
CS134 Lecture 27:  
Tic Tac Toe 3



Announcements & Logistics
• HW 8 due tonight @ 10 pm

• Lab 9 Boggle: two-week lab released 

• Part 1 due next Wed/Thur 10 pm 

• Part 2 due May 1/2 (handout will be posted soon)

• Both parts have a prelab due at the beginning of lab
• Can solve jointly with partner/ or individually and then discuss
• Have it ready on a sheet of paper at the start of lab

Do You Have Any Questions?



Last Time
• Implemented a text-based class to represent a TTTBoard and TTTCube

• Discussed the game logic through a flow-diagram

• Before that, we discussed a graphical Board class to display a board

• Today we will bring these together:

• Use graphical Board class to design a graphical tic-tac-toe game
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TTTCube Class
• Attributes of text based class from last time?

• _letter ("X", "O")


• In a graphical game, the TTTCube is placed on a board grid cell

• What type of new data attribute can capture this location?

• _row, _col 


• Let's start with a TTTCube with these attributes

• Later, we might want to add more (e.g., color of cube?)



TTTCube Class
class TTTCube:

    """A TTT Cube has several attributes that define it:

           *  _letter:  denotes the letter 'X', 'O', or '-'

           *  _row, _col:  denotes the position on the grid this 
cube is placed

    """

    __slots__ = ['_letter', '_row', '_col']


    def __init__(self, row=-1, col=-1, letter=""):


        # set row, column and letter attributes

        self._row = row

        self._col = col

        self._letter = letter


    def get_row(self):

        return self._row

    

    def get_col(self):

        return self._col

    

    def get_letter(self):

        return self._letter


    def set_letter(self, char):

        if char in "XO-":

            self._letter = char


What other methods will be useful to 
have in this class?



TTTCube Class

Updates the graphical grid cell to display 
the letter on the board

    def place_cube(self, board, fill_color="white"):

        '''Updates the grid cell on Board to display TTTCube'''

        row, col, let = self.get_row(), self.get_col(), self.get_letter()

        board.set_grid_cell(row, col, let,  "black", fill_color)


    def __str__(self):

        l, row, col = self.get_letter(), self._row, self._col

        return "{} at Board position ({}, {})".format(l, row, col)


    def __repr__(self):

        return str(self)


class TTTCube:

    """A TTT Cube has several attributes that define it:

           *  _letter:  denotes the letter 'X', 'O', or '-'

           *  _row, _col:  denotes the position on the grid this cube is placed

    """

    # Continued



TTTCube:  Testing
• Let's test the class by adding code to if __name__ == "__main__":

if __name__ == "__main__":

    win = GraphWin("Tic Tac Toe", 400, 400)

    board = Board(win, rows=3, cols=3)


    board.draw_board()


    tttcube1 = TTTCube(1, 1, "X")

    tttcube2 = TTTCube(1, 2, "O")

 

    tttcube1.place_cube(board, "light blue")

    tttcube2.place_cube(board, "pink")


    # pause for mouse click before exiting

    point = win.getMouse()

    win.close()


Create a graphical window of size 400 
by 400 pixels with title "Tic Tac Toe"

Create a board with a 3 x 3 grid

Display cubes by placing 
them on the grid



TTTBoard:  Code in Class



TTTBoard Class
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TTTBoard Class
• TTTBoard class will inherit all its graphical features from Board

• Recall that the Board class creates a generic graphical board with a grid, 
reset and exit buttons, and three text areas

• TTTBoard will inherit these (no need to write rewrite any code)

• What additional TTT specific attributes/methods 
should the board have?

• TTTCubes that go on the grid

• TTT game specific methods to 
check for win, etc 



Review:  Board Class
• Let's review the key features of the Board Class for using it

• Useful data attributes:
• _rows, _cols:  dimensions of the play area represented by the grid
• _grid:  list of list of "grid cells"

• each cell is a TextRect object from the graphics module

• Useful methods:
• get_position(point):  given a point in the screen, returns the row, 

col of the grid cell if that point is in the grid
• set_grid_cell(row, col, text, text_color, fill_color)


• setter methods to change the text on the 3 text areas 



• New attribute:  _cubes (list of TTTCubes)
• cubes get "placed" on the corresponding row, col on the board grid

• Cubes vs grid:
• Cubes hold the "data" (letter, row, col)
• Grid cells handle the graphics

• Separating graphics and other state is good 
• Abstraction and encapsulation
• Makes it easier to debug as well 

