
CS134 Lecture 23:
Classes & Objects

Announcements & Logistics
• Lab 6 graded feedback: almost done, will return soon

• Lab 8 will be released today
• Partner lab, no prelab
• Focuses on creating and using our own classes

• Will create our own autocomplete algorithm

• HW 7 due Mon 10 pm: focuses on understanding recursive code
• Fewer questions but a little bit tricky

Do You Have Any Questions?

Last Time
• Introduced the big idea of object oriented programming (OOP)
• Everything in Python is an object and has a type!

• We can create classes to define our own types
• Learned how to define and call methods on objects of a class

• first parameter in methods is always self (is a reference to the
object that the method is called on)

• Quick aside: functions versus methods?
• Functions are not associated with a specific class
• Methods are associated with a specific class and are invoked on

instances of the class (using dot notation)

Today’s Plan
• Implement a simple Book class and learn about the following:

• Learning about scope and naming conventions in Python
• Using the __init__() method to initialize objects with their

attribute values
• Defining accessor and mutator methods to interact with attributes
• Implementing and invoking methods in general
• Implementing __str__() method to provide meaningful print

statements for custom objects

Defining Our Own Type: Book class
Class definition provides a “blueprint”

for creating specific books and
specify attributes of books

Specific instances of the
Book class

Providing values for
attributes of the

Book class, such as
title, author, and
year, define key

features of
individual instances

class Book:

 """This class represents a book"""

indented body of class
definition

Creating instances of the class:

book1 = Book()

book2 = Book()

Defining Our Own Class: Book

book1 is an instance of class Book

Name of class (always capitalized by convention)

book2 is another (different) instance of class Book

Attributes
• Objects have state which is typically held in instance variables or (in

Pythonic terms) attributes

• For the Book class, let's define attributes as

• _title, _author, _year

• the leading underscore in the variable name indicates that they are
protected (these are not meant to used outside the class body)

• Every Book instance has different attribute values!

• In Python, we typically declare and initialize attributes in a special
function known as the constructor

• The constructor has a special name: __init__ and is typically defined
at the top of the class before all other method definitions

Creating instances of the class:

book1 = Book("Alcott", "Little Women", 1869)

book2 = Book("Tolkein", "Lord of the Rings", 1954)

class Book:

 """This class represents a book"""

 # attributes: author, title, year

def __init__(self, book_author, book_title, book_year):

self._author = book_author

self._title = book_title

self._year = book_year

Constructor: Defining __init__

Implicitly calls
__init__(book1, "Alcott",
"Little Women", 1869)

Class Methods

Methods and Data Abstraction
• Ideally, we should not allow direct access to the object’s attributes:

• Instead we control access to attributes through accessor and mutator
methods and avoid accessing the attributes directly

• Accessor methods: provide “read-only” access to the object’s
attributes (“getter” methods)

• Mutator methods: let us modify the object’s attribute values
(“setter” methods)

• This is called encapsulation: the bundling of data with the methods that
operate on that data (another OOP principle)

>>> # creating book objects
>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)
>>> ps._title
'Parable of the Sower'

class Book:
 """This class represents a book with attributes title, author, and year"""

 # __init__ is automatically called when we create new Book objects
 # we set the initial values of our attributes in __init__
 def __init__(self, book_title, book_author, book_year):
 self._title = book_title
 self._author = book_author
 self._year = book_year

 # accessor (getter) methods
 def get_title(self):
 return self._title

 def get_author(self):
 return self._author

 def get_year(self):
 return self._year

 # mutator (setter) methods
 def set_title(self, book_title):
 self._title = book_title

 def set_author(self, book_author):
 self._author = book_author

 def set_year(self, book_year):
 self._year = int(book_year)

Accessor methods return values of
attributes, but do not change them

class Book:
 """This class represents a book with attributes title, author, and year"""

 # __init__ is automatically called when we create new Book objects
 # we set the initial values of our attributes in __init__
 def __init__(self, book_title, book_author, book_year):
 self._title = book_title
 self._author = book_author
 self._year = book_year

 # accessor (getter) methods
 def get_title(self):
 return self._title

 def get_author(self):
 return self._author

 def get_year(self):
 return self._year

 # mutator (setter) methods
 def set_title(self, book_title):
 self._title = book_title

 def set_author(self, book_author):
 self._author = book_author

 def set_year(self, book_year):
 self._year = int(book_year)

Mutator methods change the value of
attributes but do not explicitly return

anything

>>> pp.get_title()
'Pride and Prejudice'
>>> emma.get_author()
'Jane Austen'
>>> ps.get_year()
1993
>>> ps.set_year(1991)
>>> ps.get_year()
1991

