Homework 0

Name
Compute the following values using linear algebra and calculus. You may use a textbook or the internet to find the algorithms but may not use a computer or calculator to perform the math. Show your work.

1. Determinant

$$
\left|\begin{array}{ll}
1 & 3 \\
7 & 5
\end{array}\right|=
$$

2. Matrix product

$$
\left[\begin{array}{ll}
1 & 7 \\
x & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
-y
\end{array}\right]=
$$

3. Inverse

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}=
$$

4. Matrix product

$$
\left[\begin{array}{lll}
1 & 6 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=
$$

5. Indefinite integral

$$
\int x d x=
$$

6. Definite integral (hint: the derivative of $\cos y$ is $-\sin y$, the derivative of $\sin y$ is $\cos y$)

$$
\int_{0}^{1} \int_{0}^{2 \pi} x \cos \phi \partial \phi \partial x=
$$

7. Partial derivative

$$
\frac{\partial\left[x_{0}+v t+\frac{1}{2} a t^{2}\right]}{\partial t}=
$$

8. Solve this linear system for x :

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \stackrel{\rightharpoonup}{x}=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

9. Solve this linear system for x :

$$
\mathbf{A} \vec{x}=\vec{b}
$$

10. What is the a priori probability two independent, fair 6 -sided die rolls summing to either 6 or 8 ?
11. Write a method or function in the programming language of your choice to convert a 16 -bit integer into a string representing the same value in hexadecimal. E.g., 249 -> "F9". You may not use any "toHex" or similar library functions. Specify the language that you used.
12. Given square invertible matrices \mathbf{A} and \mathbf{B}, and permutation matrix \mathbf{P} such that $\mathbf{B}=\mathbf{P A}$, prove that $\mathbf{P}\left(x^{T} \mathbf{A}^{-1}\right)^{\mathrm{T}}=\left(\mathbf{B}^{\mathrm{T}}\right)^{-1} x$ for all x.
