CSI134 Lecture 2/;
Tic Tac Toe 3

Announcements & Logistics

HW 8 due tonight @ |0 pm
Lab 9 Boggle: two-week lab released
Part | due next Wed/Thur 10 pm
Part 2 due May |/2 (handout will be posted soon)
Both parts have a prelab due at the beginning of lab
Can solve jointly with partner/ or individually and then discuss

Have It ready on a sheet of paper at the start of lab

Do You Have Any Questions?

L ast [Ime

- Implemented a text-based class to represent a

» Discussed the game logic through a flow-diagram

Board and

Cube

» Before that, we discussed a graphical Board class to display a board

- Joday we will bring these together:

- Use graphical Board class to design a graphical tic-tac-toe game

1T TCube Class

TTTCube
TTT Board

Board

[T TCube Class

- Attributes of text based class from last time?

o _'Le.t.ter (IIXII’ IIOII)

* In a graphical game, the Cube s placed on a board grid cell
- What type of new data attribute can capture this location?

« row, _col

« Let's start with a T T TCube with these attributes

- Later, we might want to add more (e.g, color of cube!)

[T TCube Class

class TTTCube:

"U"UMATTT Cube has several attributes that define it:

cube 1s

__slots__ = ['_letter',

def

def

def

def

def

* _letter: denotes the letter 'X',

IOI, or '-'

* _row, _col: denotes the position on the grid this

placed

_row', ' _col'l]

__init_ (self, row=-1, col=-1, letter=""):

set row, column and letter attributes

self._row = row
self._col = col
self. letter = letter

get_row(self):
return self._row

get_col(self):
return self._col

get_letter(self):
return self._ letter

set_letter(self, char):
if char in "X0-":
self._ letter = char

What other methods will be useful to
have In this class?

[T TCube Class

class TTTCube:
""UA TTT Cube has several attributes that define it:

* _letter: denotes the letter 'X', '0', or '-
* _row, _col: denotes the position on the grid this cube is placed

Continued

def place_cube(self, board, fill_color="white"):
"''"Updates the grid cell on Board to display TTTCube''’
row, col, let = self.get_row(), self.get_col(), self.get_letter()
board.set_grid_cell(row, col, let, "black", fill_color)

def _ str_ (self):
1, row, col = self.get_letter(), self._row, self._col
return "{} at Board position ({}, {})".format(1l, row, col)

def __repr__(self):
return str(self)

Updates the graphical grid cell to display
the letter on the board

[T TCube: lesting

- Let's test the class by adding code to if __name__ == "_ _main__":

if __name__ == " main__":
win = GraphWin("Tic Tac Toe", 400, 400)
board = Board(win, rows=3, cols=3)
Create a graphical window of size 400

board.draw _board() by 400 pixels with title "Tic Tac Toe"

tttcubel
tttcube2

TTTCube(1, 1, "X") Create a board with a 3 x 3 grid
TTTCube(1, 2, "0")

tttcubel.place_cube(board, "light blue")
tttcube2.place_cube(board, "pink")

pause for mouse click before exiting
point = win.getMouse()
win.close()

Display cubes by placing
them on the grid

| T TBoard: Code in Class

TTTBoard Class

TTT, Board
Board

| T TBoard Class

Board class will inhertt all its graphical features from Board

- Recall that the Board class creates a generic graphical board with a griq,

reset and exit buttons, and three text areas

[TTBoard will inherit these (no need to write rewrrte any code)

- What additional TTT specific attributes/methods
should the board have!

