMQB, DM54LS365AJ, DM54LS365AW, DM74LS265AM or DM74LS365AN See Package Number E20A, J16A, M16A, N16E or W16A

Function Table

	Output		
G1	G2	Α	Y
Н	Х	Х	Hi-Z
Х	н	Х	Hi-Z
L	L	Н	н
L	L	L	L

H = High Logic Level L = Low Logic Level

X = Either Low or High Logic Level Hi-Z = 3-STATE (Outputs are disabled)

Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS365A		D	Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-1			-2.6	mA
IOL	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.4	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74		0.25	0.4	
l _i	Input Current @ Max	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 7V				0.1	mA
	Input Voltage						
IIH	High Level Input Current	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 2.7V				20	μA
IIL.	Low Level Input	$V_{CC} = Max, V_I = 0.5V$	A Input			-20	μA
	Current	(Note 5)					
		$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V	A Input			-0.4	
		(Note 6)					mA
		$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V	G Input			-0.4	
I _{OZH}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.4V					
	with High Level Output	$V_{IH} = Min, V_{IL} = Max$				20	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4V					
	with Low Level Output	V _{IH} = Min, V _{IL} = Max				-20	μA
	Voltage Applied						
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CC}	Supply Current	V _{CC} = Max (Note 4)			14	24	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Note 5: Both \overline{G} inputs are at 2V. **Note 6:** Both \overline{G} inputs at 0.4V.

			R _L =	667 Ω		
Symbol	Parameter	C _L =	50 pF	C _L = 1	150 pF	Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low		16		25	ns
	to High Level Output					
t _{PHL}	Propagation Delay Time High		16		25	ns
	to Low Level Output					
t _{PZH}	Output Enable Time to		30		40	ns
	High Level Output					
t _{PZL}	Output Enable Time to		30		40	ns
	Low Level Output					
t _{PHZ}	Output Disable Time from		20			ns
	High Level Output (Note 7)					
PLZ	Output Disable Time from		20			ns
	Low Level Output (Note 7)					

Note 7: C_L = 5 pF.

4

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

FAIRCHILD

SEMICONDUCTOR TM

DM74LS366A Hex 3-STATE Inverting Buffer

General Description

This device contains six independent gates each of which performs an inverting buffer function. The outputs have the 3-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output tran-

Connection Diagram

sistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Order Number DM54LS366AJ, DM54LS366AW, DM54LS366AE, DM74LS366AM or DM74LS366AN See Package Number E20A, J16A, M16A, N16E or W16A

Function Table

 $Y = \overline{A}$

	Output		
G 1	G 2	Α	Y
н	Х	Х	Hi-Z
х	н	Х	Hi-Z
L	L	L	Н
L	L	н	L

H = High Logic Level L = Low Logic Level

X = Either Low or High Logic Level Hi-Z = 3-STATE (Outputs are disabled)

© 1998 Fairchild Semiconductor Corporation DS006428

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS366A		D	Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-1			-2.6	mA
IOL	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max		2.4	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min					
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 10.0V	DM54				
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input	V_{CC} = Max, V_{I} = 0.5V	A Input			-20	μA
	Current	(Note 5)					
		$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V	A Input			-0.4	
		(Note 6)					mA
		$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V	G Input			-0.4	
I _{OZH}	Off-State Output Current	V_{CC} = Max, V_O = 2.4V					
	with High Level Output	V _{IH} = Min, V _{IL} = Max				20	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4V					
	with Low Level Output	V _{IH} = Min, V _{IL} = Max				-20	μA
	Voltage Applied						
l _{os}	Short Circuit	V _{CC} = Max	DM54	-30		-130	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			12	21	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Note 5: Both \overline{G} inputs are at 2V. **Note 6:** Both \overline{G} inputs at 0.4V.

