CSI134 Lecture |19:
Recursion

Announcements & Logistics

Lab 6 due Wed/Thurs at 10 pm
Uses dictionaries, plotting, CSV files
HW 6 will be out today, due Mon at |0pm
Lab /, 8,and 9 are partner labs
Il out google form sent by Lida by noon tomorrow (Thursday)!

Pair programming is an important skill as well as a vehicle for
learning

Pick up your graded midterm exam at the end of class

Wil use last few mins of lecture to discuss the midterm

Do You Have Any Questions!?

L ast [Ime

Worked through an example involving CSVs, dictionaries, and sets

Discussed plotting with matplotlib

» Python s pretty useful for data processing and visualization!

Top scorers of 2018-19

30
25 -
20 1
: n
Ay '015‘
= = \‘f &
A / 4* _
d\\ ,.""‘Q;:Q:. }§ /‘ 10
-|— T
l \- { 5
((((Gt
= "
!!E\\, /% ,//‘ \\\ / o o W = =) > © c N] >
—1 s c c o b= - =] Y b] o
I '\ "\\\ ‘h\\-/z. % s B ‘qé, 8 E § 'é aa‘; 5
E 2 § T o I = 2 =
2 8 8 &8 E § E 5 3 E
K 2 7 2 g % & 5 & § G
A\ ./) o s v (¥ -
(W] E 1]
o b
uEJ <t
L
.‘2
&

Name

Jloday's Plan

INtro 1o Recursion

Discuss what we mean by the term recursion
Practice translating recursive ideas Into recursive programs
Examining the relationship between recursive and iterative programs

- That 1s, how do recursive ideas relate to the rterative ideas (for loops,
while loops) we've covered so far?

Where are We Going!

* First half of CS134: learned some fundamental programming concepts

-unctions, conditionals, loops, data types

Bullt-in data structures and operations

* Looking ahead to the second half: more emphasis on algorithmic and

conceptual topics: more "computational thinking"

* Recursion (~| week)

 Defining our own data types using classes and objects (~2 weeks)
- Object oriented programming topics

- Continue developing our inturtion regarding efficient vs inefficient code

Why Learn About Recursion?

- Recursion is an important problem solving paradigm

- An alternative to iteration for repeatedly performing a task

Process that lets us "divide, conquer, combine”

- Useful to build and maintain data structures (like trees and lists)

* Provides a different lens to view the world

- If you love procrastination — recursion is just the thing for you!

A A
vaNiv;

A
NN

a)
A AN
OB LD oy gyl
FOLNNA AAANANN
P 2\ A
A2 jany a3
a) fa A
A'A'A'A .v!v. Pava)
A A A A A A A
A \ A0 A 5D Ay
A a))) FANAY fa
VAVA A'Av‘" AAAN AV’A'A JAYAYAYA AVA'AVA A'A'AVA A‘AvL'A

A
LA
A A)

Javal 7o) AN AN
S04 VY
LALNENAD, LSS
A A

AN AN A.A A.A A.A
2)

AN
Av &N .&v
AeAvA'A AVM#A Aex'A Agng A#A'AeA AVxeA AgAvA'A A#Xe. Aéx#A éxﬁ AVAVAVAVAVAN A#A A=,AVA A'ng A#x‘A A%x“

So What |Is Recursion!?

- An alternative to iteration (loops) for repetition
» General problem solving idea:
» Break the problem down to a smaller version of itself

-+ Keep doing this until the problem is so small, the answer is
straightforward

» Let's take an example of this approach

+ Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one perline)

+ How would we solve this using a loop?

'terative: count_down(n)

+ Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one perline)

-+ How would we solve this using a loop!

def count _down_iterative(n):
'"'Solution using loops'"''
for 1 in range(n):
print(n - i)

'terative: count_down(n)

+ Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one perline)

* Now let's use recursion to do the same thing
» Recursion lets you solve this without any loop

» Just using conditionals and functions

def count _down_iterative(n):
''"'Solution using loops''"’
for i in range(n):
print(n - 1i)

Recursive: count_down(n)

+ Example. Write a function count_down(n) that prints integers n,

n-1,..,1 (one perline)

- Key ideas to use recursion:

- What's the smallest version of the problem we can immediately solve!?

- For larger versions of the problem, is there a small step we can take
that brings us closer to the smallest version of the problem!?

