
CS 371 Project 3:

Recursive Rays

Figure 1: A city scene reflected in the specular paint and chrome trim of a Bugatti
Veyron. In this project you’ll learn to simulate the reflections and shadows that
make this image dramatic.

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Schedule . 2

2 Rules/Honor Code 3
2.1 Teams . 3

3 Individual Checkpoint 4

4 Team Checkpoint 5

5 Group Specification 6
5.1 Experiments . 7
5.2 Report . 7

6 Implementation Advice 9
6.1 Getting Started . 9
6.2 Workflow . 9
6.3 Recursive Rays . 9
6.4 Experiments . 9
6.5 Previewing Model Files . 10
6.6 Creating Compelling Scenes . 10

CS371 2010 | PROJECT 3: RECURSIVE RAYS

1 Introduction

1.1 Overview
Turner Whitted’s ray tracing algorithm [Whitted 1980] recursively cast additional
rays rays at each intersection point to create shadow, mirror reflection, and refrac-
tion phenomena. This is the core idea behind the family if ray-based techniques
that dominate realistic rendering today.

In this project, you’ll extend your direct-illumination ray caster to be a full ray
tracer with shadows, mirror reflection, and specular refraction. You’ll then design
and perform scalability experiment. In doing so, you’ll increase your ability to
translate mathematics into concrete software implementations and gain new skills
for software and algorithm analysis through experimentation.

1.2 Schedule Tip: This project intro-

duces experimentation af-

ter your software is com-

plete. Plan your time ac-

cordingly.

Available: Monday, September 25 8:00 pm
Individual Checkpoint: Wednesday, September 27, 12:00 pm

Team Checkpoint: Wednesday, September 27, 12:00 pm
Due: Monday, October 3, 12:00 pm

This is a moderately challenging project. You’ll probably only spend about 20
minutes implementing new features. However, beware that performing experiments
and documenting their results in the report can take substantial time–this includes
time adding infrastructure for the experiment, time for the experiment to execute,
and time analyzing the results.

As a reference, my solution required 300 statements and 300 comment lines
including the reports (as reported by iCompile), plus several data files. Most of this
was implemented for the previous week’s project. If your codebase looks like it is
going to be more than 1.5× larger or smaller, come talk to me because you may be
on a bad path.

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

2 Rules/Honor Code

Do not discuss material related to the individual checkpoint with any other
student until the deadline is past. You may discuss it with me and other faculty,
and use any other resources available except where prohibited below.

After the individual checkpoint, I encourage you to students in other groups to
share strategies, programming techniques, and data files. You should not look at
any group’s code for this project. You may look at and use anyone’s code from last
week’s project, with their permission.

During this project, you are not permitted to directly invoke the following classes
and methods or look at their source code: the G3D rayTrace sample program.

2.1 Teams Tip: Note that teams

and specifications are

growing, so you’ll need to

devote more time to plan-

ning and synchronization.

1. hanrahan: James R., Cody, Lily, Qiao, Donny

2. jensen: Scott P., Josh, Tucker, Parker

3. schlick: Jonathan, Lucky, April, Dan E.

4. kajiya: Alex, Nico, Michael, Dan F.

5. veach: Owen, Dan S., James W., Greg

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

3 Individual Checkpoint (Wed 12pm)

Submit on paper a design for the important elements of the RayTrace class by
extending the pseudocode in listing 1. Pay careful attention to structural types
(e.g., name points with capital letters, indicate vectors with explicit types or hats
and arrows, distinguish between a surfel and its location) and units. Abstract un-
interesting details such as iteration mechanisms and pointer syntax. This may be
hand-written if you print clearly. You can follow any clear and consistent pseudo-
code notation that you wish, it doesn’t have to be the same as mine. Note that you
may need to alter some of the code from my example.

I’ll evaluate the technical correctness, clarity, and design. A good design for a
mathematically-intense program should draw a clear correspondence between the
math and the program through appropriate method boundaries and variable names.
It should also reveal details that affect the computation but which may not appear
in the mathematics, such as how we handle impulses.

I expect that this will take you about half an hour if you have completed the
reading and taken good notes in class. If this looks like it will take you more
than an hour, please just hand in whatever you accomplish in an hour and make an
appointment to see me so that we can review your approach.

Keep a copy of your design to discuss with your team after the checkpoint.

render() : Image
iterate over pixels (maybe concurrently), launching traceOnePixel

traceOnePixel(x : integer, y : integer) : void
generate ray (P, w) through the pixel center
set the pixel to Li(P, w)

Li(P : Rˆ3m, w : Sˆ2) : W/(mˆ2 sr)
trace P + tw to the first intersection, described by surfel
wo = -w
return Lo(surfel, wo)

Lo(surfel, wo : Sˆ2) : W/(mˆ2 sr)
X = surfel.location
for each light in lighting.lightArray:

Y = light.cframe().translation
wi = (Y - X).direction()
...

return surfel.emittedRadiance(wo) + ...

