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Recursion

Recursion is the name given to processes that call themselves. It computational complement to mathematical induc-
tion. Let’s start with a classic example: factorial. By definition factorial is

n! = n× n− 1× n− 2× · · · 1

for all non-negative values of n where 0! = 1. One can write this inductively as a recurrence relation.

n! =

{
n× (n− 1)! (n > 0)

0 (n = 0)

This inductive definition can be translated, almost verbatim, into code in most programming languages. In Python,
we’d write this as

1 def fact(n):
2 if n == 0:
3 return 1
4 else:
5 return n ∗ fact(n−1)

and running the code yields the correct answers:

>>> fact(0)
1
>>> fact(1)
1
>>> fact(2)
2
>>> fact(3)
6
>>> fact(4)
24
>>> fact(30)
265252859812191058636308480000000

How Recursion Works

Recursion may seem magical, but there is nothing special about a function calling itself—it’s just like calling any
other function. The execution of the current function moves to the called function and continues when that function
returns. The execution of the current function is stored on the stack, which acts as a memory of the current state so
that it can be restored when execution returns. Here is what the recursive process of the Python fact(4) looks like
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Thinking Recursively

The key to writing good recursive functions is taking the inductive leap. Put yourself in the mindset where, to
solve the current problem, you already have the solution to a slightly simpler problem. Can you use this solution
along with your current information to solve the problem at hand? Let’s do an example. Suppose you wanted to
write a recursive version of multiply called mult(m, n) that works for non-negative integers. One way to think
about multiplication is as repeated addition. In faction, suppose you knew the result of a slightly simpler problem—
mult(m,n-1)—adding m to the solution of must(m,n-1) yields the right answer. What’s left is to determine
the base case(s). Think about this as instances of your problem that are so simple, you know the answer right away.
For multiplication, the base cases are when n==0 and n==1.

Here’s how we’d write this in code.

1 def mult(m, n):
2 if n == 0:
3 return 0
4 elif n == 1:
5 return m
6 else:
7 return m + mult(m, n−1)

Question 1. Write a recursive version of exponentiation called exp(n, k) that computes nk. Note that exponen-
tiation is repeated multiplication.

>>> exp(2,0)
1
>>> exp(2,1)
2
>>> exp(2,2)
4
>>> exp(2,3)
8
>>> exp(2,10)
1024

Structural Recursion

Let’s imagine that Python did not support the len function on lists. How would we write this ourselves? Let’s start
with the base case. Let L be an empty list. In other words, L=[]. Python will evaluate an empty list as False,
which means, if L is a list, you can always write

1 if not L:
2 print(”empty”)
3 else:
4 print(”not empty”)

If L is empty, then its length is 0. Base case done. What if L is non-empty? Let’s think of the list as the first element
and the rest of the list. Suppose we know the solution to the length problem on the rest of the list. Then we need
only add one more to its length to arrive at a solution to the current problem. Here’s the python code.

1 def length(L):
2 if not L:
3 return 0
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4 else:
5 return 1 + length(L[1:])

Here’s a couple of executions.

>>> length(list(range(10)))
10
>>> length(list(range(20)))
20

Let’s do another example. Suppose you wanted to write your own version of sum that sums a list of numbers in
a list. Thinking inductively, we know how to sum an empty list—that’s 0—and a non-empty list is just the sum of
the first number and the sum of the remaining numbers in the list. Here’s the code.

1 def mysum(L):
2 if not L:
3 return 0
4 else:
5 return L[0] + mysum(L[1:])

Question 2. Write a recursive version of production called prod(L) that computes the product of the numbers in
the list L.

>>> myprod(list(range(1,5)))
24
>>> myprod(list(range(1,6)))
120
>>> myprod(list(range(1,7)))
720

Accumulators

1 def reduce(fn, L):
2
3 def helper(L2, acc):
4 if not L2:
5 return acc
6 else:
7 return helper(L2[1:], fn(acc, L2[0]))
8
9 return helper(L[1:], L[0])
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