Symbol		DM54LS						
	Parameter	C _L = 50 pF		Units				
				C _L = 50 pF		C _L = 150 pF		1
		Min	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low		12		15		25	ns
	to High Level Output							
t _{PHL}	Propagation Delay Time High		22		16		25	ns
	to Low Level Output							
t _{PZH}	Output Enable Time to		24		30		35	ns
	High Level Output							
t _{PZL}	Output Enable Time to		30		30		40	ns
	Low Level Output							
t _{PHZ}	Output Disable Time from		25		20			ns
	High Level Output (Note 7)							
t _{PLZ}	Output Disable Time from		20		20			ns
	Low Level Output (Note 7)							

Note 7: C_L = 5 pF.

4

DM74LS367A Hex 3-STATE Buffers

FAIRCHILD

SEMICONDUCTOR TM

DM74LS367A Hex 3-STATE Buffers

General Description

This device contains six independent gates each of which performs a non-inverting buffer function. The outputs have the 3-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a signifi-

cant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Features

 Alternate military/aerospace device (54LS367A) is available. Contact a Fairchild Semiconductor sales office/distributor for specifications.

Connection Diagram

Function Table

Y = A

Inp	uts	Output
Α	G	Y
L	L	L
н	L	н
Х	н	Hi-Z

H = High Logic Level L = Low Logic Level X = Either Low or High Logic Level Hi-Z = 3-STATE (Outputs are disabled)

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Symbol Parameter		M54LS367	Ά	D	M74LS367A		Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-1			-2.6	mA
IOL	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{он}	High Level Output	$V_{CC} = Min, I_{OH} = Max$		2.4	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$					
V _{OL}	Low Level Output	V_{CC} = Min, I_{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 12 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
IIH	High Level Input	V_{CC} = Max, V_{I} = 2.7V				20	μA
	Current						
IIL	Low Level Input	$V_{CC} = Max, V_I = 0.5V$	A Input			-20	μA
	Current	(Note 5)					
		$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V	A Input			-0.4	
		(Note 6)					mA
		$V_{\rm CC}$ = Max, $V_{\rm I}$ = 0.4V	G Input			-0.4	
I _{OZH}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.4V					
	with High Level Output	$V_{IH} = Min, V_{II} = Max$				20	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4V					
	with Low Level Output	$V_{IH} = Min, V_{II} = Max$				-20	μA
	Voltage Applied						
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)			14	24	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Note 5: Both \overline{G} inputs are at 2V.

Note 6: Both \overline{G} inputs at 0.4V.

			R _L =	667 Ω		
Symbol	Parameter	C _L =	50 pF	C _L = 1	Units	
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low		16		25	ns
	to High Level Output					
t _{PHL}	Propagation Delay Time High		16		25	ns
	to Low Level Output					
t _{PZH}	Output Enable Time to		30		40	ns
	High Level Output					
t _{PZL}	Output Enable Time to		30		40	ns
	Low Level Output					
t _{PHZ}	Output Disable Time from		20			ns
	High Level Output (Note 7)					
PLZ	Output Disable Time from		20			ns
	Low Level Output (Note 7)					

Note 7: C_L = 5 pF.

4

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

54LS368A/DM54LS368A/DM74LS368A Hex TRI-STATE® Inverting Buffers

General Description

This device contains six independent gates each of which performs an inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two

outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Features

 Alternate Military/Aerospace device (54LS368) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

Connection Diagram

54LS368A/DM54LS368A/DM74LS368A Hex TRI-STATE Inverting Buffers

© 1995 National Semiconductor Corporation TL/F/6430

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS and 54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS368A			DM74LS368A			Units
0,		Min	Nom	Max	Min	Nom	Max	••••••
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-1			-2.6	mA
I _{OL}	Low Level Output Current			12			24	mA
TA	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4	3.4		v
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	V
		$I_{OL} = 12 \text{ mA}, V_{CC} = \text{Min}$	DM74		0.25	0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
Ι _{ΙΗ}	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$				20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.5V$ (Note 4)	A Input			-20	μΑ
		$V_{CC} = Max, V_1 = 0.4V$ (Note 5)	A Input			-0.4	mA
		$V_{CC} = Max, V_I = 0.4V$	G Input			-0.4	
I _{OZH}	Off-State Output Current with High Level Output Voltage Applied	$V_{CC} = Max, V_O = 2.4V$ $V_{IH} = Min, V_{IL} = Max$				20	μΑ
I _{OZL}	Off-State Output Current with Low Level Output Voltage Applied	$V_{CC} = Max, V_O = 0.4V$ $V_{IH} = Min, V_{IL} = Max$				-20	μΑ
I _{OS}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current (Note 2)	DM74	-20		- 100		
ICC	Supply Current	V _{CC} = Max (Note 3)			12	21	mA

Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: $I_{\mbox{CC}}$ is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Note 4: Both \overline{G} inputs are at 2V.

