Homework 3b

Name
As with all homework in this class, work on this alone. You can use your notes, books, and the internet.

1. Write the following 4×4 transformation matrices, assuming the column vector will be placed on the right during the multiplication that applies the transformation:
a) Scale uniformly by 2 in every dimension
b) Translate points by $(2,1,4)$
c) Scale by 2 and then translate by $(2,1,4)$
d) Transformation that undoes (inverts) the transformation from part (c)
e) If the answer from (c) transforms points on a surface to world space, what is the corresponding matrix for transforming normals of that surface to world space?
f) Rotate by 90 degrees counter-clockwise about the Z-axis.
2. Derive the inverse of the transformation matrix $R_{1} R_{2} S_{1} T_{l} S_{2}$ in terms of the inverses of the individual matrices.
3. A rigid-body or "RT" transformation is one that preserves lengths and angles (i.e. only rotation and translation occur). If the first column of the 4 x 4 matrix representing that transformation is given by column vector A and the third column by column vector B, what is the second column? Why?
4. A skew symmetric matrix has $K=-K^{\mathrm{T}}$. Compute the result of multiplying the skew symmetric matrix, K, below with a vector, v.

$$
\begin{aligned}
& K_{x, y, x}=\left[\begin{array}{ccc}
0 & -x & y \\
x & 0 & -z \\
-y & z & 0
\end{array}\right], v=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
& K v=?
\end{aligned}
$$

What do you notice about the result? Hint: consider the vectors (x, y, z) and $\left(v_{x}, v_{y}, v_{z}\right)$.