Upper text area

[T TCubes that go on the grid

Text area

» TTT game specific methods to

check for win, etc

Lower text area:

RESET EXIT

Review: Board Class

- Let's review the key features of the Board Class for using it

- Useful data attributes:

+ _rows, _cols: dimensions of the play area represented by the grid
+ _grid: list of list of "grid cells"

- each cell 1s a TextRect object from the graphics module

« Useful methods:

get_position(point): given a point in the screen, returns the row,
col of the grid cell if that point is in the gnid

- set_grid_cell(row, col, text, text_color, fill _color)

- setter methods to change the text on the 3 text areas

TTTBoard: Design

New attribute: _cubes (list of TTTCubes)

cubes get "placed” on the corresponding row, col on the board grid
Cubes vs grid:

Cubes hold the "data" (letter, row, col)

Grid cells handle the graphics

» Separating graphics and other state I1s good

- Abstraction and encapsulation X

Makes It easier to debug as well

RESET EXIT

Initializing the | | [Board

def _init (self, win): Inherit from Board

call Board init
super()._ _init__ (win, rows=3, cols=3)

1initialize new attribute - :
Call Board's self. cubes = [] List of list of TTTCubes

__init__ method for row in range(self._rows):
cube_row = [] -
next part could be a list comprehension!
for col in range(self._cols):

create new TTTCube, specifying grid coord
cube = TTTCube(row, col)

add TTTCube to row
cube_row.append(cube)

add column to grid
self._cubes.append(cube_row)

display the cubes on the board
self.place_cubes_on_board()

Getter Methods: T T 1 Board

T TTBoard acts as the middle that layer that communicates between the
interactive game (mouse clicks) and the graphical base (Board)

To do that effectively, need a way to translate points on graphical window
to grid location and consequently TTTCubes on it

Board does some of these (get_position gives grid coordinates
of a point in the grid)

Need another getter method to map point in screen to the TTTCube

def get_ttt_cube_at_point(self, point):
"""Returns the TTTCube at point on window (a screen coord tuple)"""
if self.in_grid(point):
get_position returns grid coords
(row, col) = self.get_position(point)
return self. _cubes[row] [col]
return None

Setter Methods: T 1 IBoard

- What TTTBoard change might we want to change!
» Set graphics to display T T TCubes
- Set/reset board state for play

def place_cubes_on_board(self):
''"'"Updates the board to display the letters on TTTCubes'''
for row in range(self._rows):
for col in range(self._cols):
let = self._cubes[row] [col].get_letter()
self._grid[row] [col].setText(let)

reset all letters and colors of grid
def reset(self): o
" Clears the TTT board by clearing
letters and colors on grid"""
for x in range(self._rows):
for y in range(self._cols): RESET EXIT
get letter out of grid and reset it
board.set_grid_cell(x, vy, "")

TTTBoard Helper Methods:
Checking for Wins

Checking for Win

- A player ("X" or "O") wins If:

« There exists a column filled with their letter; OR

* There exists a row filled with their letter, OR

* There exists a diagonal that is filled with their letter

Let's break t

chec

cnec

nat down into separate private helper methods

K_Irows

K_cols

- _check_diagonals

Checking the Rows

+ Fora given letter ("X or”Q"), we need to find if there is ANY row

that is made of only letter

| Grid positions are (row, col)
- How can we approach this!

def _check_rows(self, letter):
"""Check rows for a win (3 in a row)."""
does letter appear in an entire row?

check rows checks the board
horizontally

RESET EXIT

Checking the Rows

+ Fora given letter ("X or”Q"), we need to find if there is ANY row
that is made of only letter

| Grid positions are (row, col)
How can we approach this?

Why initialize count here?
def _check _row: self, letter):

"""Check rcws for a win (3 in a row)."""
for row in range(self._rows):

X1 0|0
count = 0
for col in range(self._cols): X
cube = self._cubes[row] [col]

check how many times letter appears
if cube.get_letter() == letter:
count +=1

1f this 1is a winning row
if count == self._rows:
return True

RESET EXIT

no winning row f/ und
return False

If all letters match, return True

Similarly Check Columns

* We can similarly check a column for a win

def _check _cols(self, letter):
"""Check columns for a win (3 in a row)."""
for col in range(self._cols):
count = 0

for row in range(self._rows):

cube = self. cubes[col] [row]
X 0| O
check how many times letter appears
if cube.get_letter() == letter: X
count +=1
: . L O 0| O
if this 1s a winning row

