CS134 Lecture 23:
Classes and Objects |l

Announcements & Logistics

HW 7 due tonight (on Glow)

Lab 8 is a partner lab : autocomplete
No prelab but do read the handout before arriving
Working with three classes

Good idea to use pencil/paper and map out the different
attributes and methods

Looking ahead: Lab 9 will be Boggle
Brings together all OOP concepts and get to "builld” a game

Do You Have Any Questions!?

L ast [Ime

- Built the Book class to represents book objects

- Learned about private, protected, public attributes and methods
(indicate scope using underscores in Python)

- Explored accessor (getter) and mutator (setter) methods in Python

» Talked about __1n1t__ (aka constructor) and __Str__ methods

Jloday's Plan

» Design a Library class that stores a sorted shelf of Book objects

« Jools we need:

- sorted() function in Python and how to use key sorting
* how to pass a function as an argument to another function

» understand optional arguments in function/method calls
 Review some useful string methods:

- s.split(), s.join(), s.format()

Last Time: Book Class

"""This class represents a book with attributes title, author, and year"""

attributes: _title, _author, _year
def __init___(self, book_title, book_author, book_year):
self. _title = book title
self._author = book_author
self._year = int(book_year)

accessor (getter) methods
def get_title(self):
return self._title

def get_author(self):
return self._author

def get_year(self):
return self._year

mutator (setter) methods
def set_title(self, book title):
self. _title = book title

def set_author(self, book_author):
self._author = book_author

def set_year(self, book_year):
self._year = int(book_year)

methods for returning book properties

def num_words_in_ title(self):
"""Returns the number of words in title of book"""
return len(self._title.split())

def years_since_pub(self, current_year):
"""Returns the number of years since book was published"""
return current_year - self._year

def same_author_as(self, other_book):
"""Check if self and other_book have same author"'""
return self._author == other_book.get_author()

Library Class

- Let's build a Library class that stores a collection of Books

« Data attribute:

 What methods!?

_books : collection of book objects

* What built-in collection data type to use!?

* sorted, unsorted? mutable, immutable!?

__1nit_, str

* check out a book (checkout)

* return/add a book (shelve) and ensure

shelf is sorted III;\ '"IIIII

Library Class: Constructor

from book import Book .cite 2 new list containing the list of Book objects

passed when an object Is created
class Library:

'''"Represents a sort .d shelf of Book objects'''

def _init_ (self, list_of books=[]):
self. books = [b for b in list of books]

Calls __1nit__ on lib
| | object (passed to se L)
if _name__ == "_ main__":

creating book objects:
bl = Book('Pride and Prejudic- -~ 'Jane Austen', 1813)
b2 = Book('Emma', 'Jane Arsten', 1815)

b3 = Book("Parable of ‘«ne Sower", "Octavia Butler", 1993)
creating libraryv.-object

lib = Library([bl, b2, b3])

Library Class: __str

from book import Book
class Library:

'''Represents a sorted shelf of Book objects'''

Calls str special method on each Book object and
def str (self): accumulates them in a list

list_of _strings = []
for book 1n self._books:
list _of_strings.append(str(book))

return " | ".join(list_of_strings)
if name —= " main ": joins the string in L1st_of_strings together with
— — — — the connector string ™' | " in between each

creating book objects:
bl = Book('Pride and Prejudice', 'Jane Austen', 1813)

b2 = Book('Emma', 'Jane Austen', 1815)

b3 = Book("Parable of the Sower", "Octavia Butler", 1993)
creating library object
lib = Library([bl, b2, b3])
print(lib)

Calls __str__ method on L1b object

Library Class: Other Methods

from book import Book

class Library:
'''"Represents a sorted shelf of Book objects

def checkout(self, title)
'''given title (str) of a book, checks if it
is in the library, if it 1s remove it and return True,
else return False'''
for book in self. books:
if book.get_title() == title:
self. books.remove(book)
return True
return False

List method that deletes the given
item from the list

Library Class: Other Methods

from book import Book

class Library:
'''"Represents a sorted shelf of Book objects

def shelve(self, book)
add the book back to the shelves

self. _books.append(book)

now the shelves might be out of order!

lets sort them author name
self._books = sorted(self._books, key=Book.get_author)

