
CS134 Lecture 19:  
Recursion



Announcements & Logistics
• Lab 6 due Wed/Thurs at 10 pm 

• Uses dictionaries, plotting, CSV files
• HW 6 will be out today, due Mon at 10pm

• Lab 7, 8, and 9 are partner labs 

• Fill out google form sent by Lida by noon tomorrow (Thursday)!
• Pair programming is an important skill as well as a vehicle for 

learning
• Pick up your graded midterm exam at the end of class

• Will use last few mins of lecture to discuss the midterm

Do You Have Any Questions?



Last Time
• Worked through an example involving CSVs, dictionaries, and sets

• Discussed plotting with matplotlib

‣ Python is pretty useful for data processing and visualization!



Today’s Plan

• Discuss what we mean by the term recursion

• Practice translating recursive ideas into recursive programs
• Examining the relationship between recursive and iterative programs

• That is, how do recursive ideas relate to the iterative ideas (for loops, 
while loops) we’ve covered so far?

Intro To Recursion



Where are We Going?
• First half of CS134:   learned some fundamental programming concepts

• Functions, conditionals, loops, data types
• Built-in data structures and operations

• Looking ahead to the second half:  more emphasis on algorithmic and 
conceptual topics: more "computational thinking"
• Recursion  (~1 week)
• Defining our own data types using classes and objects (~2 weeks)

• Object oriented programming topics
• Continue developing our intuition regarding efficient vs inefficient code 



Why Learn About Recursion?
• Recursion is an important problem solving paradigm

• An alternative to iteration for repeatedly performing a task 
• Process that lets us "divide, conquer, combine" 
• Useful to build and maintain data structures (like trees and lists)

• Provides a different lens to view the world
• If you love procrastination — recursion is just the thing for you!



So What Is Recursion?
• An alternative to iteration (loops) for repetition
• General problem solving idea:

• Break the problem down to a smaller version of itself 
• Keep doing this until the problem is so small, the answer is 

straightforward
• Let's take an example of this approach
• Example.  Write a function count_down(n) that prints integers n, 
n-1,..,1 (one per line)

• How would we solve this using a loop?



Iterative:  count_down(n)
• Example.  Write a function count_down(n) that prints integers n, 
n-1,..,1 (one per line)

• How would we solve this using a loop?

def count_down_iterative(n): 
    '''Solution using loops''' 
    for i in range(n): 
        print(n - i) 



Iterative:  count_down(n)
• Example.  Write a function count_down(n) that prints integers n, 
n-1,..,1 (one per line)

• Now let's use recursion to do the same thing
• Recursion lets you solve this without any loop 

• Just using conditionals and functions

def count_down_iterative(n): 
    '''Solution using loops''' 
    for i in range(n): 
        print(n - i) 



Recursive:  count_down(n)
• Example.  Write a function count_down(n) that prints integers n, 
n-1,..,1 (one per line)

• Key ideas to use recursion:
• What's the smallest version of the problem we can immediately solve?

• For larger versions of the problem, is there a small step we can take 
that brings us closer to the smallest version of the problem?



Recursive:  count_down(n)
• Example.  Write a function count_down(n) that prints integers n, 
n-1,..,1 (one per line)

• Key ideas to use recursion:
• What's the smallest version of the problem we can immediately solve?

• count_down(1) just prints 1 and nothing else

• For larger versions of the problem, is there a small step we can take 
that brings us closer to the smallest version of the problem?

• to solve count_down(n), printing n is the first step
• the rest of the problem is the smaller version of the same 

problem!



• Example.  Write a function count_down(n) that prints integers n, 
n-1,..,1 (one per line) 

• Recursive definition of countdown:
• Base case:  n = 1,  print(n) 
• Recursive rule:  print(n), call count_down(n-1)

Understanding Recursive Functions

Perform one step Reduce the problem (or make 
the problem “smaller”)

Print and stop

A function calling itself!



