All The World’s NP-Complete, And All of Us Merely P...

Every problem in this assignment (except the optional challenge problem) involves transforming some problem X into another problem Y such that

- Any instance of problem X satisfying some property Q corresponds to an instance of problem Y satisfying some (hopefully related!) property Q', and
- Any instance of problem X not satisfying property Q corresponds to an instance of problem Y not satisfying property Q'. This is often proven by contrapositive by assuming that the instance of problem Y does satisfy Q' and showing that the instance of problem X from which it was derived must have satisfied property Q.
- The instance of problem Y constructed from an instance of problem X is not too big.

Be sure to establish each of these facts in your solutions!

Notes:

- In proving NP-completeness for a problem Y, time spent selecting the most appropriate NP-complete problem X to reduce from is time well spent!
- Students often ask “Which problems can I use as the ‘known’ NP-complete problem?” You can use any of the problems whose NP-completeness was established in class, the slides, or Chapter 8 of the text. These are:
 - Independent Set
 - Vertex Cover
 - Set Cover
 - SAT, 3SAT, ATMOST3SAT, CIRCUITSAT
 - Hamiltonian Cycle, Hamiltonian Path, Longest Path, Decision version of Traveling Salesperson Problem
 - Subset Sum, Knapsack
 - 3-D Matching
 - Graph 3-Coloring, Graph k-Coloring ($k \geq 3$)
 - Circular Arc k-Coloring

Question 1. *Chapter 8, Problem 5: Hitting Set.*

Question 2. *Chapter 8, Problem 6: Monotone Satisfiability with Few True Variables.*

Question 3. *Chapter 8, Problem 14: Interval Scheduling.*

Question 4. *Chapter 8, Problem 17: Zero-Weight Cycles.*

Hint: This seems like a sequencing problem, but you might find it easier to reduce from SubSet Sum

Question 5. *Chapter 8, Problem 32: Perfect Assembly.*

Optional Challenge

Question 6. *Chapter 8, Problem 23: Bad Proofs and Pidgeons.*