Using Accessor/Mutator Methods
Use accessor methods to get the

values of the attributes (when outside of
class implementation)

Use mutator methods to set or change
the values of the attributes (when outside

of class implementation)

Aside:
Naming Conventions in Python

• Double leading underscore (__) in name (strictly private): e.g. __value
• “Invisible” from outside of the class

• Strong “you cannot touch this” policy (which is enforced)

• Single leading underscore (_) in name (private/protected): e.g. _value
• Can be accessed from outside, but really shouldn’t

• “Don’t touch this (unless you are a subclass)” policy

• Most attributes in CS134 should start with a single underscore

• No leading underscore (public): e.g. value
• Can be freely used outside class

• These conventions apply to methods names and attributes

Scope & Naming Conventions in Python

>>> a = TestingAttributes()
>>> a.__val
AttributeError: 'TestingAttributes' object has no attribute '__val'
>>> a._val
'I am private but accessible from outside.'
>>> a.val
'I am public.'

Attribute Naming Conventions

Note: Although we can access attributes directly
using dot notation, it’s bad practice: should always use

methods to access/manipulate attributes

class TestingAttributes():

 def __init__(self):
 self.__val = "I am strictly private."
 self._val = "I am private but accessible from outside."
 self.val = "I am public."

Class Methods:
More!

• Beyond the accessor and mutator methods, we can define other
methods in the class definition of Book to manipulate or answer
questions about our book objects:

• num_words_in_title(): returns the number of words in
the title of the book

• years_since_pub(current_year): takes in the current
year and returns the number of years since the book was
published

• same_author_as(other_book): takes another Book
object as a parameter and checks if the two books have the same
author

Defining More Methods

• Returns the number of words in the title of the book

num_words_in_title()

class Book:
...

 # methods for manipulating Books
 def num_words_in_title(self):
 """Returns the number of words in title of book"""
 return len(self._title.split())

• Takes in the current year and returns the number of years since the
book was published

years_since_pub(current_year)

class Book:
...

 def years_since_pub(self, current_year):
 """Returns the number of years since book was published"""
 return current_year - self._year

• Takes another Book object as a parameter and checks if the two
books have the same author

same_author_as(other_book)

class Book:
...

 def same_author_as(self, other_book):
 """Check if self and other_book have same author"""
 return self._author == other_book.get_author()

class Book:
 """This class represents a book with attributes title, author, and year"""

 # __init__ is automatically called when we create new Book objects
 # we set the initial values of our attributes in __init__
 def __init__(self, book_title, book_author, book_year):
 self._title = book_title
 self._author = book_author
 self._year = int(book_year)

 # accessor (getter) methods
 def get_title(self):
 return self._title

 def get_author(self):
 return self._author

 def get_year(self):
 return self._year

 # mutator (setter) methods
 def set_title(self, book_title):
 self._title = book_title

 def set_author(self, book_author):
 self._author = book_author

 def set_year(self, book_year):
 self._year = int(book_year)

 # methods for returning book properties
 def num_words_in_title(self):
 """Returns the number of words in title of book"""
 return len(self._title.split())

 def years_since_pub(self, current_year):
 """Returns the number of years since book was published"""
 return current_year - self._year

 def same_author_as(self, other_book):
 """Check if self and other_book have same author"""
 return self._author == other_book.get_author()

Invoking Class Methods
• We invoke methods on specific instances of our class

• In this example, we are invoking Book methods on specific Book objects
>>> # creating book objects
>>> pp = Book("Pride and Prejudice", "Jane Austen", 1813)
>>> emma = Book("Emma", "Jane Austen", 1815)
>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)
>>> ps.num_words_in_title()
4
>>> emma.years_since_pub(2023)
208
>>> ps.years_since_pub(2023)
30
>>> ps.same_author_as(emma)
False
>>> emma.same_author_as(pp)
True

__str__ : special method
called by print

• Special method __str__ is automatically called when we ask to print
a class object in Python

• __str__ must always return a string

• We can customize how the object is printed by writing a custom
__str__ method for our class

• Very useful for debugging!

