Lecture 15: Classes, Inheritance, Access Control

```
class Chart:
    def __init__(self, title):
        self..title = title
    def title(self):
        return self._title
    def __str__(self):
        return " { }".format(self._title)
class Histogram(Chart):
    def __init__(self, bins, title):
        self._bins = bins
        self._counts = [0]*len(self._bins)
        super().__init__(title)
    def _index(self, bin):
        return self._bins.index(bin)
    def add_to_bin(self, bin, count):
        self._counts[self._index(bin)] += count
    def count(self, bin):
        self._counts[self._index(bin)]
    def __str__(self):
        h = " ".join([" { } : { }".format(x,y) for (x,y) in zip(self._bins,self._counts)])
        return "[{}] { }".format(super()._-str_-(), h)
```

The sequence of triangle numbers is generated by adding the natural numbers. So the $7^{\text {th }}$ triangle number would be $1+2+3+4+5+6+7=28$. The first ten terms would be:

$$
1,3,6,10,15,21,28,36,45,55, \ldots
$$

Let us list the factors of the first seven triangle numbers:

$$
1: 1
$$

3: 1,3

$$
6: 1,2,3,6
$$

$$
10: 1,2,5,10
$$

$$
15: 1,3,5,15
$$

$$
21: 1,3,7,21
$$

$$
28: 1,2,4,7,14,28
$$

We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors?