Recursive: count_down(n)

n-1,..,1 (one perline)

- Key ideas to use recursion:

+ Example. Write a function count_down(n) that prints integers n,

- What's the smallest version of the problem we can immediately solve!?

count_down (1) just prints 1 and nothing e

» For larger versions of the problem, is there a smal

SE

step we can take

that brings us closer to the smallest version of the problem?

- to solve count_down(n), printing n is the first step

- the rest of the problem Is the smaller version of the same

problem!

Understanding Recursive Functions

+ Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one perline)
 Recursive definition of countdown: |
Print and stop
+ Basecase: n = 1, print(n)

- Recursive rule: print(n), call count_down(n-1)

Perform one step Reduce the problem (or make
the problem “smaller”)

A function calling itself!

Recursive: count_down(n)

+ Example. Whrite a function count_down(n) that prints integers 1,
2, . .,N (one perline)

def count _down(n):
"""Prints numbers from n down to 1'''

1f n == 1: # Base case
print(n)

else: # Recursive case: n > 1:
print(n)

count _down(n-1)

Recursion: A function calling itself!

Understanding Recursive Functions

- Recursive functions seem to be able to reproduce looping behavior
without writing any loops at all

» o understand what happens behind the scenes when a function calls
itself, let's review what happens when a function calls another function

» Conceptually we understand function calls through the function frame
model

Review:
Function Frame Model

Review: Function Frame Moael

* Consider a simple function square

* What happens when square(5) is invoked?

def square(x):

return Xxsxkx

Review:
Function Frame Model

>>> square(5)

25

Summary:
Function Frame Model

- When we return from a function frame Return value replaces the
"‘control flow" goes back to where the function call

function call was made
>>> square(5) + 4

* Function frame (and the local variables 25
inside It) are destroyed after the return *

- It a function does not have an explicit
return statement, it returns None after all
statements in the body are executed

Review:
Function Frame Model

- How about functions that call other functions?

def sum_square(a, b):

return square(a) + square(b)

* What happens when we call sum_square(5, 3)?

def sum_square(a, b):

return square(a) + square(b)

>>> sum_square(5,3)

l

sum_square(5, 3)

a 5 J b __§-J

return square(a) + square(b)

!

square(5)

X 5

BN

return x x X

def sum_square(a, b):

return square(a) + square(b)

>>> sum_square(5,3)

l

sum_square(5, 3)

a | 5] b | 3]

return squa‘ 75 |+ square(b)

def sum_square(a, b):

return square(a) + square(b)

>>> sum_square(5,3)

l

sum_square(5, 3)

a 5 b

3

return squa‘ 25 \+ square(b)

square(5)

X 5

return X x X

return

square(3)
X 3

X X

X

def sum_square(a, b):

return square(a) + square(b)

>>> sum_square(5,3)

l

sum_square(5, 3)

3 5 b 3
return squa‘ 25 \+ st 9 b)
square(5) square(3)
X 5 X 3

return| X *x X return| x * X

def sum_square(a, b):

return square(a) + square(b)

>>> sum 34 re(5,3)

Function Frame Model to
Understand count down

def count_down(n):
"'"'"Prints ints from n down to 1'"'
1f n ==
print(n)
else:
print(n)
count_down(n-1)

>>> val = count_down(5)
5
4
3
2
1
>>> val = count_down(4)

=N WP

count_down(4)

n|4

if n == 1:
print(n)
else:

=P print(n)

count_down(n-1)

count_down(3) count_down(2)
nl3 ni?2
1if n == if n ==
print(n) print(n)
else: else:
—P print(n) =P print(n)
count_down(n-1) count_down(n-1)

Base case reached!

>>> count_down(4) countDown (1)
4 nil
3 if n ==
2 print(n)
1 else:
print(n)
count_down(n-1)

count_down(4)

n|4

if n == 1:
print(n)
else:

=P print(n)

count_down(n-1)

count_down(3)

n|3

1if n ==
print(n)
else:

—Pp print(n)

count_down(n-1)

Base case reached!

count_down(2)

n| 2

if n ==
print(n)
else:

=P print(n)

count_down(n-1)

>>> count_down(4)
4

3
2
1

countDown (1)

n

if n 1:
print(n)

else:
print(n)

count_down(n-1)

count_down(4) count_down(3)

n|4 n|3
if n == 1: if n ==
print(n) print(n)
else: else:
= print(n) - print(n)
count_down(n-1) count_down(n-1)

k Base case reached!
\

>>> count_down(4)
4

3
2
1

count_down(4)

n|4a

1f n ==
print(n)
else:

=P print(n)

count_down(n-1)

k Base case reached!
\

>>> count_down(4)
4

3
2
1

L Base case reached!