>>> test = Book("testing")

>>> print(test)

<__main__.Book object at 0x105eecca0>

Print Representation of an Object

By default, if we print an object,
the output is not helpful

class Book():

def __init__(self, title):
self._title = title

__str__ for Book class
• What is a useful string representation of a Book?

• Something that combines the attributes in a meaningful way

• Now when we ask to print a specific instance of a Book, we get
something useful
>>> print(emma)

'Emma', by Jane Austen, in 1815

 # __str__ is used to generate a meaningful string representation for Book objects
 # __str__ is automatically called when we ask to print() a Book object
 def __str__(self):
 return "'"+self._title+"', by "+self._author+", in "+ str(self._year)

Library Class:
See Notebook

Aside: Built-in
sorted() function

sorted()
• sorted() is a built-in Python function (not a method!) that takes a

sequence (string, list, tuple) and returns a new sorted sequence as a list

• By default, sorted() sorts the sequence in ascending order (for
numbers) and alphabetical (dictionary) order for strings

• sorted() does not alter the sequence it is called on and always returns
the type list

>>> nums = {42, -20, 13, 10, 0, 11, 18} # set of ints

>>> sorted(nums) # this returns a list!

[-20, 0, 10, 11, 13, 18, 42]

>>> letters = ['a', 'c', 'z', 'b', 'Z', ‘A']

>>> sorted(letters)

['A', 'Z', 'a', 'b', 'c', 'z']

Changing the Default Sorting Behavior
• To better understand the sorted() function, look at documentation

• An iterable is any object over which we can iterate (list, string, tuple, range)

• The optional parameter key specifies a function or method that determines
how each element should be compared to other elements

• The optional boolean parameter reverse (which by default is set to False)
allows us to sort in reverse order

Reverse Sorting Example
• Let’s consider the optional reverse parameter to sorted()

• Sort sequences in reverse order by setting this parameter to be True
>>> nums = [42, -20, 13, 10, 0, 11, 18]

>>> sorted(nums, reverse=True)

[42, 18, 13, 11, 10, 0, -20]

Sorting with a key function
• Suppose we want to sort a data type based on our own criterion

• Example: A list of course tuples, where the first item is the course name,
second item is the enrollment capacity, and third item is the term (Fall/Spring).

• Suppose we want to sort these courses by their capacity (second element)

• We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

• This same logic applies to sorting objects of any class that we define

• We can sort them based on a specific attribute

courses = [['CS134', 90, 'Spring'], ['CS136', 60, 'Spring'],
 ['AFR206', 30, 'Spring'], ['ECON233', 30, 'Fall'],
 ['MUS112', 10, 'Fall'], ['STAT200', 50, 'Spring'],
 ['PSYC201', 50, 'Fall'], ['MATH110', 90, 'Spring']]

Sorting with a key function
• Defining a key function explicitly:

• We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

• Once we have defined this function, we can pass it as a key when
calling sorted()

def capacity(course_pair):
 '''Takes a sequence and returns item at index 1'''
 return course_pair[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

• sorted(seq, key=function)

• Interpret as for el in seq: use function(el) to sort seq

• For each element in the sequence, sorted() calls the key
function on the element to figure out what “feature” of the data
should be used for sorting

• For each course in courses (a list of lists), sort based on value
returned by capacity(course)

Sorting with a key function

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

Sorting with a key function Example

def capacity(course_pair):
 '''Takes a sequence and returns item at index 1'''
 return course_pair[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

courses = [['CS134', 90, 'Spring'], ['CS136', 60, 'Spring'],
 ['AFR206', 30, 'Spring'], ['ECON233', 30, 'Fall'],
 ['MUS112', 10, 'Fall'], ['STAT200', 50, 'Spring'],
 ['PSYC201', 50, 'Fall'], ['MATH110', 90, 'Spring']]

[['MUS112', 10, 'Fall'],
 ['AFR206', 30, 'Spring'],
 ['ECON233', 30, 'Fall'],
 ['STAT200', 50, 'Spring'],
 ['PSYC201', 50, 'Fall'],
 ['CS136', 60, 'Spring'],
 ['CS134', 90, 'Spring'],
 ['MATH110', 90, 'Spring']]

We will do a full lecture on
sorting soon and discuss more

about how it works in detail!

Other Special Methods
• There are many other “special” methods in Python.

• __eq__ (self, other):
• __ne__ (self, other):
• __lt__ (self, other):
• __gt__ (self, other):
• __add__(self, other) :
• __sub__(self, other):
• __mul__(self, other):
• __truediv__(self, other):
• __pow__(self, other):

• There are others, and we can reimplement any of these for our class!

x == y
x != y
x < y
x > y
x + y
x - y
x * y
x / y
x ** y

Summary
• Today we built a simple Book class
• (Briefly) Learned about about scope and naming conventions in Python
• Used the __init__() method to initialize Book objects with their

attribute values
• Defined accessor and mutator methods to interact with attributes and

avoid accessing attributes directly
• Note about mutators: If an attribute should not change, no need to

define a setter method for it!
• Implemented a few more “interesting” Book methods
• Implemented the __str__() method so that we get meaningful print

statements for our Book objects