...

Listing 1: Starter pseudocode for this week’s renderer.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

4 Team Checkpoint (Thu 1pm)

Submit on paper a schedule for your development, experimentation, and documen-
tation process. Recall that a schedule ties together team members, times at which
work is done, and what the tasks are, as shown in figure 2. The individual elements
should be no longer than two hours. Keep a copy up to date throughout the project
(it need not be in SVN–you can use any scheduling tools that you wish).

I’m not requiring your report to be drafted at a specific time any more, but by now
you should recognize the team workflow advantages of establishing your report
and journal early in the week. Likewise, I recommend that you get in the habit of
reaching the crux of the project before the scheduled lab session. If you achieve
this, I’ll be available to answer questions on the most challenging aspects as you
reach them, and you may be able to entirely avoid working on the weekend.

Figure 2: Reference schedule for a two-person team working on a weekend game
jam project, such as Ludum Dare. Note that tasks are assigned to a specific team
member, at a specific time. This allows close coordination and ensures that there
are no schedule conflicts. On a larger team, the team leader can also check after
each task to make sure that the process is in control. Note that you should not be
working this much on a 371 project!

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

5 Group Specification (Mon 10pm)

Complete the following by extending the Eye Rays project from last week:

1. Extend the RayTrace::Settings class and its GUI representation with:

(a) a boolean to enable shadows

(b) an integer for the number of recursive backwards tracing steps, where a
setting of 1 gives direct illumination (the same results as last week) and
2 creates single-mirror reflections.

(c) an integer for the number of primary rays per pixel

2. Extend the RayTrace::Stats class and its GUI representation with ray
counts for:

(a) Primary rays

(b) Indirect (impulse) rays

(c) Shadow rays

(d) Total rays

3. Restrict spot light illumination to the area within the spotlight cone.

4. Shadow ray casting.

5. Recursive BSDF impulse (reflection and refraction) ray tracing.

6. Emissive surfaces (if you did not do so last week).

7. If there are multiple rays per pixel, distribute them uniformly at random
within a pixel and average the result (this is not optimal sampling, but is
easy). If there is one ray per pixel, cast it through the center.

8. Analysis of the runtime of the program, as described in Sections 5.1 and 5.2.

9. A set of simple images that demonstrate that spot light, emissive, shadow
rays, and impulses are working correctly individually (e.g., a Cornell Box
with a mirror sphere). These are targeted experiments for showing that fea-
tures exist, and for debugging them. This is one form of scientific visual
communication (the plots in the report are another!) Tip: Consider the whole

composition and not just

the scientific elements.

For example, if you render

a room, then you’ll need

not only lights, reflectors,

and shadow casters, but

other elements to tie it all

together such as a rug and

some chairs.

10. A visually compelling image (or set of images) of your own design that
demonstrate that spot light, emissive, shadow rays, and impulses are work-
ing correctly. This should be an image that shows that the features scale and
interact well. The image needs to contain specific features, but should stand
on its own visually. A layperson should be impressed by the image, and any-
one looking at it should immediately understand what is shown and that the
rendering is good.

11. Perform the experiments described in section 5.1 and create the documenta-
tion report specified in section 5.2.

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

5.1 Experiments
The goal of the performance experiments is to determine how algorithmic changes
and program parameters affect the runtime of the program.

We can provide theoretical analysis of the Whitted ray tracing algorithm; it is
clearly linear in the ray depth, number of pixels, and rays per pixel, and for suitable
assumptions logarithmic in the number of triangles in the scene. The constants
might matter significantly at even the relatively large number of triangles and rays
considered and the assumptions needed for the analysis might not be satisfied in
practice. The scenes and resolutions that we care about may not be well-represented
by the asymptotic behavior. Architectural issues such as cache behavior and branch
coherence are hard to predict for real scenes, where the input statistics are unknown.

By this point in your computer science career, you should expect that exhaus-
tively processing array will give roughly linear performance in the length of the
array, that any kind of tree will give asymptotically logarithmic performance, and
that increasing the number of threads for this kind of problem will give an asymp-
totically linear speedup. This will be the case for this project. Your experiments
should trivially verify this; it is one of the first tests that your data structures are
implemented correctly. (Although make sure that you’re using a big enough scene
and image, such as Sponza at 640×400.)