To understand this, we need to review
sorted() function in Python

Default/Optional Arguments
for Functions

Default/ Optional Arguments

- Sometimes we want to have optional input arguments for a function or
have some arguments take default values

- (Can do that by setting the default value in function definition

def function with optional_args(argl, arg2, arg3=defval3):
'"Toptional arguments with default values always
come after the required arguments'''
function body

Default Arguments: Example

- Sometimes we want to have optional input arguments for a function or
have some arguments take default values

- (Can do that by setting the default value in function definition

def greeting(name=""):
''"'Takes a name string (defaults to empty str)
and prints a greeting.'"’

print("Hello " + name)
name Is set to "Maud"”

greeting() greeting("Maud")
Hello Maud

No name Is passed, defaults to

Default arguments in Built-in Functions

- [he optional/default arguments taken by built-in functions and methods
are displayed when you query for its documentation

- Can do that by typing he lp(type) in Interactive Python or pydoc3
type in the Terminal

help(print)
v/ 0.0s

Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

flush: whether to forcibly flush the stream.

Detour: Bullt-In
sorted() function

sorted()

- sorted() is a built-in Python function (not a method!) that takes a
sequence (string, list, tuple) and returns a new sorted sequence as a list

» By default, sorted() sorts the sequence in ascending order (for
numbers) and alphabetical (dictionary) order for strings

- sorted() does not alter the sequence it is called on and always returns
the type l1st

>>> nums = {142, -20, 13, 10, 0, 11, 18} # set of ints
>>> sorted(nums) # this returns a list!

[-20, 0, 10, 11, 13, 18, 42]

z', 'b', 'z2', 'A']

>>> letters = [Ialp ICII
>>> sorted(letters)

[IAI’ IZI’ Ial’ Ibl’ ICI’ IZI]

Changing the Default Sorting Behavior

+ To better understand the sorted () function, look at documentation
help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /, *, |key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

- Aniterable is any object over which we can rterate (list, string, tuple, range)

- The optional parameter key specifies a function or method that determines
how each element should be compared to other elements

- The optional boolean parameter reverse (which by default is set to False)
allows us to sort in reverse order

Reverse Sorting Example

- Let's consider the optional reverse parameter to sorted()

» Sort sequences In reverse order by setting this parameter to be True

>>> nums = [42, -20, 13, 10, 0, 11, 18]
>>> sorted(nums, reverse=True)

[42, 18, 13, 11, 10, 0, -20]

Sorting with a Key function

Suppose we want to sort a data type based on our own criterion

Example: A list of course tuples, where the first item Is the course name,
second item Is the enrollment capacity, and third item is the term (Fall/Spring).

'CS134"', 90, 'Spring'), ('CS136', 60, 'Spring'),
'AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),

'MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
'PSYC201', 50, 'Fall'), ('"MATH110', 90, 'Spring')]

courses [

N N N N

Suppose we want to sort these courses by their capacity (second element)

* We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

- This same logic applies to sorting objects of any class that we define

- We can sort them based on a specific attribute

Sorting with a Key function

- Defining a key function explicitly:

+ We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

def get_capacity(course):
'''"Takes a course tuple and returns capacity'''
return course[1]

- We can pass this function as a key when calling sorted ()

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_ capacity)

Sorting with a Key function

sorted(seq, key=function)
Interpret as for el in seq: use function(el) to sort seq

For each element in the sequence, sorted() calls the key
function on the element to figure out what “feature” of the data
should be used for sorting

we can tell sorted() to sort by capacity instead
sorted(courses, key=get capacity)

For each Ccourse in courses (a list of lists), sort based on value
returned by capacity(course)

EXam

courses = |

'‘MUS112°',

('CS134',

('AFR206"',
(
(

ble: Sorting wr

90, 'Spring')

h key

('CS136', 60, 'Spring'),

30, 'Spring'), ('ECON233', 30, 'Fall'),
10, 'Fall'), ('STAT200', 50, 'Spring'),
'PSYC201', 50, 'Fall'), ('"MATH110', 90, 'Spring')]

def get _capacity(course):