Note 5: Both \overline{G} inputs at 0.4V.

			R _L =	667 Ω			
Symbol	Parameter	C _L =	50 pF	C _L =	150 pF	Units	
		Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time Low to High Level Output		15		25	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output		18		25	ns	
t _{PZH}	Output Enable Time to High Level Output		30		35	ns	
t _{PZL}	Output Enable Time to Low Level Output		30		40	ns	
t _{PHZ}	Output Disable Time from High Level Output (Note 6)		20			ns	
t _{PLZ}	Output Disable Time from Low Level Output (Note 6)		20			ns	

Note 6: $C_L = 5 \text{ pF}.$

National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

March 1998

lip-Flops

M74LS373/DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered

FAIRCHILD

SEMICONDUCTOR IM

DM74LS373/DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

General Description

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the DM54/74LS373 are transparent D-type latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.

The eight flip-flops of the DM54/74LS374 are edge-triggered D-type flip flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are off.

Features

- Choice of 8 latches or 8 D-type flip-flops in a single package
- 3-STATE bus-driving outputs
- Full parallel-access for loading
- Buffered control inputs
- P-N-P inputs reduce D-C loading on data lines

Connection Diagrams (Continued)

Order Number DM54LS374J, DM54LS374W, DM74LS374WM or DM74LS374N See Package Number J20A, M20B, N20A or W20A

Function Tables DM54/74LS373

Output	Enable	D	Output
Control	G		
L	н	Н	н
L	н	L	L
L	L	Х	Qo
н	X	X	Z

H = High Level (Steady State), L = Low Level (Steady State), X = Don't Care \uparrow = Transition from low-to-high level, Z = High Impedance State Q_0 = The level of the output before steady-state input conditions were established.

DM54/74LS374

Output	Clock	D	Output
Control			
L	↑	н	Н
L	↑	L	L
L	L	X	Qo
н	X X	x	z

Supply Voltage	7V
Input Voltage	7V
Storage Temperature Range	–65°C to +150°C

 Operating Free Air Temperature Range

 DM54LS
 -55°C to +125°C

 DM74LS
 0°C to +70°C

Recommended Operating Conditions

Symbol	Parameter		C	DM54LS37	3	[0M74LS37	3	Units
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Vot	age	2			2			V
V _{IL}	Low Level Input Volt	age			0.7			0.8	V
I _{он}	High Level Output Current				-1			-2.6	mA
I _{OL}	Low Level Output Current				12			24	mA
t _w	Pulse Width	Enable High	15			15			ns
	(Note 3)	Enable Low	15			15			
t _{su}	Data Setup Time (Notes 2, 3)		5↓			5↓			ns
t _H	Data Hold Time (Notes 2, 3)		20↓			20↓			ns
T _A	Free Air Operating T	emperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.

Note 3: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'LS373 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output Voltage	V _{CC} = Min	DM54	2.4	3.4		
		I _{OH} = Max					V
		V _{IL} = Max	DM74	2.4	3.1		
		V _{IH} = Min					
V _{OL}	Low Level Output Voltage	V _{CC} = Min	DM54		0.25	0.4	
		I _{OL} = Max					
		V _{IL} = Max	DM74		0.35	0.5	V
		V _{IH} = Min					
		I _{OL} = 12 mA	DM74			0.4	
		V _{CC} = Min					
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I _{IL}	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-0.4	mA
I _{OZH}	Off-State Output Current	V _{CC} = Max, V _O = 2.7V					
	with High Level Output	V _{IH} = Min, V _{IL} = Max				20	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current	V_{CC} = Max, V_O = 0.4V					
	with Low Level Output	V _{IH} = Min, V _{IL} = Max				-20	μΑ
	Voltage Applied						
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 5)	DM74	-50		-225	