Recursive:  count_down(n)
• Example.  Write a function count_down(n) that prints integers 1, 
2,..,n (one per line)

def count_down(n): 
    '''Prints numbers from n down to 1'''  
    if n == 1:  # Base case 
        print(n)   
    else: # Recursive case: n > 1:  
        print(n) 
        count_down(n-1) 

Recursion: A function calling itself!



• Recursive functions seem to be able to reproduce looping behavior 
without writing any loops at all

• To understand what happens behind the scenes when a function calls 
itself, let’s review what happens when a function calls another function

• Conceptually we understand function calls through the function frame 
model

Understanding Recursive Functions



Review:
Function Frame Model



• Consider a simple function square 
• What happens when square(5) is invoked?

def square(x):  

return x*x

Review:  Function Frame Model



>>> square(5)

5

square(5)

x

return x * x 

25

Review:   
Function Frame Model



>>> square(5) + 4

• When we return from a function frame 
"control flow" goes back to where the 
function call was made

• Function frame (and the local variables 
inside it) are destroyed after the return  

• If a function does not have an explicit 
return statement, it returns None after all 
statements in the body are executed 5

square(5)

x

return 25

Return value replaces the 
function call

25

Summary:   
Function Frame Model



• How about functions that call other functions?

def sum_square(a, b):  

return square(a) + square(b)

• What happens when we call sum_square(5, 3)?

Review:   
Function Frame Model



sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):  

return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sum_square(5,3)



sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):  

return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sum_square(5,3)

25



sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):  

return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sum_square(5,3)

25

3

square(3)

x

return x * x 



sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):  

return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sum_square(5,3)

25

3

square(3)

x

return x * x 

9



sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):  

return square(a) + square(b)

5

square(5)

x

return x * x 

>>> sum_square(5,3)

25

3

square(3)

x

return x * x 

9

34



Function Frame Model to 
Understand count_down



>>> val = count_down(5)
5 
4 
3 
2 
1

>>> val = count_down(4)
4 
3 
2 
1

def count_down(n): 
    '''Prints ints from n down to 1''' 
    if n == 1:  
        print(n)  
    else:  
        print(n) 
        count_down(n-1)



count_down(4)

4n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

count_down(3)

3n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

count_down(2)

2n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(1)

1n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

>>> count_down(4)

4

3
2

Base case reached!

1



count_down(4)

4n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

count_down(3)

3n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

count_down(2)

2n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(1)

1n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

4

3
2

1

Base case reached!

>>> count_down(4)



count_down(4)

4n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

count_down(3)

3n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(2)

2n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(1)

1n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

4

3
2

Base case reached!

1

>>> count_down(4)



count_down(4)

4n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(3)

3n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(2)

2n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(1)

1n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

4

3
2

Base case reached!

1

>>> count_down(4)



countDown(4)

4n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(3)

3n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(2)

2n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

countDown(1)

1n

if n == 1: 
    print(n) 
 else:  
    print(n) 
    count_down(n-1)

4

3
2

Base case reached!

1

>>> count_down(4)



• Recursive functions may seem like magic at first glance, but they follow 
from the principles that we’ve been building all semester.

• It often takes several exposures to recursion before it “clicks”, so we’ll 
keep revisiting recursion in the coming lectures
• Drawing pictures and practicing are two tools that can help
• Our next lab is a partner lab so you can bounce your ideas off of a 

classmate and work though recursion stumbles

TADA!