'"'"Takes a course tuple and returns capacity

return course[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

'Fall'),
'Spring'),
'Fall'),
'Spring'),
'Fall'),

[(*MUS112"',
('AFR206"',
('ECON233",
('STAT200',
('PSYC201"',
('CS136°',
('CS134',
('"MATH110',

10,
30,
30,
50,
50,
60,
90,
90,

'S
'S
'S

oring'),
oring'),

oring')]

Sorting Objects using kKey
Suppose we want to sort the Books in a list of Books using a specific data

attribute such as author's name

Can use the getter method for that attribute and pass it to key

Caveat: Key needs to be a function that is applied to every object of
the sequence, not a method that is called on an individual object

Fach method is a function that belongs to a given class

» The following are equivalent (left is method get_author called on
Book b, right: function Book.get_author called on Book b):

b = Book("Dune", "Herbert, Frank", 1965)

bl.get_author()L(—-————b»Book.get_author(bl)‘

Sorting Objects using kKey

+ The following sorts a list of Book objects by their author's name
Notice to use the getter method from the class Book as key
Need to use the functional variant Book.get_author

- This function is called on every Book object which gives the sorting
criteria (author names)

- Thereturn is a list of Book objects arranged in the alphabetical order
of their author's name

sorted_books = sorted(list_of_books, key=Book.get_author)‘

Reading Books from CSV
xample In Class

Reading In CSV using String Methods

» Suppose we have a CSV booklist.csv with each line containing:
- author name, title, year of publication

- We want to read this data and create a Library object containing

corresponding Books

- Can use bullt-in string methods to process the lines

e booklist.csv X

Users > shikhasingh > Documents > gitrepos > courses > 134 > s24 > staff >

1 Orson Scott Card,Ender's Game, 1985

Frank Herbert,Dune, 1965

Douglas Adams,The Hitchhiker's Guide to the Galaxy, 1979
Ray Bradbury,Fahrenheit 451,1953

George Orwell,1984,1949

Aldous Huxley,Brave New World, 1932

O U1 A W N

Reading In CSV using String Methods

Notice the use of accumulation variable that is a Library object and the

bullt-in str methods

def process books(filename):
''"'"Takes as input a CSV filename as string, returns

a Library object representing the books in the file.
new_1lib = Library() # initialize to empty object
with open(filename) as book_info:
for line in book_info:

line = line.strip() # remove newline

author, title, year = line.split(',"')

year = int(year) # convert year to int

new_lib.shelve(Book(title, author, year))

return new_1lib

Review: String Methods

Usetul String Methods

Find str methods: pydoc3 str (inTerminal) or help(str) in Notebook

>>> g = CSCI 134 1is great!\n"
>>> S.ST rip() -~ Remove whitespace from left/right
'CSCI 134 1is great!’ sides of the string S

>>> st = ['starry', 'starry', 'night']

>>> stars = 'sx'.join (lst) e Joins all elements from list of str,

Lst, using the leading str ‘'sx'
>>> stars

'starry++starry++night’
Splits all elements from str stars,

_ using the str argument'**"
>>> stars.split('sxx")

['starry', 'starry', 'night'] Inserts arguments into the { } in the
STr instance object

>>> "T have {y {} & 1} {}".format(2, 'cats’',1, 'dog"')

'T have 2 cats & 1 dog.'

Summary

Classes provide us with a way to further organize our code

Methods are functions that belong to a given class and are called on
instances of that class (using dot notation)

Can store user-define types (Books) in Python built-in collections such as

lIst, dictionaries, sets, etc
Can sort any sequence containing built-in or custom types using sorted

Optional/default arguments to functions: can define using =defval in
function definition, and can optional pass arguments during function call

Example: using key, reverse optional arguments in sorted

Default arguments in constructor (__init__)

Next [ime: Inheritance

 Inheritance is the capablility of one class to derive or inherit the
properties from another class

- The benefits of inheritance are;
Often represents real-world relationships well

Provides reusability of code, so we don't have to write the same
code again and again

Allows us to add more features to a class without modifying it

* Inheritance is transitive in nature, which means that if class B inherits
from class A, then all the subclasses of B would also automatically inhertit

from class A

When a class inherits from another class, all methods and attributes are
accessible to subclass, except private attributes (indicated with __)

