
CS134 Lecture 25:
Inheritance and Board Class

Announcements & Logistics
• HW 8 will be released today (due Mon 10 pm)

• Lab 6 graded feedback returned

• Lab 8 due tonight 10 pm (~Mon lab), Thurs 10 pm (~Tues lab)
• Lab 9 (two week) lab: strongly encourage you work in pairs

• "Mini project" : different from standard labs in length/complexity
• Fill out Lida's partner form by noon tomorrow

• TA applications due Friday:
• https://csci.williams.edu/tatutor-application/

• Please give feedback on CS134 TAs by Friday:
• https://forms.gle/nZSPcwbaP3WCWxqEA

Do You Have Any Questions?

https://csci.williams.edu/tatutor-application/
https://forms.gle/nZSPcwbaP3WCWxqEA

Last Time
• Designed a Library class that stores a sorted shelf of Book objects

• Learnt how to:

• call sorted() function in Python by specifying the key function

• how to pass a function as an argument to another function

• define/call functions with optional arguments

• Reviewed some useful (built-in) string and list methods:
• s (str): s.strip(), s.split(), s.join(), s.format()

• l (list): l.append(), l.remove()

Today’s Plan
• Continue discussing some of the important OOP principles

• Abstraction - handle complexity by ignoring/hiding messy details

• Inheritance - derive a class from another class that shares a set of
attributes and methods

• Encapsulation bundling data & methods that work together in a class

• Polymorphism - using a single method or operator for different uses

• Focus on inheritance

• Start implementing a text-based board game

Inheritance

Introduction to Inheritance
• Inheritance is the capability of one class to derive or inherit the

properties from another class
• Benefits of inheritance:

• Often represents real-world relationships well
• Code reuse: avoid writing the same code again and again
• Allows us to add more features to a class without modifying it

• Inheritance is transitive in nature: if class B inherits from class A, then all
the subclasses of B would also automatically inherit from class A

• When a class inherits from another class, all methods and attributes are
accessible to subclass, except private attributes (indicated with __)

• Suppose we have a base (or parent) class Fish
• Fish defines several methods that are common to all fish:

• eat(), swim()
• Fish also defines several data attributes with default values:

• _length, _weight, _lifespan

Inheritance Toy Example

Inheritance Toy Example
• All fish have some features in common

• But not all fish are the same!

• Each Fish instance will specify different values for attributes
(_length, _weight, _lifespan)

• Some fish may still need extra functionality!

Inheritance Toy Example
• For example, Sharks might need an attack() method
• Pufferfish might need a puff() method
• We might even want to override an existing method with a different

(more specialized) implementation
• Inheritance allows for all of this!

class Rectangle:

 def __init__(self, length, width):

 self._length = length
 self._width = width

class Square(Rectangle):

 def __init__(self, length):

 super().__init__(length, length)

Inheritance: Constructor

Parent (super class)

 Inheritance represents "is a" relationship.
A Square is a Rectangle.

Calls constructor of
super class

class Rectangle:

 def __init__(self, length, width):
 self._length = length
 self._width = width

 def draw(self):
 print('draws a rectangle')

class Square(Rectangle):

 def __init__(self, length):
 super().__init__(length, length)

 def draw(self):
 print('draws a square')

Inheritance: Methods
sq = Square(12)

sq.draw()

"draws a square"

calls draw of square

class Rectangle:

 def __init__(self, length, width):
 self._length = length
 self._width = width

 def draw(self):
 print('draws a rectangle')

class Square(Rectangle):

 def __init__(self, length):
 super().__init__(length, length)

 def draw(self):
 print('draws a square')

Inheritance: Methods
sq = Square(12)

sq.draw()

"draws a square"

calls draw of square

draw method of Square
overrides that of Rectangle

class Rectangle:

 def __init__(self, length, width):
 self._length = length
 self._width = width

 def draw(self):
 print('draws a rectangle')

class Square(Rectangle):

 def __init__(self, length):
 super().__init__(length, length)

 def draw(self):
 print('draws a square')