What you should be thinking about and attempting to test in your experiments
are the non-asymptotic, real-world factors. For example, at what point does the tree
actually outperform the array? For small data sets, the constants might favor the
array. Do you observe the impact of the data set no longer fitting in cache for a
certain image or scene size? What impact does TriTree have on the size of the
data in memory? Is it linear? What is the overhead of running multiple threads that
prevents you from observing a purely linear speedup? What are scenarios where
one thread per core would not increase performance over a single thread? What
are scenarios where having more threads than cores would continue to improve
performance?

Explain experiments that you would perform for important questions such
as these, and actually perform a few of them. I’m not giving you a specific check
list of questions this week. I want you to take responsibility for the time and space
performance of your program and investigate it following your own intuition.

5.2 Report
Write an appropriately-formatted report that covers the following topics:

1. An architectural overview of your program.

2. Discuss significant design choices that you made, and argue why your choices
were good for this project.

3. Discuss any known errors in your program, and how you identified and at-
tempted to correct them.

4. A plot depicting time to render vs. number of triangles for a heigh tfield
using at least the following variants on the ray casting algorithm:

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

• Using array search with a single thread at 320× 180

• Using array search with with multiple threads at 320× 180

• Using tree search with a single thread at 320× 180

• Using tree search with multiple threads at 320× 180

• Using tree search with multiple threads at 160× 90

• Using tree search with multiple threads at 640× 360

• Using tree search with multiple threads at 1280× 720

Figure 3: The “Mirror
Box” with 1, 2, and 7
backwards bounces.

Figure 4: A version of
the Cornell Box with re-
flections, shadows, and a
specularly reflective ob-
ject. Your results may
differ slightly depending
on where you put the
light source.

These plots should have properly labelled axes (including units and the num-
ber of threads launched) and appropriate trendlines. Put all of the plots on the
same image so that it is easy to compare them. Use colors/patterns that will
be visually distinguished if printed in grayscale or viewed by a color-blind
observer. Add a brief paragraph of concluding remarks based on the data.
Note that you do not need to use a spreadsheet to draw plots, and often that is
the worst way to accomplish visualization of data (see Tufte’s Visual Display
of Quantitative Information [Tufte 1986]), particularly if you use the default
settings. I frequently draw mine “freehand” in presentation or illustration
software (being careful to measure distances correctly).

5. Conclusions from your performance experiments.

6. Show pictures of the following scenes rendered with ray tracing:

(a) The Cornell Box scene, as shown in Figure 4.
(b) The Cornell-like Mirror Box scene with 1, 2, and 7 backwards bounces,

as shown in Figure 3.
(c) Individual targeted visual experiments showing that each illumination

term is implemented correctly.
(d) A visually compelling scene of your choice that demonstrates all of the

features of your program, such as Figure 1. This need not be an entirely
new scene; you can extend a scene that you or another student created
for a previous project. Remember to commit the scene file and any-
thing not in mac-cs-local that it needs to run to the data-files
directory.

7. Feedback. Your feedback is important to me for tuning the upcoming projects
and lectures. Please report:

(a) How many hours you spent (per-person, on average), including sched-
uled lab, on required elements, i.e., the minimum needed to satisfy the
specification.

(b) How many additional hours you spent on optional elements, such as
polishing your custom scene or adding new features.

(c) Rate the difficulty of this project for this point in a 300-level course as:
too easy, easy, moderate, challenging, or too hard. What made it so?

(d) A list of what you learned while working on this project. Make sure all
team members contribute to this list.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

6 Implementation Advice

6.1 Getting Started
Start by exporting the previous week’s code to new Subversion project. See the
Tools handout from last week or refer to the Subversion manual for information
about how to do this. Remember that you can use anybody’s code from the previous
week with their permission, so if you aren’t happy with your own project as a
starting point, just ask around.

The Subversion command to check out your project this week is:

svn co svn://graphics-svn.cs.williams.edu/371/3-RecursiveRays/recursive-<group>

Replace <group> with your group name.

6.2 Workflow
Read the Padraic Hennessy’s 2010 Programmer Workflow document (which was
assigned reading last week) again. Ask yourself and your partners if you are fol-
lowing the workflow style that it advocates. Spend time talking about your work-
flow and coordination (not just schedule) for the project–a little “meta” discussion
up front could save you a few hours over the course of the project. Actively critique
each other’s workflow. Suggestions such as “let me show you how to do that with-
out taking your hands off the keyboard,” “this would be more effective to debug
using gdb,” and “we’re stuck in a rathole–let’s patch around this bug and move on
for now,” can save us hours over the course of a project.

You already completed the key design elements for this project individually. So
consider programming in parallel, with each team member working on a different
method or part of the report. Likewise, you can run many of the experiments in
parallel and can write the report in parallel.

6.3 Recursive Rays
Compute shadow rays by casting a ray from the surface towards the light. You can
cast the ray the other way around, but this makes it a little easier when you move
on to implement impulse scattering. Stop tracing when you reach the light–objects
behind the light don’t cast shadows!

