CS|134 Lecture 20:
More Recursion

Announcements & Logistics

HW 6 on GLOW due Mon at |0pm
Good practice for short-code questions on exam
Practice on pencil and paper first

Lab /,8,and 9 are partner labs

Pair programming is an important skill as well as a vehicle for
learning

Colloquium Today: Tim Randolph ’18

Theoretical computer science talk on the Subset Sum problem (a
problem you may use a “brute-force’ approach to solve recursively
in a future assisnment!)

Do You Have Any Questions!?

L ast [Ime

* Introduction to recursion
- Alternative to rteration

- New problem solving paradigm

- Function frame model to understand recursion behind the scenes

-

W .

VA
s

fay

D OD
ANAN A‘AvA'A

Last Time: Recursive Approach to Problem Solving

A recursive function is a function that calls itself
* A recursive approach to problem solving has two main parts:

- Base case(s). VWhen the problem is so small, we solve It
directly, without having to reduce 1t any further

- Recursive step. Does the following things:
« Performs an action that contributes to the solution

* Reduces the problem to a smaller version of the same
problem, and calls the function on this smaller subproblem

» The recursive step Is a form of "wishful thinking” ‘
(also called the Inductive hypothesis)

More Recursion:
count_up

count_up(n)

* Write a recursive function that prints integers from 1 up to n and then

prints ""DONE '™

» Recursive definition of count_up:
+ Basecase: N <= 0@, pass # print nothign

- Recursive rule: call count_up(n-1), print(n)

>>> count_up(5) >>> count_up(4) >>> count_up(3)

1
2
3

Uk WNRE
~ WN -

count_up(n)

- Unlike count_down(n) the print statement is after the
recursive function call (why?)

- By printing after the recursive call, the print statement gets
executed "on the way back’ from recursive calls

def count_up(n):
'""'"Prints out integers from 1 up to n
if n <= 0:
pass
else:
count_up(n-1)
print(n)

>>> count_up(5)

U WNRL

Function Frame Model to
Understand count_up

Base case reached!

>>> count_up(4)

~ W NN =

Recursion GOTCHAS!

GOTCHA #1

* It the problem that you are solving recursively is not getting
smaller, that Is, you are not getting closer to the base case ---

infinite recursion!

« Never reaches the base case

def count_down_gotcha(n):
"'"'"Prints ints from 1 up to n’''’
if n == 1: # Base case
print(n)
else: # Recursive case Subproblem not getting smaller!

print(n)
count_down_gotcha(n)

GOTCHA #2

»+ Missing base case/unreachable base case--- another way to

cause infinite recursion!

def print_halves_gotcha(n):

"""pPrints n, n/2, down to ... 1"""
1t n > @ Always true!
print(n)

return print_halves_gotcha(n/2)

"™Maximum recursion
depth exceeded"

» In practice, the Infinite recursion examples will terminate
when Python runs out of resources for creating function
call frames, leads to a "maximum recursion depth
exceeded” error message

Recursion vs. lteration:
sum List

sum List

* Goal: Write a function to sum up a list of numbers

- Iterative approach?! (i.e., using loops!)

'terative A

D

broach to sum_L1st

Goal: Write a function to sum up a list of numbers

terative approach:

def sum_list iterative(num_1lst):

sum = 0

for num in num_1lst:
sum num

return sum

>>> sum_list_iterative(I[3, 4, 20, 12, 2, 20])

6l

sum List

* Goal: Write a function to sum up a list of numbers

- Recursive approach!?

Recursive approach to sum_ L1st

« Base case:

- num_1Llst is empty, return 0

« Recursive rule:

» Return first element of num_1st plus result from calling sum_11st
on rest of the elements of the list.

+ Example: Suppose num_1st = [6, 3, 6, 5]

* sSum

* sSum

* sSum

* sSum

list(

list(

list(

list(

6, 3, 6, 5]1) =6 + sum list([3, 6, 51)

3, 6, 5]) = 3 + sum list([6, 5])
6, 5]1) = 6 + sum list([5])

5]1) =5 + sum list([])

» For the base case we have sum_1ist([]) returns @

Recursive approach to sum_ L1st

« Base case:

- num_1Llst is empty, return 0

« Recursive rule:

» Return first element of num_1st plus result from calling sum_11st
on rest of the elements of the list.