Inheritance: Methods
sq = Square(12)

sq.draw()

"draws a rectangle"

If Square has no draw method,
it calls draw of super class

\

Inheritance and OOP:
 word-based board games

Simple Board Games

Common Features of Physical Game?
• Often 2 or many player
• Board at the bottom

• Grid-based (rows and columns)
• Game pieces (tiles/cubes)

• Go "on top" of the board
• Have a letter (or many letters)

on them
• Some uncertainty is part of the fun

• Randomness in the configurations
• May or may not be timed

Computer Variants

Common Features of Computer Variants?
• Often 1 player (or play with computer)
• Game board: now a graphical screen

• A grid area to place the pieces
• Text areas on the sides to give game

status
• "Buttons" to reset/exit game

• Some uncertainty is part of the fun
• Randomness in the configurations

• May or may not be timed

Example: Tic Tac Toe
• Suppose we want to implement Tic Tac Toe
• Teaser demo…

>>> python3 tttgame.py

Decomposition
• Let’s try to identify the “layers” of this game
• Through abstraction and encapsulation, each

layer can ignore what’s happening in the
other layers

• What are the layers of Tic Tac Toe?

Decomposition
• Bottom layer : Basic board w/buttons, text

areas, mouse click detection (not specific to
Tic Tac Toe!)

• Lower middle layer : Extend the basic board
with Tic Tac Toe specific features (3x3
grid, of TTTLetters, initial board state: all
letters start blank)

• Upper middle layer : Tic Tac Toe “cubes”
or “letters” (9 in total!); set text to X or O

• Top layer : Game logic (alternating turns,
checking for valid moves, etc)

Board

TTTBoard
TTTLetter

Game

Board class
• Let’s start at the bottom: Board class
• What are basic features of all game boards?

• Think generally…many board-based games have the similar
basic requirements

• (For example, Boggle, TicTacToe,
Scrabble, etc)

Board class
• Let’s start at the bottom: Board class
• What are basic features of all game boards?

• Text areas: above, below, right of grid
• Grid of squares of set size: rows x cols
• Reset and Exit buttons
• React to mouse clicks (less obvious!)

• These are all graphical (GUI) components
• Code for graphics is a little messy

at times
• Lot’s of things to specify: color, size,

location on screen, etc

Inheritance
• Board Class: (super class)

• Basic board w/buttons, text areas, mouse
click detection

• Tic Tac Toe (sub class)
• Inherits from Board and extends it to TTT

specific features and methods
• Doesn't have to recreate a Board

• Looking ahead: Boggle (Lab 9)
• Similar grid-based board game, also

inherits from Board and extends it to
Boggle features and methods

Board

TTTBoard
TTTLetter

Game

Graphics Module

>>> from graphics import *
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400)

Graphics Package for Board

A pixel is one of the small dots or
squares that make up an image on a

computer screen.

400 pixels

400 pixels

Create a window with title “Name” and
size 400x400 (measured in pixels)

We are going to use a simple graphics
package to implement our game board

>>> from graphics import *
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400)

Graphics Package for Board

A pixel is one of the small dots or
squares that make up an image on a

computer screen.

400 pixels

400 pixels

Create a window with title “Name” and
size 400x400 (measured in pixels)

We are going to use a simple graphics
package to implement our game board

(0,0)

(400, 400)

Window coordinates (x, y)

Graphics Package for Board
>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)
>>> # create circle w center at pt and radius 100
>>> c = Circle(pt, 100)
>>> # draw the circle on the window
>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)
>>> # create circle w center at pt and radius 100
>>> c = Circle(pt, 100)
>>> # draw the circle on the window
>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

Graphics Package for Board

(0,0)

(0,400) (400,400)

(400,0)

(200,200)We can draw other shapes as well.

We’ll want to draw Rectangles in our
Board class.