TTTBoard:  Design



    def __init__(self, win):


        # call Board init

        super().__init__(win, rows=3, cols=3)


        # initialize new attribute

        self._cubes = []

        for row in range(self._rows):

            cube_row = []

            # next part could be a list comprehension!

            for col in range(self._cols):

                # create new TTTCube, specifying grid coord

                cube = TTTCube(row, col)


                # add TTTCube to row

                cube_row.append(cube)


            # add column to grid

            self._cubes.append(cube_row)


        # display the cubes on the board

        self.place_cubes_on_board()


Initializing the TTT Board
Inherit from Board

Call Board's 
__init__ method

List of list of  TTTCubes



• TTTBoard acts as the middle that layer that communicates between the 
interactive game (mouse clicks) and the graphical base (Board)

• To do that effectively, need a way to translate points on graphical window 
to grid location and consequently TTTCubes on it

• Board does some of these (get_position gives grid coordinates 
of a point in the grid)

• Need another getter method to map point in screen to the TTTCube

Getter Methods: TTTBoard

    def get_ttt_cube_at_point(self, point):

        """Returns the TTTCube at point on window (a screen coord tuple)"""

        if self.in_grid(point):

            # get_position returns grid coords

            (row, col) = self.get_position(point)

            return self._cubes[row][col]

        return None




Setter Methods:  TTTBoard
• What TTTBoard change might we want to change?

• Set graphics to display TTTCubes 
• Set/reset board state for play

    def place_cubes_on_board(self):

        '''Updates the board to display the letters on TTTCubes'''

        for row in range(self._rows):

            for col in range(self._cols):

                let = self._cubes[row][col].get_letter()

                self._grid[row][col].setText(let)

                

    # reset all letters and colors of grid

    def reset(self):

        """Clears the TTT board by clearing  
        letters and colors on grid"""

        for x in range(self._rows):

            for y in range(self._cols):

                # get letter out of grid and reset it

                board.set_grid_cell(x, y, "")




TTTBoard Helper Methods:
Checking for Wins 



Checking for Win
• A player ("X" or "O") wins if:

• There exists a column filled with their letter, OR
• There exists a row filled with their letter,  OR
• There exists a diagonal that is filled with their letter

• Let's break that down into separate private helper methods
• _check_rows 


• _check_cols


• _check_diagonals



Checking the Rows
• For a given letter (“X” or “O”), we need to find if there is ANY row 

that is made of only letter 
• How can we approach this?  

Grid positions are (row, col)

check_rows checks the board 
horizontally

    def _check_rows(self, letter):

        """Check rows for a win (3 in a row)."""

        # does letter appear in an entire row?




Checking the Rows
• For a given letter (“X” or “O”), we need to find if there is ANY row 

that is made of only letter 
• How can we approach this?  

Grid positions are (row, col)

    def _check_rows(self, letter):

        """Check rows for a win (3 in a row)."""

        for row in range(self._rows):

            count = 0

            for col in range(self._cols):

                cube = self._cubes[row][col]


                # check how many times letter appears

                if cube.get_letter() == letter:

                    count +=1


            # if this is a winning row

            if count == self._rows:

                return True


        # no winning row found

        return False


Why initialize count here?

If all letters match, return True



• We can similarly check a column for a win

Similarly Check Columns

    def _check_cols(self, letter):

        """Check columns for a win (3 in a row)."""

        for col in range(self._cols):

            count = 0

            for row in range(self._rows):

                cube = self._cubes[col][row]


                # check how many times letter appears

                if cube.get_letter() == letter:

                    count +=1


            # if this is a winning row

            if count == self._cols:

                return True


        # if no winning rows

        return False




Check Diagonals

Primary diagonal has row/col same

    def _check_diagonals(self, letter):

        """Check diagonals for a win (3 in a row)."""

        # counts for primary and secondary diagonal

        count_primary, count_second = 0, 0


        for col in range(self._cols):

            for row in range(self._rows):

                cletter = self._cubes[col][row].get_letter()


                # update count for primary diagonal

                if (row == col and cletter == letter):

                    count_primary += 1


                # update count for secondary diagonal

                if (row + col == self._rows - 1 and  
                                 cletter == letter):

                    count_second += 1


        # return true if either win

        primary_win = count_primary == self.get_rows()

        second_win = count_second == self.get_rows()

        return primary_win or second_win




Check Diagonals

Secondary diagonal has  
row + col = 2

Secondary diagonal:  
(0, 2), (1,1),  (2, 0) for a 3x3 board

    def _check_diagonals(self, letter):

        """Check diagonals for a win (3 in a row)."""

