CSI34 Lecture I9: Recursion

Announcements \& Logistics

- Lab 6 due Wed/Thurs at 10 pm
- Uses dictionaries, plotting, CSV files
- HW 6 will be out today, due Mon at IOpm
- Lab 7, 8, and 9 are partner labs
- Fill out google form sent by Lida by noon tomorrow (Thursday)!
- Pair programming is an important skill as well as a vehicle for learning
- Pick up your graded midterm exam at the end of class
- Will use last few mins of lecture to discuss the midterm

Do You Have Any Questions?

Last Time

- Worked through an example involving CSVs, dictionaries, and sets
- Discussed plotting with matplotlib
- Python is pretty useful for data processing and visualization!

Today's Plan

Intro To Recursion

- Discuss what we mean by the term recursion
- Practice translating recursive ideas into recursive programs
- Examining the relationship between recursive and iterative programs
- That is, how do recursive ideas relate to the iterative ideas (for loops, while loops) we've covered so far?

Where are We Going?

- First half of CSI 34: learned some fundamental programming concepts
- Functions, conditionals, loops, data types
- Built-in data structures and operations
- Looking ahead to the second half: more emphasis on algorithmic and conceptual topics: more "computational thinking"
- Recursion (~। week)
- Defining our own data types using classes and objects (~ 2 weeks)
- Object oriented programming topics
- Continue developing our intuition regarding efficient vs inefficient code

Why Learn About Recursion?

- Recursion is an important problem solving paradigm
- An alternative to iteration for repeatedly performing a task
- Process that lets us "divide, conquer, combine"
- Useful to build and maintain data structures (like trees and lists)
- Provides a different lens to view the world
- If you love procrastination - recursion is just the thing for you!

So What Is Recursion?

- An alternative to iteration (loops) for repetition
- General problem solving idea:
- Break the problem down to a smaller version of itself
- Keep doing this until the problem is so small, the answer is straightforward
- Let's take an example of this approach
- Example. Write a function count_down(n) that prints integers n , n-1, , , , 1 (one per line)
- How would we solve this using a loop?

Iterative: count_down(n)

- Example. Write a function count_down(n) that prints integers n , n-1, . . , 1 (one per line)
- How would we solve this using a loop?
def count_down_iterative(n):
'''Solution using loops'''
for i in range(n):
print(n - i)

Iterative: count_down(n)

- Example. Write a function count_down (n) that prints integers n , n-1, . . , 1 (one per line)
- Now let's use recursion to do the same thing
- Recursion lets you solve this without any loop
- Just using conditionals and functions
def count_down_iterative(n):
'''Solution using loops''י'
for i in range(n):
print(n - i)

Recursive: count_down(n)

- Example. Write a function count_down (n) that prints integers n , n-1, . . , 1 (one per line)
- Key ideas to use recursion:
- What's the smallest version of the problem we can immediately solve?
- For larger versions of the problem, is there a small step we can take that brings us closer to the smallest version of the problem?

Recursive: count_down(n)

- Example. Write a function count_down (n) that prints integers n , n-1, , , , 1 (one per line)
- Key ideas to use recursion:
- What's the smallest version of the problem we can immediately solve?
- count_down (1) just prints 1 and nothing else
- For larger versions of the problem, is there a small step we can take that brings us closer to the smallest version of the problem?
- to solve count_down(n), printing n is the first step
- the rest of the problem is the smaller version of the same problem!

Understanding Recursive Functions

- Example. Write a function count_down (n) that prints integers n , n-1, . . , 1 (one per line)
- Recursive definition of countdown:
- Base case: $n=1, p r i n t(n)$
- Recursive rule: print(n), call count_down(n-1)

Perform one step

Reduce the problem (or make the problem "smaller')

A function calling itself!

Recursive: count_down(n)

- Example. Write a function count_down(n) that prints integers 1, 2,.,, n (one per line)
def count_down(n):
'''Prints numbers from n down to 1'''
if $n==1:$ \# Base case
print(n)
else: \# Recursive case: n > 1:
print(n)
count_down(n-1)

Understanding Recursive Functions

- Recursive functions seem to be able to reproduce looping behavior without writing any loops at all
- To understand what happens behind the scenes when a function calls itself, let's review what happens when a function calls another function
- Conceptually we understand function calls through the function frame model

Review:
Function Frame Model

Review: Function Frame Model

- Consider a simple function square
- What happens when square (5) is invoked?
def square(x): return $x * x$

Review:
 Function Frame Model

>>> square(5)

square (5)
X

Summary:
 Function Frame Model

- When we return from a function frame "control flow" goes back to where the function call was made
- Function frame (and the local variables inside it) are destroyed after the return
- If a function does not have an explicit return statement, it returns None after all statements in the body are executed

Return value replaces the function call

square(5)

Review:
 Function Frame Model

- How about functions that call other functions?

```
def sum_square(a, b):
    return square(a) + square(b)
```

-What happens when we call sum_square (5, 3)?

```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum_square(5,3)
    \downarrow
sum_square(5, 3)
```



```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum_square(5,3)
```



```
sum_square(5, 3)
```



```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum_square(5,3)
    I
sum_square(5, 3)
```



```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum_square(5,3)
```



```
sum_square(5, 3)
```



```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum 34 re(5,3)
    4
sum_square(5, 3)
```


Function Frame Model to Understand count_down

def count_down(n):
'''Prints ints from n down to 1'"'
if $n=1$:
print(n)
else:
print(n)
count_down(n-1)

```
>>> val = count_down(5)
5
4
3
2
1
```

>>> val = count_down(4)
4
3
2
1

count_down (3)

Base case reached!