Window coordinates (x, y)

>>> # set color to blue
>>> c.setFill("blue")
>>> # Pause to view result
>>> win.getMouse()
Point(76.0, 322.0)
>>> # close window when done
>>> win.close()

Graphics Package for Board

Detecting “events” like mouse clicks are an
important part of a graphical program.

win.getMouse() is a blocking method call
that “blocks” or waits until a click is detected.

Board Class

Board

Board class: Getting Started
• Attributes:

• (We will add a few more attributes later)
• We need to draw the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Let’s start by drawing the grid on our board

yInset
xInset

 # _win: graphical window on which we will draw our board
 # _xInset: avoids drawing in corner of window
 # _yInset: avoids drawing in corner of window
 # _rows: number of rows in grid of squares
 # _cols: number of columns in grid of squares
 # _size: edge size of each square

Board Class:
__init__ and getters

yInset

xInset

Notice the default values

class Board:
 # _win: graphical window on which we will draw our board
 # _xinset: avoids drawing in corner of window
 # _yinset: avoids drawing in corner of window
 # _rows: number of rows in grid of squares
 # _cols: number of columns in grid of squares
 # _size: edge size of each square

 __slots__ = ['_xinset', '_yinset', '_rows', '_cols', '_size', \
 '_win', '_exit_button', '_reset_button', \
 '_text_area', '_lower_word', '_upper_word']

 def __init__(self, win, xinset=50, yinset=50, rows=3, cols=3, size=50):
 # update class attributes
 self._xinset = xinset; self._yinset = yinset
 self._rows = rows; self._cols = cols
 self._size = size
 self._win = win
 self.draw_board()

 # getter methods for attributes
 def get_win(self):
 return self._win

 def get_xinset(self):
 return self._xinset

 def get_yinset(self):
 return self._yinset

 def get_rows(self):
 return self._rows

 def get_cols(self):
 return self._cols

 def get_size(self):
 return self._size

 def get_board(self):
 return self

Board class: Drawing the grid

We always need a window (_win) on which to draw.

 def _make_rect(self, point1, point2, fillcolor="white", text=""):
 """Creates a rectangle with text in the center"""
 rect = Rectangle(point1, point2, fillcolor)
 rect.draw(self._win)
 text = Text(rect.getCenter(), text)
 text.setTextColor("black")
 text.draw(self._win)
 return rect

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for x in range(self._cols):
 for y in range(self._rows):
 # create first point
 p1 = Point(self._xinset + self._size * x,
 self._yinset + self._size * y)
 # create second point
 p2 = Point(self._xinset + self._size * (x + 1),
 self._yinset + self._size * (y + 1))
 # create rectangle and add to graphical window
 self._make_rect(p1, p2)

Board class: Drawing the grid

x=0, y=0:
p1:
xInset + (size * x) = xInset
yInset + (size * y) = yInset
p2:
xInset + (size * (x+1)) = xInset + size
yInset + (size * (y+1)) = yInset + size

p2

p1

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for x in range(self._cols):
 for y in range(self._rows):
 # create first point
 p1 = Point(self._xinset + self._size * x,
 self._yinset + self._size * y)
 # create second point
 p2 = Point(self._xinset + self._size * (x + 1),
 self._yinset + self._size * (y + 1))
 # create rectangle and add to graphical window
 self._make_rect(p1, p2)

Board class: Drawing the grid

x=0, y=1:
p1:
xInset + (size * x) = xInset
yInset + (size * y) = yInset + size
p2:
xInset + (size * (x+1)) = xInset + size
yInset + (size * (y+1)) = yInset + 2 * size p2

p1

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for x in range(self._cols):
 for y in range(self._rows):
 # create first point
 p1 = Point(self._xinset + self._size * x,
 self._yinset + self._size * y)
 # create second point
 p2 = Point(self._xinset + self._size * (x + 1),
 self._yinset + self._size * (y + 1))
 # create rectangle and add to graphical window
 self._make_rect(p1, p2)

