
CS134 Lecture 23:
Classes and Objects III

Announcements & Logistics
• HW 7 due tonight (on Glow)

• Lab 8 is a partner lab : autocomplete

• No prelab but do read the handout before arriving
• Working with three classes

• Good idea to use pencil/paper and map out the different
attributes and methods

• Looking ahead: Lab 9 will be Boggle

• Brings together all OOP concepts and get to "build" a game

Do You Have Any Questions?

Last Time
• Built the Book class to represents book objects

• Learned about private, protected, public attributes and methods
(indicate scope using underscores in Python)

• Explored accessor (getter) and mutator (setter) methods in Python

• Talked about __init__ (aka constructor) and __str__ methods

Today’s Plan
• Design a Library class that stores a sorted shelf of Book objects

• Tools we need:

• sorted() function in Python and how to use key sorting

• how to pass a function as an argument to another function

• understand optional arguments in function/method calls

• Review some useful string methods:

• s.split(), s.join(), s.format()

class Book:
 """This class represents a book with attributes title, author, and year"""

 # attributes: _title, _author, _year
 def __init__(self, book_title, book_author, book_year):
 self._title = book_title
 self._author = book_author
 self._year = int(book_year)

 # accessor (getter) methods
 def get_title(self):
 return self._title

 def get_author(self):
 return self._author

 def get_year(self):
 return self._year

 # mutator (setter) methods
 def set_title(self, book_title):
 self._title = book_title

 def set_author(self, book_author):
 self._author = book_author

 def set_year(self, book_year):
 self._year = int(book_year)

 # methods for returning book properties
 def num_words_in_title(self):
 """Returns the number of words in title of book"""
 return len(self._title.split())

 def years_since_pub(self, current_year):
 """Returns the number of years since book was published"""
 return current_year - self._year

 def same_author_as(self, other_book):
 """Check if self and other_book have same author"""
 return self._author == other_book.get_author()

Last Time: Book Class

Library Class
• Let's build a Library class that stores a collection of Books

• Data attribute:

• _books : collection of book objects

• What built-in collection data type to use?

• sorted, unsorted? mutable, immutable?

• What methods?

• __init__, __str__

• check out a book (checkout)

• return/add a book (shelve) and ensure
shelf is sorted

Library Class: Constructor
from book import Book

class Library:
 '''Represents a sorted shelf of Book objects'''

 def __init__(self, list_of_books=[]):
 self._books = [b for b in list_of_books]

Create a new list containing the list of Book objects
passed when an object is created

if __name__ == "__main__":
 # creating book objects:
 b1 = Book('Pride and Prejudice', 'Jane Austen', 1813)
 b2 = Book('Emma', 'Jane Austen', 1815)
 b3 = Book("Parable of the Sower", "Octavia Butler", 1993)
 # creating library object
 lib = Library([b1, b2, b3])

Calls __init__ on lib
object (passed to self)

Library Class: __str__
from book import Book
class Library:
 '''Represents a sorted shelf of Book objects'''

 def __str__(self):
 list_of_strings = []
 for book in self._books:
 list_of_strings.append(str(book))
 return " | ".join(list_of_strings)

if __name__ == "__main__":
 # creating book objects:
 b1 = Book('Pride and Prejudice', 'Jane Austen', 1813)
 b2 = Book('Emma', 'Jane Austen', 1815)
 b3 = Book("Parable of the Sower", "Octavia Butler", 1993)
 # creating library object
 lib = Library([b1, b2, b3])
print(lib)

Calls str special method on each Book object and
accumulates them in a list

joins the string in list_of_strings together with
the connector string " | " in between each

Calls __str__ method on lib object

Library Class: Other Methods
from book import Book
class Library:
 '''Represents a sorted shelf of Book objects'''

 def checkout(self, title) :
 '''given title (str) of a book, checks if it
 is in the library, if it is remove it and return True,
 else return False'''
 for book in self._books:
 if book.get_title() == title:
 self._books.remove(book)
 return True
 return False

