
CS134 Lecture 19:
Recursion

Announcements & Logistics
• Lab 6 due Wed/Thurs at 10 pm

• Uses dictionaries, plotting, CSV files
• HW 6 will be out today, due Mon at 10pm

• Lab 7, 8, and 9 are partner labs

• Fill out google form sent by Lida by noon tomorrow (Thursday)!
• Pair programming is an important skill as well as a vehicle for

learning
• Pick up your graded midterm exam at the end of class

• Will use last few mins of lecture to discuss the midterm

Do You Have Any Questions?

Last Time
• Worked through an example involving CSVs, dictionaries, and sets

• Discussed plotting with matplotlib

‣ Python is pretty useful for data processing and visualization!

Today’s Plan

• Discuss what we mean by the term recursion

• Practice translating recursive ideas into recursive programs
• Examining the relationship between recursive and iterative programs

• That is, how do recursive ideas relate to the iterative ideas (for loops,
while loops) we’ve covered so far?

Intro To Recursion

Where are We Going?
• First half of CS134: learned some fundamental programming concepts

• Functions, conditionals, loops, data types
• Built-in data structures and operations

• Looking ahead to the second half: more emphasis on algorithmic and
conceptual topics: more "computational thinking"
• Recursion (~1 week)
• Defining our own data types using classes and objects (~2 weeks)

• Object oriented programming topics
• Continue developing our intuition regarding efficient vs inefficient code

Why Learn About Recursion?
• Recursion is an important problem solving paradigm

• An alternative to iteration for repeatedly performing a task
• Process that lets us "divide, conquer, combine"
• Useful to build and maintain data structures (like trees and lists)

• Provides a different lens to view the world
• If you love procrastination — recursion is just the thing for you!

So What Is Recursion?
• An alternative to iteration (loops) for repetition
• General problem solving idea:

• Break the problem down to a smaller version of itself
• Keep doing this until the problem is so small, the answer is

straightforward
• Let's take an example of this approach
• Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one per line)

• How would we solve this using a loop?

Iterative: count_down(n)
• Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one per line)

• How would we solve this using a loop?

def count_down_iterative(n):
 '''Solution using loops'''
 for i in range(n):
 print(n - i)

Iterative: count_down(n)
• Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one per line)

• Now let's use recursion to do the same thing
• Recursion lets you solve this without any loop

• Just using conditionals and functions

def count_down_iterative(n):
 '''Solution using loops'''
 for i in range(n):
 print(n - i)

Recursive: count_down(n)
• Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one per line)

• Key ideas to use recursion:
• What's the smallest version of the problem we can immediately solve?

• For larger versions of the problem, is there a small step we can take
that brings us closer to the smallest version of the problem?

Recursive: count_down(n)
• Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one per line)

• Key ideas to use recursion:
• What's the smallest version of the problem we can immediately solve?

• count_down(1) just prints 1 and nothing else

• For larger versions of the problem, is there a small step we can take
that brings us closer to the smallest version of the problem?

• to solve count_down(n), printing n is the first step
• the rest of the problem is the smaller version of the same

problem!

• Example. Write a function count_down(n) that prints integers n,
n-1,..,1 (one per line)

• Recursive definition of countdown:
• Base case: n = 1, print(n)
• Recursive rule: print(n), call count_down(n-1)

Understanding Recursive Functions

Perform one step Reduce the problem (or make
the problem “smaller”)

Print and stop

A function calling itself!

Recursive: count_down(n)
• Example. Write a function count_down(n) that prints integers 1,
2,..,n (one per line)

def count_down(n):
 '''Prints numbers from n down to 1'''
 if n == 1: # Base case
 print(n)
 else: # Recursive case: n > 1:
 print(n)
 count_down(n-1)

Recursion: A function calling itself!