• A recursive approach to problem solving has two main parts:
• Base case(s).  When the problem is so small, we solve it directly, 

without having to reduce it any further (this is when we stop)
• Recursive step.  Does the following things: 

• Performs an action that contributes to the solution (take one step)
• Reduces the problem to a smaller version of the same problem, 

and calls the function on this smaller subproblem (break the 
problem down into a slightly smaller problem + one step) 

• The recursive step is a form of "wishful thinking":  assume  
the unfolding of the recursion will take care of the smaller  
problem by eventually reducing it to the base case

• In CS136/256, this form of wishful thinking will be 
introduced more formally as the inductive hypothesis

Recursive Approach to Problem Solving



Counting with Recursion
• Recall the function count_appearances(elem, l) 

• Returns the number of times elem appears in l  
• What the iterative way to implement this?

def count_occurrences(elem, l) : 
    count = 0 
    for item in l: 
        if item == elem : 
            count = count + 1 
    return count 

Examples today are easily written iteratively, but we'll be 
looking at problems on Friday where that may not be the case!



Recursive:  count_occurrences
• One of the keys to thinking recursively: 

• What's the smallest version of the problem we can immediately solve?

• For larger versions of the problem, is there a small step we can take 
that brings us closer to the smallest version of the problem?

def count_occurrences(elem, l) : 
   '''recursive version''' 
   # base case (empty list) 
   if len(l) == 0: 

   return 0 
   else: 

# is first item same as elem? 
# if so, we can add 1 
# else, we add zero 
# now we have a smaller problem:  
# count # occurrences in smaller list 



Recursive:  count_occurrences

def count_occurrences(elem, l): 
    '''recursive approach''' 

    if len(l) == 0: # base case 
        return 0 
     
    else:  # recursive case 
        first = 1 if elem == l[0] else 0 
        rest = count_occurrences(elem, l[1:]) 

        return first + rest 





Midterm Discussion



More Recursion: 
count_up



• Write a recursive function that prints integers from 1 up to n

• Recursive definition of countUp:
• Base case:  n = 1, print(n) 
• Recursive rule:  call count_up(n-1), print(n)

count_up(n)

>>> count_up(5)

1 
2 
3 
4 
5

>>> count_up(4)

1 
2 
3 
4

>>> count_up(3)

1 
2 
3 

We swapped the order of recursing 
(calling count_up) and printing



• Note that unlike count_down(n) we moved our print 
statement to be after the recursive function call

• By printing after the recursive call, the print statement gets 
executed “on the way back” from recursive calls

countUp(n)

def count_up(n): 
    '''Prints out integers from 1 up to n''' 
    if n == 1: 
        print(n) 
    else: 
        count_up(n-1) 
        print(n)      

>>> count_up(5) 
1 
2 
3 
4 
5



Function Frame Model to 
Understand count_up



count_up(4)

4n

if n == 1: 
    print(n) 
else:  
    count_up(n-1) 
    print(n)

count_up(3)

3n

if n == 1: 
    print(n) 
else:  
    count_up(n-1) 
    print(n)

count_up(2)

2n

if n == 1: 
    print(n) 
else:  
    count_up(n-1) 
    print(n)

count_up(1)

1n

if n == 1: 
    print(n) 
else:  
    count_up(n-1) 
    print(n)

>>> count_up(4)

1
2
3
4

Base case reached!



Recursion GOTCHAs!



• If the problem that you are solving recursively is not getting 

smaller, that is, you are not getting closer to the base case --- 
infinite recursion!

• Never reaches the base case 

GOTCHA #1

def count_down_gotcha(n): 
    '''Prints ints from 1 up to n’'' 
    if n == 1:  # Base case 
        print(n) 
    else:       # Recursive case  
        print(n) 
        count_down_gotcha(n)

Subproblem not getting smaller!



• Missing base case/unreachable base case--- another way to 
cause infinite recursion!

GOTCHA #2

def print_halves_gotcha(n):  
   """Prints n, n/2, down to ... 1""" 
   if n > 0: 
        print(n) 
        return print_halves_gotcha(n/2) 

Always true!



• In practice, the infinite recursion examples will terminate 
when Python runs out of resources for creating function 
call frames, leads to a "maximum recursion depth 
exceeded" error message

"Maximum recursion  
depth exceeded"



• Intro to turtle module and graphical recursion 
• Comparing iterative and recursive programs

Next Lectures


