
CS134 Lecture 27:  
Tic Tac Toe 3

Announcements & Logistics
• HW 8 due tonight @ 10 pm

• Lab 9 Boggle: two-week lab released

• Part 1 due next Wed/Thur 10 pm

• Part 2 due May 1/2 (handout will be posted soon)

• Both parts have a prelab due at the beginning of lab
• Can solve jointly with partner/ or individually and then discuss
• Have it ready on a sheet of paper at the start of lab

Do You Have Any Questions?

Last Time
• Implemented a text-based class to represent a TTTBoard and TTTCube

• Discussed the game logic through a flow-diagram

• Before that, we discussed a graphical Board class to display a board

• Today we will bring these together:

• Use graphical Board class to design a graphical tic-tac-toe game

Board
TTT Board

TTTCube

TTTCube Class

TTTCube Class
• Attributes of text based class from last time?

• _letter ("X", "O")

• In a graphical game, the TTTCube is placed on a board grid cell

• What type of new data attribute can capture this location?

• _row, _col

• Let's start with a TTTCube with these attributes

• Later, we might want to add more (e.g., color of cube?)

TTTCube Class
class TTTCube:

 """A TTT Cube has several attributes that define it:

 * _letter: denotes the letter 'X', 'O', or '-'

 * _row, _col: denotes the position on the grid this
cube is placed

 """

 __slots__ = ['_letter', '_row', '_col']

 def __init__(self, row=-1, col=-1, letter=""):

 # set row, column and letter attributes

 self._row = row

 self._col = col

 self._letter = letter

 def get_row(self):

 return self._row

 def get_col(self):

 return self._col

 def get_letter(self):

 return self._letter

 def set_letter(self, char):

 if char in "XO-":

 self._letter = char

What other methods will be useful to
have in this class?

TTTCube Class

Updates the graphical grid cell to display
the letter on the board

 def place_cube(self, board, fill_color="white"):

 '''Updates the grid cell on Board to display TTTCube'''

 row, col, let = self.get_row(), self.get_col(), self.get_letter()

 board.set_grid_cell(row, col, let, "black", fill_color)

 def __str__(self):

 l, row, col = self.get_letter(), self._row, self._col

 return "{} at Board position ({}, {})".format(l, row, col)

 def __repr__(self):

 return str(self)

class TTTCube:

 """A TTT Cube has several attributes that define it:

 * _letter: denotes the letter 'X', 'O', or '-'

 * _row, _col: denotes the position on the grid this cube is placed

 """

 # Continued

TTTCube: Testing
• Let's test the class by adding code to if __name__ == "__main__":

if __name__ == "__main__":

 win = GraphWin("Tic Tac Toe", 400, 400)

 board = Board(win, rows=3, cols=3)

 board.draw_board()

 tttcube1 = TTTCube(1, 1, "X")

 tttcube2 = TTTCube(1, 2, "O")

 tttcube1.place_cube(board, "light blue")

 tttcube2.place_cube(board, "pink")

 # pause for mouse click before exiting

 point = win.getMouse()

 win.close()

Create a graphical window of size 400
by 400 pixels with title "Tic Tac Toe"

Create a board with a 3 x 3 grid

Display cubes by placing
them on the grid

TTTBoard: Code in Class

TTTBoard Class

Board
TTT Board

TTTBoard Class
• TTTBoard class will inherit all its graphical features from Board

• Recall that the Board class creates a generic graphical board with a grid,
reset and exit buttons, and three text areas

• TTTBoard will inherit these (no need to write rewrite any code)

• What additional TTT specific attributes/methods 
should the board have?

• TTTCubes that go on the grid

• TTT game specific methods to 
check for win, etc 

Review: Board Class
• Let's review the key features of the Board Class for using it

• Useful data attributes:
• _rows, _cols: dimensions of the play area represented by the grid
• _grid: list of list of "grid cells"

• each cell is a TextRect object from the graphics module

• Useful methods:
• get_position(point): given a point in the screen, returns the row,

col of the grid cell if that point is in the grid
• set_grid_cell(row, col, text, text_color, fill_color)

• setter methods to change the text on the 3 text areas

• New attribute: _cubes (list of TTTCubes)
• cubes get "placed" on the corresponding row, col on the board grid

• Cubes vs grid:
• Cubes hold the "data" (letter, row, col)
• Grid cells handle the graphics