'LS373 Electrical Characteristics (Continued)

over recommended operating free air temperature range (unless otherwise noted) Symbol Parameter Conditions Min Тур Max Units (Note 4) V_{CC} = Max, OC = 4.5V, $I_{\rm CC}$ Supply Current 24 40 mΑ D_n , Enable = GND

'LS373 Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

		From		R _L =	667 Ω			
Symbol	Parameter	(Input)	C _L = 45 pF		C _L =	150 pF	Units	
		То	Min	Max	Min	Max	1	
		(Output)						
t _{PLH}	Propagation Delay	Data						
	Time Low to High	to		18		26	ns	
	Level Output	Q						
t _{PHL}	Propagation Delay	Data						
	Time High to Low	to		18		27	ns	
	Level Output	Q						
t _{PLH}	Propagation Delay	Enable						
	Time Low to High	to		30		38	ns	
	Level Output	Q						
t _{PHL}	Propagation Delay	Enable						
	Time High to Low	to		30		36	ns	
	Level Output	Q						
t _{PZH}	Output Enable	Output						
	Time to High	Control		28		36	ns	
	Level Output	to Any Q						
t _{PZL}	Output Enable	Output						
	Time to Low	Control		36		50	ns	
	Level Output	to Any Q						
t _{PHZ}	Output Disable	Output						
	Time from High	Control		20			ns	
	Level Output (Note 6)	to Any Q						
t _{PLZ}	Output Disable	Output						
	Time from Low	Control		25			ns	
	Level Output (Note 6)	to Any Q						

Note 4: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 6: $C_L = 5 \text{ pF}.$

Recommended Operating Conditions

DM54LS374 DM74LS374 Symbol Parameter Units Min Nom Min Nom Мах Max 4.75 5.25 $V_{\rm CC}$ Supply Voltage 4.5 5 5.5 5 V V_{IH} High Level Input Voltage 2 2 V V_{IL} Low Level Input Voltage 0.7 0.8 V High Level Output Current -1 -2.6 mΑ I_{OH} Low Level Output Current 12 24 mΑ I_{OL}

Recommended	Operating	Conditions	(Continued)
-------------	-----------	------------	-------------

Symbol	Parameter		D	M54LS37	4	C	M74LS37	4	Units
			Min	Nom	Max	Min	Nom	Max	
t _W	Pulse Width	Clock High	15			15			ns
	(Note 8)	Clock Low	15			15			
t _{s∪}	Data Setup Time (Notes 7, 8)		20↑			20↑			ns
t _H	Data Hold Time (Notes 7, 8)		1↑			1↑			ns
T _A	Free Air Operating Temperatu	ire	-55		125	0		70	°C

Note 7: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.

Note 8: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

'LS374 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V	Input Clamp Voltage	V _{cc} = Min, I _i = -18 m	A		(1016-3)	-1.5	V
Vou	High Level Output Voltage V _{CC} = Min DM54				3.4		
· OH	· · · g · · _ · · · · · · · · · · · · ·	lou = Max	DM74	2.4	3.1		v
		$V_{\mu} = Max$					
		$V_{IH} = Min$					
Vol	Low Level Output Voltage	$V_{CC} = Min$	DM54		0.25	0.4	
		I _{OL} = Max	DM74		0.35	0.5	
		$V_{\mu} = Max$					v
		V _{IH} = Min					
		$I_{01} = 12 \text{ mA}$	DM74		0.25	0.4	
		$V_{CC} = Min$					
I _I	Input Current @ Max	$V_{CC} = Max, V_1 = 7V$				0.1	mA
	Input Voltage						
I	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$				20	μA
IIL.	Low Level Input Current	V _{CC} = Max, V _I = 0.4V				-0.4	mA
I _{OZH}	Off-State Output	V _{CC} = Max, V _O = 2.7\	/				
	Current with High	V _{IH} = Min, V _{IL} = Max				20	μA
	Level Output						
	Voltage Applied						
I _{OZL}	Off-State Output	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4	/				
	Current with Low	V _{IH} = Min, V _{IL} = Max				-20	μA
	Level Output						
	Voltage Applied						
l _{os}	Short Circuit	V _{CC} = Max	DM54	-50		-225	mA
	Output Current	(Note 10)	DM74	-50		-225	
I _{cc}	Supply Current	V_{CC} = Max, D_n = GND, OC = 4.5V			27	45	mA