List method that deletes the given
item from the list

Library Class: Other Methods

from book import Book
class Library:
 '''Represents a sorted shelf of Book objects'''

 def shelve(self, book) :
 # add the book back to the shelves
 self._books.append(book)

 # now the shelves might be out of order!
 # lets sort them author name
 self._books = sorted(self._books, key=Book.get_author)

To understand this, we need to review
sorted() function in Python

Default/Optional Arguments
for Functions

Default/ Optional Arguments
• Sometimes we want to have optional input arguments for a function or

have some arguments take default values

• Can do that by setting the default value in function definition

def function_with_optional_args(arg1, arg2, arg3=defval3):
 '''optional arguments with default values always
 come after the required arguments'''
 # function body

Default Arguments: Example
• Sometimes we want to have optional input arguments for a function or

have some arguments take default values

• Can do that by setting the default value in function definition

def greeting(name=""):
 '''Takes a name string (defaults to empty str)
 and prints a greeting.'''
 print("Hello " + name)

greeting()

Hello

greeting("Maud")

Maud

No name is passed, defaults to ""

name is set to "Maud"

Default arguments in Built-in Functions
• The optional/default arguments taken by built-in functions and methods

are displayed when you query for its documentation

• Can do that by typing help(type) in Interactive Python or pydoc3
type in the Terminal

Detour: Built-in
sorted() function

sorted()
• sorted() is a built-in Python function (not a method!) that takes a

sequence (string, list, tuple) and returns a new sorted sequence as a list

• By default, sorted() sorts the sequence in ascending order (for
numbers) and alphabetical (dictionary) order for strings

• sorted() does not alter the sequence it is called on and always returns
the type list

>>> nums = {42, -20, 13, 10, 0, 11, 18} # set of ints

>>> sorted(nums) # this returns a list!

[-20, 0, 10, 11, 13, 18, 42]

>>> letters = ['a', 'c', 'z', 'b', 'Z', ‘A']

>>> sorted(letters)

['A', 'Z', 'a', 'b', 'c', 'z']

Changing the Default Sorting Behavior
• To better understand the sorted() function, look at documentation

• An iterable is any object over which we can iterate (list, string, tuple, range)

• The optional parameter key specifies a function or method that determines
how each element should be compared to other elements

• The optional boolean parameter reverse (which by default is set to False)
allows us to sort in reverse order

Reverse Sorting Example
• Let’s consider the optional reverse parameter to sorted()

• Sort sequences in reverse order by setting this parameter to be True
>>> nums = [42, -20, 13, 10, 0, 11, 18]

>>> sorted(nums, reverse=True)

[42, 18, 13, 11, 10, 0, -20]

Sorting with a key function
• Suppose we want to sort a data type based on our own criterion

• Example: A list of course tuples, where the first item is the course name,
second item is the enrollment capacity, and third item is the term (Fall/Spring).

• Suppose we want to sort these courses by their capacity (second element)

• We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

• This same logic applies to sorting objects of any class that we define

• We can sort them based on a specific attribute

courses = [('CS134', 90, 'Spring'), ('CS136', 60, 'Spring'),
 ('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),
 ('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
 ('PSYC201', 50, 'Fall'), ('MATH110', 90, 'Spring')]

Sorting with a key function
• Defining a key function explicitly:

• We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

• We can pass this function as a key when calling sorted()

def get_capacity(course):
 '''Takes a course tuple and returns capacity'''
 return course[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

• sorted(seq, key=function)

• Interpret as for el in seq: use function(el) to sort seq

• For each element in the sequence, sorted() calls the key
function on the element to figure out what “feature” of the data
should be used for sorting

• For each course in courses (a list of lists), sort based on value
returned by capacity(course)

