Dynamic Programming: Shortest Paths

Algorithm Design & Analysis

Spring 2019
Outline
The Problem

Allow negative edge costs in the shortest paths problem.

Assume no negative cost cycles.
The RoadMap

• Establish appropriate optimality recurrence
• Determine complexity
• Reduce space requirements
• Preserve ability to find path given reduced space
The RoadMap

- Establish appropriate optimality recurrence
The RoadMap

- Establish appropriate optimality recurrence
- Determine complexity
The RoadMap

- Establish appropriate optimality recurrence
- Determine complexity
- Reduce space requirements
The RoadMap

- Establish appropriate optimality recurrence
- Determine complexity
- Reduce space requirements
- Preserve ability to find path given reduced space
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$

Let $opt(i, v) = \min_{P} \{ c(P) : P \text{ is a } v - t \text{ path of length at most } i \}$
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$

Let $opt(i, v) = \min_P\{c(P) : P$ is a $v - t$ path of length at most $i\}$

Heads-Up:
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$

Let $opt(i, v) = \min_P \{ c(P) : P \text{ is a } v - t \text{ path of length at most } i \}$

Heads-Up:
- Path $length$ refers to number of edges on path
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$

Let $opt(i, v) = \min_{P} \{c(P) : P$ is a $v - t$ path of length at most $i\}$

Heads-Up:
- Path \textit{length} refers to number of edges on path
- Path \textit{cost} refers to sum of costs of edges on path
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$

Let $opt(i, v) = \min_{P} \{ c(P) : P \text{ is a } v-t \text{ path of length at most } i \}$

Heads-Up:

- Path *length* refers to number of edges on path
- Path *cost* refers to sum of costs of edges on path

Note that
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$

Let $opt(i, v) = \min_{P} \{c(P) : P \text{ is a } v - t \text{ path of length at most } i\}$

Heads-Up:

- Path length refers to number of edges on path
- Path cost refers to sum of costs of edges on path

Note that

- $opt(i, t) = 0$ and $opt(0, v) = \infty$ if $v \neq t$.
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$

Let $opt(i, v) = \min\{c(P) : P$ is a $v - t$ path of length at most $i\}$

Heads-Up:

- Path length refers to number of edges on path
- Path cost refers to sum of costs of edges on path

Note that

- $opt(i, t) = 0$ and $opt(0, v) = \infty$ if $v \neq t$.
- $opt(1, v) = c(v, t)$ if $(v, t) \in E$; $opt(1, v) = \infty$ otherwise.
The Bellman-Ford Algorithm

Assume G directed with edge costs $c(u, v)$ for each $(u, v) \in E$

Let $opt(i, v) = \min_{P} \{ c(P) : P$ is a $v - t$ path of length at most $i \}$

Heads-Up:

- Path \textit{length} refers to number of edges on path
- Path \textit{cost} refers to sum of costs of edges on path

Note that

- $opt(i, t) = 0$ and $opt(0, v) = \infty$ if $v \neq t$.
- $opt(1, v) = c(v, t)$ if $(v, t) \in E$; $opt(1, v) = \infty$ otherwise.
- $opt(i, v) \leq opt(i - 1, v)$ for all $i > 0$
The Optimality Recurrence

Let P be a minimum-cost path from v to t using at most i edges.
The Optimality Recurrence

Let P be a minimum-cost path from v to t using at most i edges.

- That is, $c(P) = \text{opt}(i, v)$
The Optimality Recurrence

Let P be a minimum-cost path from v to t using at most i edges.

- That is, $c(P) = \text{opt}(i, v)$

Observe that
The Optimality Recurrence

Let P be a minimum-cost path from v to t using at most i edges.

- That is, $c(P) = \text{opt}(i, v)$

Observe that

- If P has length less than i, then $\text{opt}(i, v) = \text{opt}(i - 1, v)$.
The Optimality Recurrence

Let P be a minimum-cost path from v to t using at most i edges.

- That is, $c(P) = \text{opt}(i, v)$

Observe that

- If P has length less than i, then $\text{opt}(i, v) = \text{opt}(i - 1, v)$.
- If P has length i, P consists of some edge (v, u) and a path of length $i - 1$ from u to t, so
The Optimality Recurrence

Let P be a minimum-cost path from v to t using at most i edges.