		R _L = 667Ω				
Symbol	Parameter	С _L = 45 рF		C _L = 150 pF		Units
		Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	35		20		MHz
t _{PLH}	Propagation Delay Time		28		32	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time		28		38	ns
	High to Low Level Output					
t _{PZH}	Output Enable Time		28		44	ns
	to High Level Output					
t _{PZL}	Output Enable Time		28		44	ns
	to Low Level Output					
t _{PHZ}	Output Disable Time		20			ns
	from High Level Output (Note 11)					
t _{PLZ}	Output Disable Time		25			ns
	from Low Level Output (Note 11)					

Note 9: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 10: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 11: C_L = 5 pF.

LIFE SUPPORT POLICY

wv

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
/w.fairchildsemi.com		Fax: +852 2314-0061	
vw.fairchildsemi.com	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200 Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications

DM74LS375 4-Bit Latch

General Description

The 'LS375 is a 4-bit D-type latch for use as temporary storage for binary information between processing units and input/output or indicator units. When its Enable (E) input is HIGH, a latch is transparent, i.e., the Q output will follow the D input each time it changes. When E is LOW a latch stores the last valid data present on the D input preceding the HIGH-to-LOW transition of E. The 'LS375 is functionally identical to the 'LS75 except for the corner power pins.

© 1995 National Semiconductor Corporation TL/F/9830

RRD-B30M115/Printed in U. S. A.

February 1992

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Мах	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			v
VIL	Low Level Input Voltage			0.8	v
I _{OH}	High Level Output Current			-0.4	mA
I _{OL}	Low Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW D_n to E_n	20			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW D _n to E _n	0			ns
t _w (H)	E _n Pulse Width HIGH	20	-		ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 mA$	Ą			-1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OH} = \text{Max}, \\ V_{IL} &= \text{Max} \end{split}$		2.7	3.4		v
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \ I_{OL} &= \text{Max}, \\ V_{IH} &= \text{Min} \end{split}$			0.35	0.5	v
	$I_{OL} = 4 \text{ mA}, V$		= Min		0.25	0.4	
Ц	II Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Others			0.1	mA
	Input Voltage		Enable Input			0.4	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$	Others			20	μΑ
			Enable Input			80	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	Others			-0.4	mA
			Enable Input			-1.2	mA
IOS	Short Circuit Output Current	V _{CC} = Max (Note 2)		-20		- 100	mA
ICC	Supply Current	V _{CC} = Max				12	mA

Note 1: All typicals are at V_{CC} = 5V, T_A = 25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Symbol	Parameter	C _L =	15 pF	Unite
Symbol	Parameter	Min	Max	
t _{PLH}	Propagation Delay		27	ne
t _{PHL}	D _n to Q _n		23	113
t _{PLH}	Propagation Delay		20	ns
PHL	D _n to Q _n		15	
^t PHL	E _n to Q _n		25	ns
t _{PLH}	Propagation Delay		30	
t _{PHL}	E_n to \overline{Q}_n		18	115
th Table 🕞	ach Latch)			
		Г		
t _n	t _{n + 1}	-		
D	Q	-		
H L				
			↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	DATA ENABLE TO OTHER LATCH		₽ ₽ ₽ ₽ ₽	TL/F/9830–3
	DATA ENABLE TO OTHER LATCH		o	TL/F/9830-3

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

DM74LS375 4-Bit Latch

March 1998

FAIRCHILD

DM74LS377 Octal D Flip-Flop with Common Enable and Clock

General Description

Features

The 'LS377 is an 8-bit register built using advanced low power Schottky technology. This register consists of eight D-type flip-flops with a buffered common clock and a buffered common input enable. The device is packaged in the space-saving (0.3 inch row spacing) 20-pin package.

