
Williams College Lecture 2 Brent Heeringa

Operating System

Operating systems are programs that provide a bridge between a computer’s hardware and its application software.
They have two primary purposes:

• managing resources; and

• resource abstraction.

Managing Resources

The primary resources of a computer are

• its central processing unit (CPU),

• its memory hierarchy,

• its filesystem and

• its peripherals.

CPU Managing the processor amounts to scheduling and coordinating processes. Processes are running programs.
For example, when you launch a web browser, the operating system creates a process for that execution.

Memory The memory hierarchy is loosely partitioned into cache, main memory (e.g., random access memory)
and secondary storage (e.g., hard disks). Memory higher in the hierarchy is usually faster and more expensive so
the size of memory naturally increases as you descend the hierarchy. Cache and main memory are volatile storage
devices (the contents are lost when powered down) while secondary storage is non-volatile. When a program is
running it must be stored in main memory. Managing the memory often amounts to swapping data between memory
units in the hierarchy.

Filesystem The filesystem is how an operating system stores and retrieves data. Logical groups of data are stored
in files, which are identified by a name. Files are organized in directories which are also named. Files have associated
meta-data, which often includes information about permissions and size.

Peripherals The peripherals of a computer include the keyboard, mouse, monitor, and printer. In the UNIX
operating system, which we describe below, peripherals are treated as files.

Resource Abstraction

An operating system’s kernel is primarily responsible for managing resources. It also provides an interface to the
hardware and resources of the computer through a well-defined set of functions called system calls. The system
calls usually communicate directly with the kernel, which help protect applications from carrying out potentially
damaging actions.

UNIX

Unix is an operating system first developed by Ken Thompson and Dennis Ritchie at Bell Labs in the late 60’s. It is
the basis for OS X, the modern Macintosh operating system and the inspiration behind Linux, which is an operating
system running many of the world’s web servers. It is the operating system we will make exclusive use of in Diving
into the Deluge of Data.

Spring Semester 2015 1 CS 135: Diving into the Deluge of Data

Williams College Lecture 2 Brent Heeringa

Shell

The shell is meant as the command line interface to the operating system. Among other things, it allows you to
navigate and manipulate the filesystem and its contents (i.e., listing, creating, moving, removing, modifying, and
changing the permissions files and directories) and run programs (i.e. create and manage processes).

The shell is a program that is usually executed at the start of a terminal session. To start a shell, you first
need to open a terminal (the word terminal here is a throwback to actual terminal machines, which were used
to connect to servers and mainframes). On OS X, this is done by launching the Terminal application located in
/Applications/Utilities. By default the terminal will launch the shell associated with your login (imagine
that the computer is a server and you’re logging in remotely), which on OS X is Bash. To see your default login
shell type

$ echo $SHELL
/ b i n / bash

Let’s dissect this a bit. The echo command just echoes back its arguments to the terminal. Here’s an example.

$ echo d i v i n g i n t o t h e d e l u g e o f d a t a
d i v i n g i n t o t h e d e l u g e o f d a t a

Bash maintains an environment, which has variables. You can see all the assigned variables by typing env. The
SHELL environment variable stores the default login shell. To evaluate the contents of the variable requires prefacing
the variable name with a dollar sign. Echoing this value back via echo $SHELL shows us the login shell.

Bash

Bash stands for Bourne-again Shell, which is a play on an older shell called sh created by Stephen Bourne. It is the
default shell on all OS X and Gnu/Linux systems.

Programming Languages: Compiled verus Interpreted

Ultimately, every program that gets executed by the operating system is translated into assembly code and then into
machine or object code. Assembly code is still readable by humans, but machine code is just a bunch of binary
symbols—0s and 1s.

A compiled language means that the source code is translated directly to machine code via a compilation step
(this translates the code from source to assembly language) followed by an assembly step (this translates the code
from assembly directly into machine language).

An interpreted language means that the source code is not translated directly into machine language, but rather,
evaluated by an interpreter. Because of this, interpreted languages often have two modes of operation: interactive
and script. Interactive mode is often called the read-evaluate-print-loop or REPL because one interacts with the
interpreter by writing some code that is then read and evaluated, the result of which is finally printed.

Here’s an example in the programming language of the REPL:

>>> 27 /3
9 . 0

Script mode just means that one records a full program in a file and then runs it through the interpreter in one
fell swoop.

Spring Semester 2015 2 CS 135: Diving into the Deluge of Data