if count == self._cols:
return True

1f no winning rows
return False

RESET EXIT

Check Diagonals

def _check_diagonals(self, letter):
"""Check diagonals for a win (3 in a row)."""
counts for primary and secondary diagonal
count_primary, count_second = 0, 0

for col in range(self._cols): Primary diagonal has row/col same
for row in range(self._rows):

cletter = self._cubes[col] [row].get_letter()

update count for primary diagonal
if (row == col and cletter == letter):
count_primary += 1

update count for secondary diagonal
if (row + col == self. _rows - 1 and
cletter == letter):
count_second += 1

return true if either win

primary_win = count_primary == self.get_rows()
second_win = count_second == self.get_rows()
return primary_win or second_win

RESET EXIT

Check Diagonals

def _check_diagonals(self, letter):
"""Check diagonals for a win (3 in a row).""" : .
counts for primary and secondary diagonal Secondary dlagonal.
count_primary, count_second = 0, 0 (O, 2), (|,|>, (2, O) for a 3x3 board

for col in range(self._cols):
for row in range(self._rows):
cletter = self._cubes[col] [row].get_letter()

update count for primary diagonal
if (row == col and cletter == letter):
count_primary += 1

update count for secondary diagonal

if (row + col == self. _rows - 1 and L
cletter == letter): |
count_second += 1 Secondary diagonal has

row + col = 2

return true if either win

primary_win = count_primary == self.get_rows() RESET EXIT
second_win = count_second == self.get_rows()
return primary_win or second_win

Final Check for Win

- Putting 1t all together: the board Is In a winning state If any of the
three winning conditions are true

We will make this method public as it will needed outside of this class

def check for win(self, letter):
"""Check board for a win."""
row_win = self._check_rows(letter)
col_ win = self._check cols(letter) O| 0| O
diag_win = self._check_diagonals(letter)

return row_win or col_win or diag_win

RESET EXIT

[T TGame Logic

11T Game Logic

TTTCube
TTT Board

Board

Finally. .. T TT Game Logic

+ Lets create aT 1T flowchart to help us think through the state of the
game at various stages

l A

Wait for Y Empt Y
Start —» S — : 17 — mpty
mouse click Grid? space?

N ‘ Change
» players —»

Let’s think about the
“common’ case: a valid move in
the middle of the game

Finally. .. T TT Game Logic

+ Lets create aT 1T flowchart to help us think through the state of the
game at various stages

i % 1

i Y Y
Start —» Wait fo.r —_— Grid? — Empty — Win? L Reset
mouse click space? i
A
Ny
Draw? !
N‘ Change

» players —»

Now let’s consider the case of a
win, draw, or invalid move

Finally. .. T TT Game Logic

+ Lets create aT 1T flowchart to help us think through the state of the
game at various stages

' NI T !

Wait for . Y Empty Y : Y Reset
O mouse click >~ Grid? _—* space? A\ Wint_—> state
A
HERE <Y— Reset? Draw? !
state
N‘ Change

» players —»

Now’s let suppose a player
chooses reset

Finally. .. T TT Game Logic

+ Lets create aT 1T flowchart to help us think through the state of the

game at various stages

'

Wait for

Start —») — id?
mouse click Grid?

Now’s let suppose a player Exit?
chooses exit

T A
Win? —» Reset
' state
A
Ny
Draw? !
N ‘ Change

» players —»

» End

Finally. .. T TT Game Logic

+ Lets create aT 1T flowchart to help us think through the state of the
game at various stages

'

Wait for

Start —»

mouse click

Finally, let’s
handle the click
that may be
outside of any
of the “‘valid”
regions

Change

» players —»

» End

Finally. .. T TT Game Logic

Let's create a T T T flowchart to help us think through the state of the
game at various stages

' NI T !

' Y Y
Start —» Wait fo.r —» Grid? —». EMPY 5 win? L Reset
mouse click space? i
A A
™ !
Reset <+—._ Reset! Draw? !
state
N‘ Change
Nl » players —»
Y
Exit? » End

Translating our Logic to Code

Let’s think about __1h1t__:

« What do we need!