- 8-bit high speed parallel registers
- Positive edge-triggered D-type flip-flops
- Fully buffered common clock and enable inputs

Connection Diagram

Dual-In-Line Package

Order Number DM54LS377E, DM54LS377J, DM54LS377W, DM74LS377WM or DM74LS377N See Package Number E20A, J20A, M20B, N20A or W20A

Pin	Description
Names	
Ē	Enable Input (Active LOW)
D0-D7	Data Inputs
CP	Clock Pulse Input (Active Rising Edge)
Q0–Q7	Flip-Flop Outputs

© 1998 Fairchild Semiconductor Corporation DS009831

Absolute	Maximum	Ratings	(Note 1)
----------	---------	---------	----------

Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS	
DM74LS	
Storage Temperature Range	

-55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		DM54LS37	7	DM74LS377			Units
		Min	Nom	Max	Min	Nom	Max	1
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
I _{он}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H)	Setup Time HIGH or LOW	20			10			ns
t _s (L)	D _n to CP	20			10			
t _h (H)	Hold Time HIGH or LOW	5.0			5.0			ns
t _h (L)	D _n to CP	5.0			5.0			
t _s (H)	Setup Time HIGH or LOW	10			10			ns
t _s (L)	Ē to CP	20			20			
t _h (H)	Hold Time HIGH or LOW	5.0			5.0			ns
t _h (L)	Ē to CP	5.0			5.0			
t _w (H)	CP Pulse Width HIGH or LOW	20			20			ns
t _w (L)		20			20			

7V

7V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
VoL	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I_{OL} = 4 mA, V_{CC} = Min	DM74		0.25	0.4	
I,	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	V ₁ = 10V	DM54				
IIH	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20.0	μA
I	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				-0.4	mA
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max				28	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics V_{CC} = +5.0V, T_A = +25°C

Symbol	Parameter	R _L = 2 kΩ, C _L = 15 pF		Units
		Min	Max	
f _{max}	Maximum Clock Frequency	30		MHz
t _{PLH}	Propagation Delay		25	ns
t _{PHL}	CP to Q _n		25	

Functional Description

The 'LS377 consists of eight edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Enable input (\overline{E}) are common to all flip-flops.

When \overline{E} is LOW, new data is entered into the register on the next LOW-to-HIGH transition of CP. When \overline{E} is HIGH, the register will retain the present data independent of the CP.

Truth Table

	Inputs	Output	
Ē	СР	D _n	Q _n
Н	Х	Х	No Change
L	~	н	н
L	<u>~</u>	L	L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Logic Symbol

V_{CC} = Pin 20 GND = Pin 10

Logic Diagram

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
	Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
	Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
	Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
	Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
		English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
		Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fai	rchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

The 'LS378 is a 6-bit register with a buffered common enable. This device is similar to the 'LS174, but with common

DM54LS378/DM74LS378 Parallel D Register with Enable

General Description

Enable rather than common Master Reset.

Features

- 6-bit high speed parallel register
- Positive edge-triggered D-type inputs
- Fully buffered common clock and enable inputs
- Input clamp diodes limit high speed termination effects
- Full TTL and CMOS compatible

DM54LS378/DM74LS378 Parallel D Register with Enable

May 1992

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-54°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS378 DM74LS378		Unite			
Cymbol	i arameter	Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
ЮН	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H)	Setup Time HIGH, D _n to CP	20			20			ns
t _h (H)	Hold Time HIGH, D _n to CP	5.0			5.0			ns
t _s (L)	Setup Time LOW, D _n to CP	20			20			ns
t _h (L)	Hold Time LOW, D _n to CP	5.0			5.0			ns
t _s (H)	Setup Time HIGH, E to CP	30			30			ns
t _h (H)	Hold Time HIGH, E to CP	5.0			5.0			ns
t _s (L)	Setup Time LOW, E to CP	30			30			ns
t _h (L)	Hold Time LOW, E to CP	5.0			5.0			ns
t _w (H)	CP Pulse Width HIGH	20			20			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max,$	DM54	2.5			V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		v
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	DM54			0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
li I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74				
	Input Voltage	V _I = 10V	DM54			0.1	mA
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20.0	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
los	Short Circuit	V _{CC} = Max	DM54	-20		-100	m۸
	Output Current	(Note 2)	DM74	-20		-100	
I _{CC}	Supply Current	$V_{CC} = Max D_n; \overline{E} = GND,$	CP =			22	mA

Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Ch $V_{CC} = +5.0V, T_A =$	aracteristics +25°C			
Symbol	Parameter	2 k Ω, C	_ = 15 pF	Unite
Cymbol	T arameter	Min	Max	Units
f _{max}	Maximum Clock Frequency	30		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to Q _n		27 27	ns

D2

Q

| Q2

СР D

Functional Description

The 'LS378 consists of eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The Clock (CP) and Enable (\overline{E}) inputs are common to all flip-flops.

When the $\overline{\mathsf{E}}$ input is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input. When the \overline{E} input is HIGH the register will retain the present data independent of the CP input.

D0

0

QO

СР D

Ē

Truth Table

	Inputs	Output	
Ē	СР	D _n	Q _n
н		х	No change
L		н	н
L		L	L

D4

D

Q

Q4

СР

H = HIGH Voltage Level

D3

Q

Q3

L = LOW Voltage Level X = Immaterial

CP D

F

D1

Q

Q1

СР D СР D Q

Q5

Е

D5

TL/F/9832-3

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS379				Unite		
	i arameter	Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW Dn to CP	20			20			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW Dn to CP	5			5			ns
t _s (H) t _s (L)	Setup Time HIGH or LOW E to CP	25			25			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW Ē to CP	5			5			ns
t _w (L)	CP Pulse Width LOW	17			17			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)										
Symbol	Parameter	Conditions	Min	Typ (Note 1)	Мах	Units				
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V			
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max,$	54LS	2.5			v			
	Voltage	V _{IL} = Max	DM74	2.7						
V _{OL}	Low Level Output	V_{CC} Min, $I_{OL} = Max$,				0.4				
	Voltage V _{IH}	V _{IH} = Min DM7	DM74			0.5	v			
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74			0.4				
I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 10V$				0.1	mA			
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ			
۱ _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA			
I _{OS}	Short Circuit	V _{CC} = Max	54LS	-20		-100	mA			
	Output Current	put Current (Note 2)	DM74	-20		-100				
I _{CC}	Supply Current	V _{CC} = Max				18	mA			

Note 1: All typicals are at V_{CC} = 5V, $T_A = 25^{\circ}C$.

Note 2: Note more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for test waveforms and output load)								
Symbol Baramator $R_L = 2 k\Omega, C_L = 15 pF$								
Symbol	i arameter	Min	Max	onita				
f _{max}	Maximum Clock Frequency	30		MHz				
t _{PLH} t _{PHL}	Propagation Delay CP to Qn		27 27	ns				

Functional Description

The LS379 consists of four edge-triggered D-type flip-flops with individual D inputs and Q and \overline{Q} outputs. The Clock (CP) and Enable (\overline{E}) inputs are common to all flip-flops. When the \overline{E} input is HIGH, the register will retain the present data independent of the CP input. The Dn and \overline{E} inputs can be non-under the clock is either attact and the the change when the clock is in either state, provided that the recommended setup and hold times are observed.

Truth Table

	Inputs	Out	puts	
Ē	СР	Dn	Qn	Qn
н	~	х	No Change	No Change
L		н	н	L
L		L	L	н

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

DM54LS380/74LS380 Multifunction Octal Register

General Description

The 'LS380 is an 8-bit synchronous register with parallel load, load complement, preset, clear, and hold capacity. Four control inputs ($\overline{\text{LD}}$, POL, $\overline{\text{CLR}}$, $\overline{\text{PR}}$) provide one of four operations which occur synchronously on the rising edge of the clock (CK). The LS380 combines the features of the LS374, LS377, LS273 and LS534 into a single 300 mil wide package.

