The One-Page, 3-Problem, Pre-Spring-Break Problem Set

Question 1. Warm-up
Answer Exercise 1 (page 312) in Chapter 6 of your text. For part (c) include a justification of correctness and a time/space complexity analysis.

Question 2. Longest Paths In DAGs
Answer Exercise 3 (page 314) in Chapter 6 of your text. For part (b) include a justification of correctness and a time/space complexity analysis.

Question 3. Optimal Matrix Multiplication
If you are familiar with matrix multiplication, you can skip down to The Problem; otherwise read the next few paragraphs.

Given two vectors \(u = (u_1, \ldots, u_n) \) and \(v = (v_1, \ldots, v_n) \) the dot product (a.k.a. inner product) of \(u \) and \(v \) is given by \(u \cdot v = u_1v_1 + \ldots + u_nv_n \). Note that it takes \(n \) scalar multiplications to compute the dot product of two vectors of length \(n \).

Now suppose that \(A \) and \(B \) are \(n \times q \) and \(q \times m \) matrices (arrays), respectively. The product of \(A \) and \(B \) is the \(n \times m \) matrix \(P \) for which \(P[i, j] \) is the dot product of row \(i \) of \(A \) with column \(j \) of \(B \). Note that this is well-defined since the rows of \(A \) and the columns of \(B \) are all vectors of length \(q \). This operation is referred to as matrix multiplication.

If you aren’t familiar with matrix multiplication, don’t worry. Here are the only things you need to know to answer this question.

- Computing the product \(AB \) by directly using the definition above requires \(nqm \) scalar multiplications: There are \(nm \) entries in the product, and each requires \(O(q) \) multiplications to compute.
- In general, \(AB \neq BA \): Matrix multiplication is not commutative, so don’t even try!
- Matrix multiplication is, however, associative: \((A B) C = (A (B C))\). That is, a product \(A_1 \ldots A_k \) can be parenthesized in any order without changing the value of the result.

The Problem
While the order of evaluation of a chain \(A_1 \ldots A_k \) of matrices does not affect the value of the result, it can greatly affect the time required to compute the result! For example. If \(A, B, C \) have sizes \(3 \times 20, 20 \times 4 \) and \(4 \times 10 \) respectively, then

- Computing \(((AB)C) \) takes \(3 \cdot 20 \cdot 4 \) scalar multiplications for \(AB \), which is a \(3 \times 4 \) matrix, plus \(3 \cdot 4 \cdot 10 \) scalar multiplications for multiplying \(AB \) by \(C \), giving a total of \(240 + 120 = 360 \) scalar multiplications.
- Computing \((A(BC)) \) takes \(20 \cdot 4 \cdot 10 \) scalar multiplications for \(BC \), which is a \(20 \times 10 \) matrix, plus \(3 \times 20 \times 10 \) scalar multiplications for multiplying \(A \) by \((BC) \), giving a total of \(800 + 600 = 1400 \) scalar multiplications.

So, consider a product \(A_1 \ldots A_k \) of matrices where each \(A_i \) has size \(r_i \times c_i \). Assume that \(c_i = r_{i+1} \) for \(i = 1 \ldots n - 1 \), so that the product of any two consecutive matrices is well-defined. We call an order of evaluation (a particular parenthesizing) of the product \(A_1 \ldots A_k \) optimal if it uses the minimum number of scalar multiplications.

[a] Design a dynamic programming algorithm to compute the number of scalar multiplications in an optimal order of evaluation for \(A_1 \ldots A_k \). Justify its correctness. (Hint: Think about the final matrix multiplication that happens in the ordering.)

[b] Determine the time and space complexity of your algorithm.

[c] Describe how you would modify your algorithm to report the (or an) optimal order. What is the complexity of this algorithm.

Due: noon, 15 March