- That is, $c(P) = opt(i, v)$

Observe that

- If P has length less than i, then $opt(i, v) = opt(i - 1, v)$.
- If P has length i, P consists of some edge (v, u) and a path of length $i - 1$ from u to t, so
 \[opt(i, v) = c(v, u) + opt(i - 1, u). \]
The Optimality Recurrence

Let P be a minimum-cost path from v to t using at most i edges.

- That is, $c(P) = opt(i, v)$

Observe that

- If P has length less than i, then $opt(i, v) = opt(i - 1, v)$.
- If P has length i, P consists of some edge (v, u) and a path of length $i - 1$ from u to t, so
 $$opt(i, v) = c(v, u) + opt(i - 1, u).$$
- Therefore,
The Optimality Recurrence

Let P be a minimum-cost path from v to t using at most i edges.

- That is, $c(P) = opt(i, v)$

Observe that

- If P has length less than i, then $opt(i, v) = opt(i - 1, v)$.
- If P has length i, P consists of some edge (v, u) and a path of length $i - 1$ from u to t, so

 $$opt(i, v) = c(v, u) + opt(i - 1, u).$$

- Therefore,

 $$opt(i, v) = \min_{(v, u) \in E} \{opt(i - 1, v), c(v, u) + opt(i - 1, u)\}$$
Complexity Analysis

Observation: $opt(n - 1, s)$ is the cost of the optimal path from s to t.
Complexity Analysis

Observation: $opt(n - 1, s)$ is the cost of the optimal path from s to t.

That is: $opt(k, -)$ needn’t be computed for any $k \geq n$
Complexity Analysis

Observation: \(opt(n - 1, s)\) is the cost of the optimal path from \(s\) to \(t\).

That is: \(opt(k, -)\) needn’t be computed for any \(k \geq n\)

Proof:
Complexity Analysis

Observation: $opt(n - 1, s)$ is the cost of the optimal path from s to t.

That is: $opt(k, -)$ needn’t be computed for any $k \geq n$

Proof:

- Any path of length (number of edges) $k \geq n$ must contain a cycle
Complexity Analysis

Observation: $opt(n - 1, s)$ is the cost of the optimal path from s to t.

That is: $opt(k, -)$ needn’t be computed for any $k \geq n$

Proof:

- Any path of length (number of edges) $k \geq n$ must contain a cycle
- Every cycle cost is at least 0; removing cycles from a path doesn’t increase cost.
Complexity Analysis

Observation: $opt(n - 1, s)$ is the cost of the optimal path from s to t.

That is: $opt(k, -)$ needn’t be computed for any $k \geq n$

Proof:

- Any path of length (number of edges) $k \geq n$ must contain a cycle
- Every cycle cost is at least 0; removing cycles from a path doesn’t increase cost.

Space: $Opt[-,-]$ table takes $O(n^2)$ space.
Complexity Analysis

Observation: $opt(n - 1, s)$ is the cost of the optimal path from s to t.

That is: $opt(k, -)$ needn’t be computed for any $k \geq n$

Proof:
- Any path of length (number of edges) $k \geq n$ must contain a cycle
- Every cycle cost is at least 0; removing cycles from a path doesn’t increase cost.

Space: $Opt[-, -]$ table takes $O(n^2)$ space.

Time: An entry of $Opt[-, -]$ might take $O(n)$ time to compute, for total of $O(n^3)$
Better Time Complexity Analysis

Let’s count table accesses in construction of $opt[-,-]$
Better Time Complexity Analysis

Let’s count table accesses in construction of $opt[−,−]$

- $opt[i, v]$ considers each neighbor of v, so it makes $outDeg(v)$ table accesses of $opt[−,−]$.
Better Time Complexity Analysis

Let's count table accesses in construction of $opt[-, -]$

- $opt[i, v]$ considers each neighbor of v, so it makes $outDeg(v)$ table accesses of $opt[-, -]$.
- Filling in $Opt[i, -]$ requires $\sum_{v \in V-\{t\}} outDeg(v)$ accesses.
Better Time Complexity Analysis

Let’s count table accesses in construction of $opt[−,−]$

- $opt[i, v]$ considers each neighbor of v, so it makes $outDeg(v)$ table accesses of $opt[−,−]$.
- Filling in $Opt[i, −]$ requires $\sum_{v \in V \setminus \{t\}} outDeg(v)$ accesses.
- This sum is at most m, since each edge is used at most once.
Better Time Complexity Analysis