        # counts for primary and secondary diagonal

        count_primary, count_second = 0, 0


        for col in range(self._cols):

            for row in range(self._rows):

                cletter = self._cubes[col][row].get_letter()


                # update count for primary diagonal

                if (row == col and cletter == letter):

                    count_primary += 1


                # update count for secondary diagonal

                if (row + col == self._rows - 1 and  
                                 cletter == letter):

                    count_second += 1


        # return true if either win

        primary_win = count_primary == self.get_rows()

        second_win = count_second == self.get_rows()

        return primary_win or second_win




• Putting it all together:  the board is in a winning state if any of the 
three winning conditions are true

• We will make this method public as it will needed outside of this class

Final Check for Win

    def check_for_win(self, letter):

        """Check board for a win."""

        row_win = self._check_rows(letter)

        col_win = self._check_cols(letter)

        diag_win = self._check_diagonals(letter)


        return row_win or col_win or diag_win




TTTGame Logic



TTT Game Logic
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Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages

Start
Wait for 

mouse click Grid?
Y Empty 

space? Win?
Y

Draw?

N

N Change 
players

Let’s think about the 
“common” case: a valid move in 

the middle of the game



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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Now let’s consider the case of a 
win, draw, or invalid move



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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Now’s let suppose a player 
chooses reset



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages

Start
Wait for 

mouse click

Reset?

Exit?

Grid?
Y

N

N

YReset 
state

Y
End

Empty 
space? Win?

Y Y Reset 
state

Draw?

N

Y

N

N

Change 
players

Now’s let suppose a player 
chooses exit



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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• Let’s think about __init__:

• What do we need?
• a board, player, and maybe num_moves (to detect draws easily)

Translating our Logic to Code
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• Now let’s write a method for handling a single mouse click (point)
• The game continues (waits for more clicks) if this method returns True 
• If this method returns False, game ends

Translating our Logic to Code
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    def do_one_click(self, point):


        # step 1: check for exit button

        if self._board.in_exit(point):

        # TODO


        # step 2: check for reset button

        elif self._board.in_reset(point):

        # TODO


        # step 3: check if click on the grid

        elif self._board.in_grid(point):

        # TODO


        

        # keep going!

        return True




• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code
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        if self._board.in_exit(point):

            print("Exiting...")

            # game over

            return False




• Now let’s handle reset

Translating our Logic to Code
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        elif self._board.in_reset(point):

            print("Reset button clicked")

            self._board.reset()

            self._board.set_string_to_upper_text("")

            self._num_moves = 0

            self._player = "X"




• Finally, let’s handle a “normal” move.  Start by getting point and TTTCube

Translating our Logic to Code
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        elif self._board.in_grid(point):


            # get the cube at the point the user clicked

            tcube = self._board.get_ttt_cube_at_point(point)




        elif self._board.in_grid(point):


            # get the cube at the point the user clicked

            tcube = self._board.get_ttt_cube_at_point(point)


            # make sure this square is vacant

            if tcube.get_letter() == "":

                tcube.set_letter(self._player)

                tcube.place_cube(self._board)


                # valid move, so increment num_moves

                self._num_moves += 1


                # check for win or draw

                win_flag = self._board.check_for_win(self._player)

                if win_flag:

                    self._board.set_string_to_upper_text(self._player + " WINS!")

                elif self._num_moves == self._board.get_rows()  
                                                 * self._board.get_cols():

                    self._board.set_string_to_upper_text("DRAW!")

                # not a win or draw, swap players

                else:

                    # toggle player!

                    self._player = "O" if self._player == "X" else "X"


        # keep going!

        return True


• The rest of our 
code checks for a 
valid move, a win, a 
draw, and updates 
state accordingly

• At the end, if the 
move was valid, we 
swap players

Translating our Logic to Code



TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, update attributes/methods as needed

• TTTCube isolate functionality of a single TTT cube on board

• Think about what features are necessary/helpful in other classes 

• TTTGame: think through logic conceptually before writing any code

• Translate logic into code carefully, testing along the way



Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the 

game state of Boggle is more complicated 
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual 
methods


• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as 
needed)

• Discuss logic with partner/instructor before writing any code


• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!