• Separating graphics and other state is good
• Abstraction and encapsulation
• Makes it easier to debug as well

TTTBoard: Design

 def __init__(self, win):

 # call Board init

 super().__init__(win, rows=3, cols=3)

 # initialize new attribute

 self._cubes = []

 for row in range(self._rows):

 cube_row = []

 # next part could be a list comprehension!

 for col in range(self._cols):

 # create new TTTCube, specifying grid coord

 cube = TTTCube(row, col)

 # add TTTCube to row

 cube_row.append(cube)

 # add column to grid

 self._cubes.append(cube_row)

 # display the cubes on the board

 self.place_cubes_on_board()

Initializing the TTT Board
Inherit from Board

Call Board's
__init__ method

List of list of TTTCubes

• TTTBoard acts as the middle that layer that communicates between the
interactive game (mouse clicks) and the graphical base (Board)

• To do that effectively, need a way to translate points on graphical window
to grid location and consequently TTTCubes on it

• Board does some of these (get_position gives grid coordinates
of a point in the grid)

• Need another getter method to map point in screen to the TTTCube

Getter Methods: TTTBoard

 def get_ttt_cube_at_point(self, point):

 """Returns the TTTCube at point on window (a screen coord tuple)"""

 if self.in_grid(point):

 # get_position returns grid coords

 (row, col) = self.get_position(point)

 return self._cubes[row][col]

 return None

Setter Methods: TTTBoard
• What TTTBoard change might we want to change?

• Set graphics to display TTTCubes
• Set/reset board state for play

 def place_cubes_on_board(self):

 '''Updates the board to display the letters on TTTCubes'''

 for row in range(self._rows):

 for col in range(self._cols):

 let = self._cubes[row][col].get_letter()

 self._grid[row][col].setText(let)

 # reset all letters and colors of grid

 def reset(self):

 """Clears the TTT board by clearing  
 letters and colors on grid"""

 for x in range(self._rows):

 for y in range(self._cols):

 # get letter out of grid and reset it

 board.set_grid_cell(x, y, "")

TTTBoard Helper Methods:
Checking for Wins

Checking for Win
• A player ("X" or "O") wins if:

• There exists a column filled with their letter, OR
• There exists a row filled with their letter, OR
• There exists a diagonal that is filled with their letter

• Let's break that down into separate private helper methods
• _check_rows

• _check_cols

• _check_diagonals

Checking the Rows
• For a given letter (“X” or “O”), we need to find if there is ANY row

that is made of only letter
• How can we approach this?

Grid positions are (row, col)

check_rows checks the board
horizontally

 def _check_rows(self, letter):

 """Check rows for a win (3 in a row)."""

 # does letter appear in an entire row?

Checking the Rows
• For a given letter (“X” or “O”), we need to find if there is ANY row

that is made of only letter
• How can we approach this?

Grid positions are (row, col)

 def _check_rows(self, letter):

 """Check rows for a win (3 in a row)."""

 for row in range(self._rows):

 count = 0

 for col in range(self._cols):

 cube = self._cubes[row][col]

 # check how many times letter appears

 if cube.get_letter() == letter:

 count +=1

 # if this is a winning row

 if count == self._rows:

 return True

 # no winning row found

 return False

Why initialize count here?

If all letters match, return True

• We can similarly check a column for a win

Similarly Check Columns

 def _check_cols(self, letter):

 """Check columns for a win (3 in a row)."""

 for col in range(self._cols):

 count = 0

 for row in range(self._rows):

 cube = self._cubes[col][row]

 # check how many times letter appears

 if cube.get_letter() == letter:

 count +=1

 # if this is a winning row

 if count == self._cols:

 return True

 # if no winning rows

 return False

Check Diagonals

Primary diagonal has row/col same

 def _check_diagonals(self, letter):

 """Check diagonals for a win (3 in a row)."""

 # counts for primary and secondary diagonal

 count_primary, count_second = 0, 0

 for col in range(self._cols):

 for row in range(self._rows):

 cletter = self._cubes[col][row].get_letter()

 # update count for primary diagonal

 if (row == col and cletter == letter):

 count_primary += 1

 # update count for secondary diagonal

 if (row + col == self._rows - 1 and  
 cletter == letter):

 count_second += 1

 # return true if either win

 primary_win = count_primary == self.get_rows()

 second_win = count_second == self.get_rows()

 return primary_win or second_win

Check Diagonals

Secondary diagonal has  
row + col = 2

Secondary diagonal:  
(0, 2), (1,1), (2, 0) for a 3x3 board

 def _check_diagonals(self, letter):

 """Check diagonals for a win (3 in a row)."""