Let's count table accesses in construction of $opt[-, -]$

- $opt[i, v]$ considers each neighbor of v, so it makes $outDeg(v)$ table accesses of $opt[-, -]$.
- Filling in $Opt[i, -]$ requires $\sum_{v \in V - \{t\}} outDeg(v)$ accesses.
- This sum is at most m, since each edge is used at most once.
- There are n rows to the table, so total time is $O(mn)$
Better Time Complexity Analysis

Let’s count table accesses in construction of $opt[−,−]$

- $opt[i, v]$ considers each neighbor of v, so it makes $outDeg(v)$ table accesses of $opt[−,−]$.
- Filling in $Opt[i, −]$ requires $\sum_{v \in V − \{t\}} outDeg(v)$ accesses.
- This sum is at most m, since each edge is used at most once.
- There are n rows to the table, so total time is $O(mn)$
- Actual path can be extracted from table in $O(m)$ time or built into table.
Improving Memory Requirements

Observation: $\text{opt}[i, -]$ depends only on $\text{opt}[i - 1, -]$

• Use a 1-dim array $\text{opt}[]$, initialized to $\text{opt}[1, -]$, and a temporary array $\text{hold}[]$.

• Set $\text{hold}[v] \leftarrow \min(v, u) \in E\{\text{opt}[v], c(v, u) + \text{opt}[u]\}$

• Then set $\text{opt}[] \leftarrow \text{hold}[]$; repeat $n - 3$ more times

• This gives $O(n)$ space complexity beyond the storing of the graph.

How can we extract path now?
Observation: $opt[i, -]$ depends only on $opt[i - 1, -]$

- Use a 1-dim array $opt[]$, initialized to $opt[1, -]$, and a temporary array $hold[]$.
Observation: $opt[i, −]$ depends only on $opt[i − 1, −]$

- Use a 1-dim array $opt[]$, initialized to $opt[1, −]$, and a temporary array $hold[]$.
- Set $hold[v] \leftarrow \min_{(v, u) \in E} \{opt[v], c(v, u) + opt[u]\}$
Improving Memory Requirements

Observation: \(\text{opt}[i, -] \) depends only on \(\text{opt}[i - 1, -] \)

- Use a 1-dim array \(\text{opt}[] \), initialized to \(\text{opt}[1, -] \), and a temporary array \(\text{hold}[] \).
- Set \(\text{hold}[v] \leftarrow \min_{(v, u) \in E} \{ \text{opt}[v], c(v, u) + \text{opt}[u] \} \)
- Then set \(\text{opt}[] \leftarrow \text{hold}[] \); repeat \(n - 3 \) more times

This gives \(O(n) \) space complexity beyond the storing of the graph.

How can we extract path now?
Observation: $opt[i, -]$ depends only on $opt[i - 1, -]$

- Use a 1-dim array $opt[]$, initialized to $opt[1, -]$, and a temporary array $hold[]$.
- Set $hold[v] \leftarrow \min_{(v, u) \in E} \{opt[v], c(v, u) + opt[u]\}$.
- Then set $opt[] \leftarrow hold[]$; repeat $n - 3$ more times.
- This gives $O(n)$ space complexity beyond the storing of the graph.
Observation: $opt[i, -]$ depends only on $opt[i - 1, -]$

- Use a 1-dim array $opt[]$, initialized to $opt[1, -]$, and a temporary array $hold[]$.
- Set $hold[v] \leftarrow \min_{(v, u) \in E} \{opt[v], c(v, u) + opt[u]\}$
- Then set $opt[] \leftarrow hold[]$; repeat $n - 3$ more times
- This gives $O(n)$ space complexity beyond the storing of the graph.

How can we extract path now?
Storing the Paths

Idea: Add an array `next[v]` holding vertex after `v` on the current candidate shortest path from `v` to `t`.

- `next[v]` is initialized to `null` for all `v`
- If `opt[v]` changes, update `next[v]` to hold the next vertex on the new (shorter) path from `v` to `t`.
- Let `T` be the graph containing all edges `(v, next[v])`. `T` is dynamically changing.
- Claim: `T` is a tree throughout process.
- After `i^{th}` iteration, `T` contains shortest `v`–`t` paths of length at most `i`.
Proof that T (ignoring edge directions) is a tree

First show that $|V(T)| - 1 = |E(T)|$.

• Base Case: T begins by containing $\{t\}$ and no edges.

• Consider a point at which $opt[v]$ is being changed.

• Then $opt[v] > c(v,u) + opt[u]$ for some neighbor u of v.