+ Example: Suppose num_1st = [6, 3, 6, 5]

* sSum

- sum |
- sum |

- sum |

1 20

|4

6, 3, 6, 51) =6 + sum_] 14 |[3, 6, 5])

3, 6, 5]) = 3 + sum

Il £([6, 51)

6, 5]) =6 + sul 5

st([5])

5

[5]) =5 + 9 0 |ist(

[1)

» For the base case we have sum_1ist([]) returns @

Recursive approach to sum_ L1st

def sum_list(num_1lst):
"HHReturns sum of given list"""
1f not num_1lst:
return 0
else:
return num_1lst[0] + sum_list(num_T1lst[1:])

>>> sum_list([3, 4, 20, 12, 2, 201)
6l

Compare sum_ L1st approaches

Compare/Contrast:

def sum_list iterative(num_ 1lst):
sum = 0
for num in num_1lst:
sum num
return sum

def sum_list(num_1lst):
1f num_1lst []:
return 0
else:
return num_1st[0] sumList(num_T1st[1:])

Graphical Recursion

AGARA AN A
AVAvAYA AV’AVA AV‘A'A'A TAYAVAVAVAVATYAVAVAVAVAVAY

Al
PAVAN
AvA AvA A'A A
JAVAVAVAVAVAVAVAVAVAVAVAYAVAY AVAVAVAN

The Turtle Module

- Jurtle 1s a graphics module first introduced in the 1960s by computer
scientists Seymour Papert, Wally Feurzig, and Cynthia Solomon.

» |t uses a programmable cursor — fondly referred to as the “turtle” — to
draw on a Cartesian plane (x and y axis.)

pen down

R

Jurtle In Python

» turtle is available as a built-in module in Python. See the
Pvthon turtle module AP for detalls.

« BRasic turtle commands:

Use turtle * 1o use these commands
fd() turtle moves forward by
bk () turtle moves backward by
Lt) turtle turns left degrees
rt() turtle turns right degrees
up () (pen up) turtle raises pen in belly
down () (pen down) turtle lowers pen from belly
shape () sets the turtle's shape to
speed () sets the turtle's speed (slow-fast). O skips animation.
home () turtle returns to (0,0) (center of screen)
clear() delete turtle drawings; no change to turtle's state
reset() delete turtle drawings; reset turtle's state
setup(, height) create a turtle window of given and

https://docs.python.org/3/library/turtle.html

Basic [urtle Movement

e forward(dist) or fd(dist),
left(angle) or 1t(angle),
rightCangle) or rt(angle),
backward(dist) or bk(dist)

set up a 400x400 turtle window
setup(400, 400)
reset()

fd(100) # move the turtle forward 100 pixels
1t(90) # turn the turtle 90 degrees to the left
fd(100) # move forward another 100 pixels

complete a square
1t(90)
fd(100)
1t(90)
fd(100)
done()

Drawing Basic Shapes With Turtle

- We can write functions that use turtle commands to draw shapes.

+ For example, here’s a function that draws a square of the desired size

def draw_square(length):
a loop that runs 4 times

and draws each side of the square
for i in range(4):
fd(length)
-Lt (9@) ® -0 Python Turtle Graphics

done()

setup (400, 400)

reset()
draw_square(150)

Drawing Basic Shapes With Turtle

How about drawing polygons?

def draw_polygon(length, num_sides):
for i in range(num_sides):
fd(length)
1t (360/num_sides)

AN

draw_polygon(80, 3) draw_polygon(80, 10)

Adding Color!

- What If we wanted to add some color to our shapes!

def draw_polygon_color(length, num_sides, color):
set the color we want to fill the shape with
color 1s a string
fillcolor(color)

begin_fill()
for i in range(num_sides):
fd(length)
1t (360/num_sides)
end_fill()
done()

draw_polygon_color(80, 10, '"gold") draw_polygon_color(80, 10, "purple")

Next [ime: Recursive Figures With [urtle

Next time we will explore how to draw recursive pictures with Turtle

