
Lecture 22: Dictionaries



Counting Words

Suppose I had Melville’s Moby Dick stored in a text file called moby.txt. What if I
was interested in finding the most frequent word used in the text? It’s easy enough to
hold all of Moby Dick in memory, so I can read the entire text into a string, split the
words using whitespace as my delimiter and produce a list of words, which we call
tokens.

1 def file to tokens(filename):
2 with open(filename) as fin:
3 return fin.read().split()

Now I’m left with the task of counting the how many times each token occurs in the
list. I could use list operations to first find the set of unique tokens, and then count
the occurrences of those tokens.

1 def wc list(tokens):
2 uniq = []
3 for token in tokens:
4 if token not in uniq:
5 uniq.append(token)
6 return [(t, tokens.count(t)) for t in uniq]



Profiling our Code

>>>import cProfile

>>> cProfile.run(’[uniq[:5000].count(t) for t in uniq[:5000]]’)

5004 function calls in 0.528 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.147 0.147 0.528 0.528 <string>:1(<listcomp>)

1 0.000 0.000 0.528 0.528 <string>:1(<module>)

1 0.000 0.000 0.528 0.528 {built-in method exec}

5000 0.382 0.000 0.382 0.000 {method ’count’ }

1 0.000 0.000 0.000 0.000 {method ’disable’ }



Quadratic versus Linear



Quadratic versus Linear



Counting Words

1 counts = {}
2 for token in tokens:
3 if token in counts:
4 counts[token] += 1
5 else:
6 counts[token] = 1
7 return counts.items()



Practice: Building a Word Index

Suppose we wanted to create an index of the positions of each token in the original
text. Write a function called token locations that, when given a list of tokens,
returns a dictionary where each key is a token and each value is list of indices where
that token appears.

>>> l = "brent sucks big rocks through a big straw".split()

>>> print(token_locations(l))

{’big’: [2, 6], ’straw’: [7], ’brent’: [0], ’a’: [5],

’through’: [4], ’sucks’: [1], ’rocks’: [3]}