• So u is in T (since $opt[u] \neq \infty$).

• If v is in T, then $next[v] = w \neq \text{null}$ so $(v,w) \in T$ is replaced by $(v,u) \in T$.

• If v is not in T, then we are adding a new vertex and a new edge to T.

Finally, observe that for every $v \in T$ there is a path from v to t, so T (undirected) is connected.
Proof that T (ignoring edge directions) is a tree

First show that $|V(T)| - 1 = |E(T)|$.

- Base Case: T begins by containing $\{t\}$ and no edges

\[\begin{align*}
\text{Base Case: } T \text{ begins by containing } \{t\} \text{ and no edges}
\end{align*} \]
Proof that T (ignoring edge directions) is a tree

First show that $|V(T)| - 1 = |E(T)|$.

- Base Case: T begins by containing $\{t\}$ and no edges
- Consider a point at which $opt[v]$ is being changed
Proof that \(T \) **(ignoring edge directions) is a tree**

First show that \(|V(T)| - 1 = |E(T)|\).

- **Base Case:** \(T \) begins by containing \(\{t\} \) and no edges
- **Consider a point at which** \(opt[v] \) **is being changed**
- **Then** \(opt[v] > c(v, u) + opt[u] \) **for some neighbor** \(u \) **of** \(v \)
Proof that T (ignoring edge directions) is a tree

First show that $|V(T)| - 1 = |E(T)|$.

- Base Case: T begins by containing $\{t\}$ and no edges
- Consider a point at which $opt[v]$ is being changed
- Then $opt[v] > c(v, u) + opt[u]$ for some neighbor u of v
- So u is in T (since $opt[u] \neq \infty$)
Proof that T (ignoring edge directions) is a tree

First show that $|V(T)| - 1 = |E(T)|$.

- Base Case: T begins by containing $\{t\}$ and no edges
- Consider a point at which $opt[v]$ is being changed
- Then $opt[v] > c(v, u) + opt[u]$ for some neighbor u of v
- So u is in T (since $opt[u] \neq \infty$)
- If v is in T, then $next[v] = w \neq null$ so $(v, w) \in T$ is replaced by $(v, u) \in T$
Proof that T (ignoring edge directions) is a tree

First show that $|V(T)| - 1 = |E(T)|$.

- Base Case: T begins by containing $\{t\}$ and no edges
- Consider a point at which $opt[v]$ is being changed
- Then $opt[v] > c(v, u) + opt[u]$ for some neighbor u of v
- So u is in T (since $opt[u] \neq \infty$)
- If v is in T, then $next[v] = w \neq null$ so $(v, w) \in T$ is replaced by $(v, u) \in T$
- If v is not in T, then we are adding a new vertex and a new edge to T
Proof that T (ignoring edge directions) **is a tree**

First show that $|V(T)| - 1 = |E(T)|$.

- **Base Case:** T begins by containing $\{t\}$ and no edges
- **Consider a point at which** $opt[v]$ **is being changed**
- **Then** $opt[v] > c(v, u) + opt[u]$ **for some neighbor** u **of** v
- **So** u **is in** T **(since** $opt[u] \neq \infty$)
- **If** v **is in** T, **then** $next[v] = w \neq null$ **so** $(v, w) \in T$ **is replaced by** $(v, u) \in T$
- **If** v **is not in** T, **then we are adding a new vertex and a new edge to** T

Finally, observe that for every $v \in T$ there is a path from v to t, so T (undirected) is connected.
Proof that T is a tree

Now show that T contains no cycles (just for fun, we already know that T is a tree)
Proof that T is a tree

Now show that T contains no cycles (just for fun, we already know that T is a tree)

- Assume updating $opt[v]$ creates a cycle in T
Proof that T is a tree

Now show that T contains no cycles (just for fun, we already know that T is a tree)

- Assume updating $opt[v]$ creates a cycle in T
- Then the cycle looks like $v = v_0, v_1, \ldots, v_n = v$, where each $v_{i+1}(i < n) = next[v_i]$

But this is a negative weight cycle! $\Rightarrow \Leftarrow$.
Proof that T is a tree

Now show that T contains no cycles (just for fun, we already know that T is a tree)