 # counts for primary and secondary diagonal

 count_primary, count_second = 0, 0

 for col in range(self._cols):

 for row in range(self._rows):

 cletter = self._cubes[col][row].get_letter()

 # update count for primary diagonal

 if (row == col and cletter == letter):

 count_primary += 1

 # update count for secondary diagonal

 if (row + col == self._rows - 1 and  
 cletter == letter):

 count_second += 1

 # return true if either win

 primary_win = count_primary == self.get_rows()

 second_win = count_second == self.get_rows()

 return primary_win or second_win

• Putting it all together: the board is in a winning state if any of the
three winning conditions are true

• We will make this method public as it will needed outside of this class

Final Check for Win

 def check_for_win(self, letter):

 """Check board for a win."""

 row_win = self._check_rows(letter)

 col_win = self._check_cols(letter)

 diag_win = self._check_diagonals(letter)

 return row_win or col_win or diag_win

TTTGame Logic

TTT Game Logic

Board
TTT Board

TTTCube

Game

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click Grid?
Y Empty

space? Win?
Y

Draw?

N

N Change
players

Let’s think about the
“common” case: a valid move in

the middle of the game

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click Grid?
Y Empty

space? Win?
Y

Draw?

N

N Change
players

Y Reset
state

Y

N

Now let’s consider the case of a
win, draw, or invalid move

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Grid?
Y

N

YReset
state

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

Now’s let suppose a player
chooses reset

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

Now’s let suppose a player
chooses exit

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
playersFinally, let’s

handle the click
that may be

outside of any
of the “valid”

regions

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

• Let’s think about __init__:

• What do we need?
• a board, player, and maybe num_moves (to detect draws easily)

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

• Now let’s write a method for handling a single mouse click (point)
• The game continues (waits for more clicks) if this method returns True
• If this method returns False, game ends

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

 def do_one_click(self, point):

 # step 1: check for exit button

 if self._board.in_exit(point):

 # TODO

 # step 2: check for reset button

 elif self._board.in_reset(point):

 # TODO

 # step 3: check if click on the grid

 elif self._board.in_grid(point):

 # TODO

 # keep going!

 return True

• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

 if self._board.in_exit(point):

 print("Exiting...")

 # game over

 return False

• Now let’s handle reset

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

 elif self._board.in_reset(point):

 print("Reset button clicked")

 self._board.reset()

 self._board.set_string_to_upper_text("")

 self._num_moves = 0

 self._player = "X"

• Finally, let’s handle a “normal” move. Start by getting point and TTTCube

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

 elif self._board.in_grid(point):

 # get the cube at the point the user clicked

 tcube = self._board.get_ttt_cube_at_point(point)

 elif self._board.in_grid(point):

 # get the cube at the point the user clicked

 tcube = self._board.get_ttt_cube_at_point(point)

 # make sure this square is vacant

 if tcube.get_letter() == "":

 tcube.set_letter(self._player)

 tcube.place_cube(self._board)

 # valid move, so increment num_moves

 self._num_moves += 1

 # check for win or draw

 win_flag = self._board.check_for_win(self._player)

 if win_flag:

 self._board.set_string_to_upper_text(self._player + " WINS!")

 elif self._num_moves == self._board.get_rows()  
 * self._board.get_cols():

 self._board.set_string_to_upper_text("DRAW!")

 # not a win or draw, swap players

 else:

 # toggle player!

 self._player = "O" if self._player == "X" else "X"

 # keep going!

 return True

• The rest of our
code checks for a
valid move, a win, a
draw, and updates
state accordingly

• At the end, if the
move was valid, we
swap players

Translating our Logic to Code

TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, update attributes/methods as needed

• TTTCube isolate functionality of a single TTT cube on board

• Think about what features are necessary/helpful in other classes

• TTTGame: think through logic conceptually before writing any code

• Translate logic into code carefully, testing along the way

Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the

game state of Boggle is more complicated
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual
methods

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as
needed)

• Discuss logic with partner/instructor before writing any code

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!