The LOAD operation loads the inputs (D_7-D_0) into the output register (Q_7-Q_0) , when POL is HIGH, or loads the compliment of the inputs when POL is LOW. The CLEAR operation resets the output register to all LOWs. The PRESET operation presets the output register to all HIGHs. The HOLD operation holds the previous value regardless of clock transitions. CLEAR overrides PRESET, PRESET overrides LOAD, and LOAD overrides HOLD.

The output register (Q_7-Q_0) is enabled when \overline{OE} is LOW, and disabled (HI-Z) when \overline{OE} is HIGH. The output drivers will sink the 24 mA required for many bus interface standards.

Features/Benefits

- Octal Register for general purposes interfacing applications
- 8 bits match byte boundaries
- Bus-structured pinout
 - 24-pin SKINNYDIP saves space
 - TRI-STATE® outputs
 - Low current PNP inputs reduce loading

THI-STATE® IS a registered trademark of National Semiconductor C

© 1995 National Semiconductor Corporation TL/L/8339

RRD-B30M115/Printed in U. S. A.

July 1989

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage V_{CC} 7V

Off-State Output Voltage Storage Temperature 5.5V -65° to +150°C

Operating Conditions

Symbol	Parameter		Military			Commercial			Unite
	i araneter			Тур	Max	Min	Тур	Max	onno
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
T _A	Operating Free-Air Temperature		-55		125*	0		75	°C
t _w Width	Width of Clock High Low	High	40			40			ne
		Low	35			35			113
t _{SU}	Set-Up Time		60			50			ne
t _h	Hold Time		0	-15		0	- 15		115
ICasa ta	maratura								

5.5V

*Case temperature

Input Voltage

Electrical Characteristics Over Operating Conditions

Symbol	Parameter		Test Conditio	ns	Min	Тур†	Max	Units
VIL	Low-Level Input Voltage						0.8	V
V _{IH}	High-Level Input Voltage				2			V
V _{IC}	Input Clamp Voltage	$V_{CC} = MIN$	$I_{I} = -18 \text{ mA}$				-1.5	V
IIL	Low-Level Input Current	$V_{CC} = MAX$	$V_l = 0.4V$				-0.25	mA
IIH	High-Level Input Current	V _{CC} =MAX	$V_1 = 2.4V$				25	μA
lj –	Maximum Input Current	V _{CC} =MAX	$V_{I} = 5.5V$				1	mA
V _{OL}	Low-Level Output Voltage	$V_{CC} = MIN$ $V_{IL} = 0.8V$	MIL	I _{OL} =12 mA			0.5	V
		V _{IH} =2V	СОМ	$I_{OL}=24 \text{ mA}$				
V _{OH}	High-Level Output Voltage	V _{CC} =MIN V _{IL} =0.8V	MIL	I_{OH} = -2 mA	2.4			V
		V _{IH} =2V	СОМ	I_{OH} = -3.2 mA				
I _{OZL}	Off-State Output Current	V _{CC} =MAX V _{IL} =0.8V		$V_0 = 0.4V$			- 100	μΑ
I _{OZH}		V _{IH} =2V		V _O =2.4V			100	μΑ
IOS	Output Short-Circuit Current*	V _{CC} =5.0V		V _O =0V	-30		- 130	mA
Icc	Supply Current	V _{CC} =MAX				120	180	mA

* No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second

 \dagger All typical values are at V_CC=5V. $T_A\!=\!25^\circ\!C$

Switching Characteristics Over Operating Conditions

Symbol	Parameter	Test Conditions	Military			С	Unite					
	rarameter	(See Test Load)	Min	Тур	Max	Min	Тур	Max	- Units MHz ns ns ns			
f _{MAX}	Maximum Clock Frequency	$C_{\rm t} = 50 \rm pE$	10.5			12.5			MHz			
t _{PD}	Clock to Q	B. = 2000	$B_{4} = 2000$	$B_1 = 2000$	$B_1 = 2000$		20	35		20	30	ns
t _{PZX}	Output Enable Delay	$B_0 = 3900$		35	55		35	45	ns			
t _{PXZ}	Output Disable Delay	112 00012		35	55		35	45	ns			

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.