Board class: Drawing the grid

x=0, y=2:
p1:
xinset + (size * x) = xinset
yinset + (size * y) = yinset + 2 * size
p2:
xinset + (size * (x+1)) = xinset + size
yinset + (size * (y+1)) = yinset + 3 * size p2

p1

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for x in range(self._cols):
 for y in range(self._rows):
 # create first point
 p1 = Point(self._xinset + self._size * x,
 self._yinset + self._size * y)
 # create second point
 p2 = Point(self._xinset + self._size * (x + 1),
 self._yinset + self._size * (y + 1))
 # create rectangle and add to graphical window
 self._make_rect(p1, p2)

Board class: Drawing the grid

x=1, y=0:
p1:
xinset + (size * x) = xInset + size
yinset + (size * y) = yInset
p2:
xinset + (size * (x+1)) = xInset + 2 * size
yinset + (size * (y+1)) = yInset + size

And so on…

p2

p1

 def __draw_grid(self):
 """Creates a row x col grid, filled with empty squares"""
 for x in range(self._cols):
 for y in range(self._rows):
 # create first point
 p1 = Point(self._xinset + self._size * x,
 self._yinset + self._size * y)
 # create second point
 p2 = Point(self._xinset + self._size * (x + 1),
 self._yinset + self._size * (y + 1))
 # create rectangle and add to graphical window
 self._make_rect(p1, p2)

• We need to draw the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Now let’s draw the text areas (we need 3!)
• Text areas are just called Text objects in our graphics package

• Can customize the font size, color, style,
and size and call “setText” to add text

Board Class: Text Areas

• We’ll add attributes for the text areas:
_text_area, _lower_word, _upper_word

Board class: Drawing the Text Areas

 def __make_text_area(self, point, fontsize=18, color="black", text=""):
 """Creates a text area"""
 text_area = Text(point, text)
 text_area.setSize(fontsize)
 text_area.setTextColor(color)
 text_area.setStyle("normal")
 text_area.draw(self._win)
 return text_area

 def __draw_text_areas(self):
 """Draw the text areas to the right/lower/upper side of main grid"""
 # draw main text area (right of grid)
 self._text_area = self.__make_text_area(Point(self._xinset * self._rows + self._size * 2,
 self._yinset + 50), 14)
 #draw the text area below grid
 self._lower_word = self.__make_text_area(Point(160, 275))
 #draw the text area above grid
 self._upper_word = self.__make_text_area(Point(160, 25), color="red")

• We need to draw the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Finally, let’s draw the buttons!
• Buttons are just more rectangles…

Board Class: Draw Buttons

 def __draw_buttons(self):
 """Create reset and exit buttons"""
 p1 = Point(50, 300); p2 = Point(130, 350)
 self._reset_button = self._make_rect(p1, p2, text="RESET")
 p3 = Point(170, 300); p4 = Point(250, 350)
 self._exit_button = self._make_rect(p3, p4, text="EXIT")

 def draw_board(self):
 """Create the board with the grid, text areas, and buttons"""
 self._win.setBackground("white smoke")
 self.__draw_grid()
 self.__draw_text_areas()
 self.__draw_buttons()

Board Class: Draw Buttons

Putting it all together

Board Helper Methods

Helper Methods
• Now that we have a board with a grid, buttons, and text areas, it

would be useful to define some methods for interacting with these
objects

• Helpful methods?

Helper Methods
• Now that we have a board with a grid, buttons, and text areas, it

would be useful to define some methods for interacting with these
objects

• Helpful methods?
• Get grid coordinate of mouse click
• Determine if click was in grid, reset, or exit buttons
• Set text to one of 3 text areas
• …

• Note that none of this is specific to Tic Tac Toe (yet)!
• Always good to start general and then get more specific

Helper
Methods

>>> pydoc3 board

Public methods!