»+ a board, player, and maybe num_moves (to detect draws easily)

; 1 T

Wait for " v q
. id? ? in? eset
Start — ouse dlick ~ ¥~ Grid = Empty? —»>. Winl _=p cate
Y Y
Reset <. Reset? Draw?
state
N Change
N players —»
Exit? ! » [End
\y

Translating our Logic to Code

- Now let's write a method for handling a single mouse click (point)
+ The game continues (walts for more clicks) if this method returns True

» It this method returns False, game ends

def do_one_click(self, point):

if self._board.in_exit(point):

step 1: check for exit button * T A
TODO

: Y Y
Wait for > Wi Reset
state

Start

mouse click

step 2: check for reset button

elif self._board.in_reset(point): 4 T N¢
TODO .
Draw?
step 3: check if click on the grid N Change
elif self._board.in_grid(point): players —
TODO
» End

keep going!
return True

Translating our Logic to Code

Let's handle the "exit” button first (since it's the easiest)

if self. _board.in_exit(point):
print("Exiting...")
game over
return False

; 1 1

Wait for " v Ny
. id? ? in? eset
Start = e ik —>. Grid = Empty? = Winl = e
Y Y
REsel o Reset! Draw?
state
N Change
N players —»

» End

Translating our Logic to Code

Now let's handle reset

elif self. _board.in_reset(point):
print("Reset button clicked")
self. board.reset()
self. _board.set_string_to_upper_text("")
self. _num_moves = 0
self. player = "X" v N 11

Wait for v i N R
| -) . eset
ouse dick — Grid? =% Empty? —»_ Winl _=p state

"y

Draw!

Start —p

Y

N Change
players =

» End

Translating our Logic to Code

Finally, let's handle a “normal” move. Start by getting point and Cube

elif self._board.in_grid(point):

get the cube at the point the user clicked
tcube = self. board.get_ttt cube at _point(point)

v

Wait for
mouse click

| T
Reset
state

Start —p

Change
players =

» End

Translating our Logic to Code

elif self._board.in_grid(point):

The rest of our
get the cube at the point the user clicked

COde ChECkS for d tcube = self._board.get_ttt_cube_at_point(point)
valid move, a win, a | |
make sure this square 1s vacant

dravv, aﬂd Upda'tes if tcube.get_letter() == "":
: tcube.set_letter(self._player)
state accordingly

tcube.place_cube(self._board)

At the end, T the # valid move, so increment num_moves
: self._num_moves += 1

move was valid, we

check for win or draw
Swap players win_flag = self._board.check_for_win(self._player)

if win_flag:

self._board.set_string_to_upper_text(self._player + " WINS!")
elif self._num_moves == self._board.get_rows()

x self._board.get_cols():
self._board.set_string_to_upper_text("DRAW!")
not a win or draw, swap players
else:
toggle player!
self._player = "0" if self._player == "X" else "X"

keep going!
return True

TTT Summary

Basic strategy

Board: start general, don't think about game specific details

+ TTTBoard: extend generic board with TTT specific features
Inherit everything, update attributes/methods as needed
» TTTCube isolate functionality of a single TTT cube on board
- Think about what features are necessary/helpful in other classes
+ TTTGame: think through logic conceptually before writing any code

- Translate logic Into code carefully, testing along the way

Boggle Strategies

At a high level, Tic Tac Toe and Boggle have a lot iIn common, but the
game state of Boggle 1s more complicated

In Lab 9 you should follow a similar strategy to what we didwith TTT

Don’t forget the bigger picture as you implement individual
methods

Think holistically about how the objects/classes work together

Isolate functionality and test often (use __Str__ to print values as
needed)

Discuss logic with partner/instructor before writing any code
Worry about common cases first, but don't forget the “edge’” cases

Come see Instructors/ TAs for clarification

GOOD LUCK and HAVE FUN!