Note that there is an optional argument for TriTree::intersect to stop
tracing at any intersection, not just the first one. Consider when you might use this,
and why it is useful.

If you cast from exactly at the surface position, sometimes you will intersect the
surface itself due to finite precision roundoff in floating point representation. To
avoid this, bump the ray slightly away from the surface by offsetting the starting
point. I prefer to bump the ray by a small distance (such as 0.0001 m) along the
geometric normal of the surface. Others bump the ray along the shading normal or
the ray direction. Explain why you chose one of these over the others.

6.4 Experiments
When you perform experiments, it is important to hold all parameters constant ex- Tip: Make sure you run

your performance exper-

iments on an optimized

build!

cept for the one you are intentionally varying. That means that you should render

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371/f10/files/workflow.pdf
http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

images with the camera in the same location relative to the heightfield, the height-
field filling the same portion of the screen, and at the same resolution (unless you
are intentionally varying the resolution). You can generate heightfields at various
resolutions by using the Photoshop Image/Image Size... command. It doesn’t mat-
ter for this project whether you start at the largest or smallest.

What heightfield sizes should you use? That depends on the speed of your imple-
mentation and processor. Using small heightfields will minimize your experiment
time, which is important because the ray casting algorithm can take hours to run.
But for heightfields that are too small, random fluctuations in the testing environ-
ment (e.g., background processes), and the overhead of thread launch and startup
memory behavior will drown out the actual long-term performance characteristics
of the algorithm. You should therefore perform some preliminary trials to find a
reasonable medium between these. The longest run will be for the single-threaded
array implementation. Target a 15-minute render time for that algorithm.

Add some data points for tree tracing that are beyond those that would be reason-
able to test with array access. That is, your plot should show a trend for both array
and tree methods until the array performance seems to be well understood and is
getting unwieldy to continue measuring. You can then extrapolate the array trend
and continue to measure the tree trend explicitly.

Assuming that you are reasonably confident that you have two computers with
the same performance characteristics, you may run experiments in parallel on mul-
tiple machines. A good way to do this is to duplicate a few experiments to verify
that they take the same amount of time on the different machines, and then run
unique experiments from then on. This can substantially reduce the amount of time
that you spend in lab.

6.5 Previewing Model Files

G3D comes with a program called “viewer” that can load most of the data files that
G3D classes can load, including images, movies, 3D models, cube maps, fonts, and
GUI themes. The program is in the bin/viewer/viewer.

6.6 Creating Compelling Scenes

I used several tricks to model the scene in Figure 1. You need not employ the
same tricks that I did. But you should use your newfound modeling skills and bold
exploration of the G3D documentation of the various G3D Specification classes to
push your renderer beyond its nominal capabilities using clever scenes.

For example, The shadows under the car aren’t perfectly dark–I achieved that
effect using a shadow casting sun light and a second, non-shadow casting light to
emulate the sky. Even though we don’t know how to ray trace a cubemap, my car
is still reflecting a cloudy sky. I did this by loading a cube map’s individual faces
and building a giant emissive cube around the scene.

References
COLLINS-SUSSMAN, B., FITZPATRICK, B. W., AND PILATO, C. M. 2008. Subversion complete reference. In

Version Control with Subversion. O’Reilly, ch. 9. http://svnbook.red-bean.com/en/1.5/svn.

http://graphics.cs.williams.edu/courses/cs371 10

http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | PROJECT 3: RECURSIVE RAYS

ref.html.

TUFTE, E. R. 1986. The visual display of quantitative information. Graphics Press, Cheshire, CT, USA. 8

WHITTED, T. 1980. An improved illumination model for shaded display. Commun. ACM 23, 6 (June), 343–349.
2

http://graphics.cs.williams.edu/courses/cs371 11

http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://graphics.cs.williams.edu/courses/cs371

Index

asymptotic performance, 7

bump, 9

checkpoint, 4, 5
Cornell Box, 8

experiment, 7, 9

height field, 7

Mirror Box, 8

RayTrace::Settings, 6
RayTrace::Stats, 6
render, 4
report, 7

shadow, 6
Sponza, 7
spot light, 6
Subversion export, 9

teams, 3
thread, 7
traceOnePixel, 4
TriTree, 7, 8

viewer, 10

Whitted ray tracing, 7
workflow, 9

	Introduction
	Overview
	Schedule

	Rules/Honor Code
	Teams

	Individual Checkpoint
	Team Checkpoint
	Group Specification
	Experiments
	Report

	Implementation Advice
	Getting Started
	Workflow
	Recursive Rays
	Experiments
	Previewing Model Files
	Creating Compelling Scenes

