Lecture 13: Problem-Solving Session with Project Euler Problems

Problem 2: Even Fibonacci Numbers Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2 , the first 10 terms will be:

$$
1,2,3,5,8,13,21,34,55,89, \ldots
$$

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
Problem 4: Largest Palindrome Product A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is $9009=91 \times 99$. Find the largest palindrome made from the product of two 3 -digit numbers.
Problem 10: Summation of Primes The sum of the primes below 10 is $2+3+5+7=17$. Find the sum of all the primes below two million.
Problem 20: Factorial Digit Sum n ! means $n \times(n-1) \times \cdots \times 3 \times 2 \times 1$. For example, $10!=10 \times 9 \times \cdots \times 3 \times 2 \times 1=3628800$, and the sum of the digits in the number 10 ! is $3+6+2+8+8+0+0=27$. Find the sum of the digits in the number 100!
Problem 39: Integer Right Triangles If p is the perimeter of a right angle triangle with integral length sides, $\{a, b, c\}$, there are exactly three solutions for $p=120$.

$$
\{20,48,52\},\{24,45,51\},\{30,40,50\}
$$

For which value of $p \leq 1000$, is the number of solutions maximized?

