Lecture 25: Project Euler Day 2

The Fibonacci sequence is defined by the recurrence relation:

$$
F_{n}=F_{n-1}+F_{n-2},
$$

where $F_{1}=1$ and $F_{2}=1$.
It turns out that F_{541}, which contains 113 digits, is the first Fibonacci number for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9 , but not necessarily in order). And F_{2749}, which contains 575 digits, is the first Fibonacci number for which the first nine digits are 1-9 pandigital.

Given that F_{k} is the first Fibonacci number for which the first nine digits AND the last nine digits are 1-9 pandigital, find k.

Working from left-to-right if no digit is exceeded by the digit to its left it is called an increasing number; for example, 134468.

Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420.

We shall call a positive integer that is neither increasing nor decreasing a "bouncy" number; for example, 155349.

Clearly there cannot be any bouncy numbers below one-hundred, but just over half of the numbers below one-thousand (525) are bouncy. In fact, the least number for which the proportion of bouncy numbers first reaches 50% is 538 .

Surprisingly, bouncy numbers become more and more common and by the time we reach 21780 the proportion of bouncy numbers is equal to 90%.

Find the least number for which the proportion of bouncy numbers is exactly 99%.

A number chain is created by continuously adding the square of the digits in a number to form a new number until it has been seen before.
For example,

$$
\begin{aligned}
44 & \rightarrow 32
\end{aligned} \rightarrow 13 \rightarrow 10 \rightarrow 1 \rightarrow 1 .
$$

Therefore any chain that arrives at 1 or 89 will become stuck in an endless loop. What is most amazing is that EVERY starting number will eventually arrive at 1 or 89 .

How many starting numbers below ten million will arrive at 89 ?

Some positive integers n have the property that the sum $(n+\operatorname{reverse}(n))$ consists entirely of odd (decimal) digits. For instance,

$$
36+63=99 \text { and } 409+904=1313
$$

We will call such numbers reversible; so $36,63,409$, and 904 are reversible. Leading zeroes are not allowed in either n or reverse(n).

There are 120 reversible numbers below one-thousand.
How many reversible numbers are there below one-billion $\left(10^{9}\right)$?