Sorting with a key function

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

Example: Sorting with key

def get_capacity(course):
 '''Takes a course tuple and returns capacity'''
 return course[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=get_capacity)

courses = [('CS134', 90, 'Spring'), ('CS136', 60, 'Spring'),
 ('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),
 ('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
 ('PSYC201', 50, 'Fall'), ('MATH110', 90, 'Spring')]

[('MUS112', 10, 'Fall'),
 ('AFR206', 30, 'Spring'),
 ('ECON233', 30, 'Fall'),
 ('STAT200', 50, 'Spring'),
 ('PSYC201', 50, 'Fall'),
 ('CS136', 60, 'Spring'),
 ('CS134', 90, 'Spring'),
 ('MATH110', 90, 'Spring')]

Sorting Objects using key
• Suppose we want to sort the Books in a list of Books using a specific data

attribute such as author's name

• Can use the getter method for that attribute and pass it to key

• Caveat: Key needs to be a function that is applied to every object of
the sequence, not a method that is called on an individual object

• Each method is a function that belongs to a given class

• The following are equivalent (left is method get_author called on
Book b, right: function Book.get_author called on Book b):

b = Book("Dune", "Herbert, Frank", 1965)

b1.get_author() Book.get_author(b1)

• The following sorts a list of Book objects by their author's name

• Notice to use the getter method from the class Book as key

• Need to use the functional variant Book.get_author

• This function is called on every Book object which gives the sorting
criteria (author names)

• The return is a list of Book objects arranged in the alphabetical order
of their author's name

Sorting Objects using key

sorted_books = sorted(list_of_books, key=Book.get_author)

Reading Books from CSV
Example in Class

• Suppose we have a CSV booklist.csv with each line containing:

• author name, title, year of publication

• We want to read this data and create a Library object containing
corresponding Books

• Can use built-in string methods to process the lines

Reading in CSV using String Methods

• Notice the use of accumulation variable that is a Library object and the
built-in str methods

def process_books(filename):
 '''Takes as input a CSV filename as string, returns
 a Library object representing the books in the file.'''
 new_lib = Library() # initialize to empty object
 with open(filename) as book_info:
 for line in book_info:
 line = line.strip() # remove newline
 author, title, year = line.split(',')
 year = int(year) # convert year to int
 new_lib.shelve(Book(title, author, year))
 return new_lib

Reading in CSV using String Methods

Review: String Methods

Useful String Methods

>>> s = " CSCI 134 is great!\n"
>>> s.strip()
'CSCI 134 is great!'

>>> lst = ['starry', 'starry', 'night']
>>> stars = '**'.join(lst)
>>> stars
'starry**starry**night'

>>> stars.split('**')
['starry', 'starry', 'night']

>>> "I have {} {} & {} {}".format(2,'cats',1,'dog')
'I have 2 cats & 1 dog.'

Remove whitespace from left/right
sides of the string s

Find str methods: pydoc3 str (in Terminal) or help(str) in Notebook

Joins all elements from list of str,
lst, using the leading str '**'

Splits all elements from str stars,
using the str argument'**'

Inserts arguments into the {} in the
str instance object

• Classes provide us with a way to further organize our code

• Methods are functions that belong to a given class and are called on
instances of that class (using dot notation)

• Can store user-define types (Books) in Python built-in collections such as
list, dictionaries, sets, etc

• Can sort any sequence containing built-in or custom types using sorted

• Optional/default arguments to functions: can define using =defval in
function definition, and can optional pass arguments during function call

• Example: using key, reverse optional arguments in sorted

• Default arguments in constructor (__init__)

Summary

• Inheritance is the capability of one class to derive or inherit the
properties from another class

• The benefits of inheritance are:
• Often represents real-world relationships well
• Provides reusability of code, so we don’t have to write the same

code again and again
• Allows us to add more features to a class without modifying it

• Inheritance is transitive in nature, which means that if class B inherits
from class A, then all the subclasses of B would also automatically inherit
from class A

• When a class inherits from another class, all methods and attributes are
accessible to subclass, except private attributes (indicated with __)

Next Time: Inheritance