>>> count_down(4)
4

3
2
1

\

\

TADA!

» Recursive functions may seem like magic at first glance, but they follow
from the principles that we've been building all semester.

- |t often takes several exposures to recursion before it “clicks”, so we'll
keep revisiting recursion in the coming lectures

- Drawing pictures and practicing are two tools that can help

+ Our next lab Is a partner lab so you can bounce your ideas off of a
classmate and work though recursion stumbles

Recursive Approach to Problem Solving

* A recursive approach to problem solving has two main parts:

- Base case(s). VWhen the problem is so small, we solve it directly,
without having to reduce 1t any further (this is when we stop)

* Recursive step. Does the following things:
- Performs an action that contributes to the solution (take one step)

* Reduces the problem to a smaller version of the same problem,
and calls the function on this smaller subproblem (break the
problem down into a slightly smaller problem + one step)

» The recursive step Is a form of "wishful thinking": assume
the unfolding of the recursion will take care of the smaller ‘
problem by eventually reducing it to the base case

+ In CS5136/256, this form of wishful thinking will be
introduced more formally as the inductive hypothesis

Counting with Recursion

Recall the function count_appearances(elem, 1)
Returns the number of times e lem appearsin 1

- What the iterative way to implement this?

def count occurrences(elem, 1)
count = 0
for item in L:
if item == elem :
count = count + 1
return count

Examples today are easily written rteratively, but we'll be
looking at problems on Friday where that may not be the casel

Recursive: count occurrences

- One of the keys to thinking recursively:

- What's the smallest version of the problem we can immediately solve!?

For larger versions of the problem, is there a small step we can take
that brings us closer to the smallest version of the problem?

def count occurrences(elem, 1)
'""Trecursive version

if len(1l) ==
return 0
else:

Recursive: count occurrences

def count _occurrences(elem, 1):
'''recursive approach'"'’

if len(l) == 0: # base case
return 0

else: # recursive case
first = 1 if elem == 1[0] else 0

rest = count occurrences(elem, 1[1:1)

return first + rest

Miaterm Discussion

More Recursion:
count_up

count_up(n)

* Write a recursive function that prints integers from 1 up to n

* Recursive defintion of countUp:

 Base case: N =

1, print(n)

+ Recursive rule: call count_up(n-1), print(n)

VWe swapped the order of recursing
(calling count_up) and printing

>>> count_up(5)

UL WNRE

>>> count_up(4)

~ WN -

>>> count_up(3)

1
2
3

countUp(n)

- Note that unlike count_down(n) we moved our print
statement to be after the recursive function call

- By printing after the recursive call, the print statement gets
executed “on the way back” from recursive calls

def count_up(n):
'""'"Prints out integers from 1 up to n
if n == 1:
print(n)
else:
count_up(n-1)
print(n)

>>> count_up(5)

U WNRL

Function Frame Model to
Understand count_up

Base case reached! L

>>> count_up(4)

~ W NN =

\

Recursion GOTCHAS!

GOTCHA #1

* It the problem that you are solving recursively is not getting
smaller, that Is, you are not getting closer to the base case ---

infinite recursion!

« Never reaches the base case

def count_down_gotcha(n):
"'"'"Prints ints from 1 up to n’''’
if n == 1: # Base case
print(n)
else: # Recursive case Subproblem not getting smaller!

print(n)
count_down_gotcha(n)

GOTCHA #2

»+ Missing base case/unreachable base case--- another way to

cause infinite recursion!

def print_halves_gotcha(n):

"""pPrints n, n/2, down to ... 1"""
1t n > @ Always true!
print(n)

return print_halves_gotcha(n/2)

"™Maximum recursion
depth exceeded"

» In practice, the Infinite recursion examples will terminate
when Python runs out of resources for creating function
call frames, leads to a "maximum recursion depth
exceeded” error message

Next Lectures

» Intro to turt le module and graphical recursion

- Comparing iterative and recursive programs

A 4

A
AYA
ANYA AvA
AVAVAVAVAVAVAVA!

A#A AVAN A:xed L#Mﬁ Aexaﬂ AexeA Aexa AexeA AG’AeA A=x=‘ A#x#‘ AgxeA A#m& FAVAVAVA) A=x¢‘ L¢’A¢A Leng