- Assume updating $\text{opt}[v]$ creates a cycle in T
- Then the cycle looks like $v = v_0, v_1, \ldots, v_n = v$, where each $v_{i+1} (i < n) = \text{next}[v_i]$
- By definition of \text{next}[], $\text{opt}[v_0] > c(v_0, v_1) + \text{opt}[v_1]$

\[\text{Also } \text{opt}[v_i] = c(v_i, v_{i+1}) + \text{opt}[v_{i+1}], \text{ for all } i < n\]

\[\text{Thus } \text{opt}[v_0] > (i = n \sum_{i = 0}^{n-1} c(v_i, v_{i+1})) + \text{opt}[v_n]\]

\[\Rightarrow \Leftarrow\]
Proof that T is a tree

Now show that T contains no cycles (just for fun, we already know that T is a tree)

- Assume updating $opt[v]$ creates a cycle in T
- Then the cycle looks like $v = v_0, v_1, \ldots, v_n = v$, where each $v_{i+1}(i < n) = next[v_i]$
- By definition of $next[]$, $opt[v_0] > c(v_0, v_1) + opt[v_1]$
- Also $opt[v_i] = c(v_i, v_{i+1}) + opt[v_{i+1}]$, for all $i < n$
Proof that T is a tree

Now show that T contains no cycles (just for fun, we already know that T is a tree)

- Assume updating $opt[v]$ creates a cycle in T
- Then the cycle looks like $v = v_0, v_1, \ldots, v_n = v$, where each $v_{i+1}(i < n) = \text{next}[v_i]$
- By definition of $\text{next}[]$, $opt[v_0] > c(v_0, v_1) + opt[v_1]$
- Also $opt[v_i] = c(v_i, v_{i+1}) + opt[v_{i+1}]$, for all $i < n$

Thus $opt[v_0] > (\sum_{i=0}^{i=n-1} c(v_i, v_{i+1})) + opt[v_n]$ \hspace{1cm} (1)

$= (\sum_{i=0}^{i=n} c(v_i, v_{i+1})) + opt[v_0]$, where $v_{n+1} = v_0$ \hspace{1cm} (2)
Proof that T is a tree

Now show that T contains no cycles (just for fun, we already know that T is a tree)

- Assume updating $opt[v]$ creates a cycle in T
- Then the cycle looks like $v = v_0, v_1, \ldots, v_n = v$, where each $v_{i+1}(i < n) = next[v_i]$
- By definition of $next[]$, $opt[v_0] > c(v_0, v_1) + opt[v_1]$
- Also $opt[v_i] = c(v_i, v_{i+1}) + opt[v_{i+1}]$, for all $i < n$

\[
\begin{align*}
 \text{Thus } opt[v_0] &> \left(\sum_{i=0}^{i=n-1} c(v_i, v_{i+1}) \right) + opt[v_n] \\
 &= \left(\sum_{i=0}^{i=n} c(v_i, v_{i+1}) \right) + opt[v_0], \text{ where } v_{n+1} = v_0
\end{align*}
\]

- But this is a negative weight cycle! $\Rightarrow \Leftarrow$.
Summary

- \(\text{opt} \) and \(\text{next} \) are of size \(n \) and each of \(n - 2 \) updates takes \(O(m) \) time.
- Upon completion, \(\text{next} \)[\(v \)] contains first link in a cheapest path from \(v \) to \(t \).
- Total space required is \(O(m + n) \).
- Total time required is \(O(mn) \).
- Not quite as fast as Dijkstra, but more general.
Summary

• $opt[-]$ and $next[-]$ are of size n and each of $n-2$ updates takes $O(m)$ time.
Summary

- $opt[-]$ and $next[-]$ are of size n and each of $n - 2$ updates takes $O(m)$ time.
- Upon completion, $next[v]$ contains first link in a cheapest path from v to t.
Summary

• $opt[\cdot]$ and $next[\cdot]$ are of size n and each of $n - 2$ updates takes $O(m)$ time.
• Upon completion, $next[v]$ contains first link in a cheapest path from v to t.
• Total space required is $O(m + n)$
Summary

- $opt[-]$ and $next[-]$ are of size n and each of $n - 2$ updates takes $O(m)$ time.
- Upon completion, $next[v]$ contains first link in a cheapest path from v to t.
- Total space required is $O(m + n)$
- Total time required is $O(mn)$.
Summary

• $opt[\cdot]$ and $next[\cdot]$ are of size n and each of $n - 2$ updates takes $O(m)$ time.
• Upon completion, $next[v]$ contains first link in a cheapest path from v to t.
• Total space required is $O(m + n)$
• Total time required is $O(mn)$.
• Not quite as fast as Dijkstra, but more general.