4
3
2
1
count_down (2)

countDown (1)

if $\mathrm{n}=1$:
print(n)
else:
print(n)
count_down(n-1)

count_down (3)

Base case reached!
>>> count_down(4)
4

3
2
1
count_down (2)

```
n 2
if n == 1:
    print(n)
    else:
Mprint(n)
    count_down(n-1)
```

print(n)

print(n)
count_down(4)

count_down (3)

countDown (2)
n 2
if $n==1:$
print(n)
else:
print(n)
count_down(n-1)
>>> count_down(4)
4
3
2
1

countDown (1)

if $n=1$:
print(n) else:
print(n)
count_down (4)

$n \boxed{4}$
if $n==1:$
$\operatorname{print}(n)$
$\operatorname{else}:$
$\longrightarrow \begin{array}{l}\operatorname{print}(n) \\ \operatorname{count}\end{array}$

countDown (3)

countDown (2)

$n \longdiv { 2 }$
if $\mathrm{n}==1$:
print(n)
else:
print (n)
count_down(n-1)
>>> count_down(4)
4
3
2
1
countDown (1)
n

print(n)
else:
print(n)
count_down(n-1)

TADA!

- Recursive functions may seem like magic at first glance, but they follow from the principles that we've been building all semester.
- It often takes several exposures to recursion before it "clicks", so we'll keep revisiting recursion in the coming lectures
- Drawing pictures and practicing are two tools that can help
- Our next lab is a partner lab so you can bounce your ideas off of a classmate and work though recursion stumbles

Recursive Approach to Problem Solving

- A recursive approach to problem solving has two main parts:
- Base case(s). When the problem is so small, we solve it directly, without having to reduce it any further (this is when we stop)
- Recursive step. Does the following things:
- Performs an action that contributes to the solution (take one step)
- Reduces the problem to a smaller version of the same problem, and calls the function on this smaller subproblem (break the problem down into a slightly smaller problem + one step)
- The recursive step is a form of "wishful thinking": assume the unfolding of the recursion will take care of the smaller problem by eventually reducing it to the base case
- In CSI 36/256, this form of wishful thinking will be introduced more formally as the inductive hypothesis

Counting with Recursion

- Recall the function count_appearances(elem, l)
- Returns the number of times elem appears in l
- What the iterative way to implement this?

```
def count_occurrences(elem, l) :
    count = 0
    for item in l:
        if item == elem :
        count = count + 1
    return count
```

Examples today are easily written iteratively, but we'll be looking at problems on Friday where that may not be the case!

Recursive: count_occurrences

- One of the keys to thinking recursively:
- What's the smallest version of the problem we can immediately solve?
- For larger versions of the problem, is there a small step we can take that brings us closer to the smallest version of the problem?

```
def count_occurrences(elem, l) :
    '''recursive version'''
# base case (empty list)
if len(l) == 0:
    return 0
else:
# is first item same as elem?
# if so, we can add 1
# else, we add zero
# now we have a smaller problem:
# count # occurrences in smaller list
```


Recursive: count_occurrences

```
def count_occurrences(elem, l):
    '''recursive approach'''
    if len(l) == 0: # base case
    return 0
    else: # recursive case
    first = 1 if elem == l[0] else 0
    rest = count_occurrences(elem, l[1:])
    return first + rest
```

Midterm Discussion

More Recursion: count_up

count_up(n)

- Write a recursive function that prints integers from 1 up to n
- Recursive definition of countUp:
- Base case: $\mathrm{n}=1$, print(n)
- Recursive rule: call count_up(n-1), print(n)

We swapped the order of recursing (calling count_up) and printing

\gg count_up (5)	
1	
2	
3	
4	
5	

>>> count_up (4)
1
2
3
4

> >>> count_up(3)

1
2
3

countUp(n)

- Note that unlike count_down (n) we moved our print statement to be after the recursive function call
- By printing after the recursive call, the print statement gets executed "on the way back" from recursive calls

```
def count_up(n):
    '''Prints out integers from 1 up to n'''
    if n == 1:
            print(n)
    else:
        count_up(n-1)
        print(n)
```

 >>> count_up(5)
 1
 2
 3
 4
 5

Function Frame Model to Understand count_up

Recursion GOTCHAs!

GOTCHA \# I

- If the problem that you are solving recursively is not getting smaller, that is, you are not getting closer to the base case --infinite recursion!
- Never reaches the base case

```
def count_down_gotcha(n):
    '''Prints ints from 1 up to n'''
    if n == 1: # Base case
        print(n)
        print(n)
        count_down_gotcha(n)
```

 else: \# Recursive case Subproblem not getting smaller!

GOTCHA \#2

- Missing base case/unreachable base case--- another way to cause infinite recursion!

```
def print_halves_gotcha(n):
    """'Prints n, n/2, down to ... 1"""
    if n > 0:
        print(n)
        return print_halves_gotcha(n/2)
```


"Maximum recursion depth exceeded"

- In practice, the infinite recursion examples will terminate when Python runs out of resources for creating function call frames, leads to a "maximum recursion depth exceeded" error message

Next Lectures

- Intro to turt le module and graphical recursion
- Comparing iterative and recursive programs