• Recursive functions seem to be able to reproduce looping behavior
without writing any loops at all

• To understand what happens behind the scenes when a function calls
itself, let’s review what happens when a function calls another function

• Conceptually we understand function calls through the function frame
model

Understanding Recursive Functions

Review:
Function Frame Model

• Consider a simple function square
• What happens when square(5) is invoked?

def square(x):

return x*x

Review: Function Frame Model

>>> square(5)

5

square(5)

x

return x * x

25

Review:
Function Frame Model

>>> square(5) + 4

• When we return from a function frame
"control flow" goes back to where the
function call was made

• Function frame (and the local variables
inside it) are destroyed after the return

• If a function does not have an explicit
return statement, it returns None after all
statements in the body are executed 5

square(5)

x

return 25

Return value replaces the
function call

25

Summary:
Function Frame Model

• How about functions that call other functions?

def sum_square(a, b):

return square(a) + square(b)

• What happens when we call sum_square(5, 3)?

Review:
Function Frame Model

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

9

sum_square(5, 3)

5a 3b

return square(a) + square(b)

def sum_square(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sum_square(5,3)

25

3

square(3)

x

return x * x

9

34

Function Frame Model to
Understand count_down

>>> val = count_down(5)
5
4
3
2
1

>>> val = count_down(4)
4
3
2
1

def count_down(n):
 '''Prints ints from n down to 1'''
 if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

>>> count_down(4)

4

3
2

Base case reached!

1

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

4

3
2

1

Base case reached!

>>> count_down(4)

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

count_down(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

4

3
2

Base case reached!

1

>>> count_down(4)

count_down(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

4

3
2

Base case reached!

1

>>> count_down(4)

countDown(4)

4n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(3)

3n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(2)

2n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

countDown(1)

1n

if n == 1:
 print(n)
 else:
 print(n)
 count_down(n-1)

4

3
2

Base case reached!

1

>>> count_down(4)

• Recursive functions may seem like magic at first glance, but they follow
from the principles that we’ve been building all semester.

• It often takes several exposures to recursion before it “clicks”, so we’ll
keep revisiting recursion in the coming lectures
• Drawing pictures and practicing are two tools that can help
• Our next lab is a partner lab so you can bounce your ideas off of a

classmate and work though recursion stumbles

TADA!

• A recursive approach to problem solving has two main parts:
• Base case(s). When the problem is so small, we solve it directly,

without having to reduce it any further (this is when we stop)
• Recursive step. Does the following things:

• Performs an action that contributes to the solution (take one step)
• Reduces the problem to a smaller version of the same problem,

and calls the function on this smaller subproblem (break the
problem down into a slightly smaller problem + one step)

• The recursive step is a form of "wishful thinking": assume
the unfolding of the recursion will take care of the smaller
problem by eventually reducing it to the base case

• In CS136/256, this form of wishful thinking will be
introduced more formally as the inductive hypothesis

Recursive Approach to Problem Solving

Counting with Recursion
• Recall the function count_appearances(elem, l)

• Returns the number of times elem appears in l
• What the iterative way to implement this?

def count_occurrences(elem, l) :
 count = 0
 for item in l:
 if item == elem :
 count = count + 1
 return count

Examples today are easily written iteratively, but we'll be
looking at problems on Friday where that may not be the case!

Recursive: count_occurrences
• One of the keys to thinking recursively:

• What's the smallest version of the problem we can immediately solve?

• For larger versions of the problem, is there a small step we can take
that brings us closer to the smallest version of the problem?

def count_occurrences(elem, l) :
 '''recursive version'''
 # base case (empty list)
 if len(l) == 0:

 return 0
 else:

is first item same as elem?
if so, we can add 1
else, we add zero
now we have a smaller problem:
count # occurrences in smaller list

Recursive: count_occurrences

def count_occurrences(elem, l):
 '''recursive approach'''

 if len(l) == 0: # base case
 return 0

 else: # recursive case
 first = 1 if elem == l[0] else 0
 rest = count_occurrences(elem, l[1:])

 return first + rest

Midterm Discussion

More Recursion:
count_up

• Write a recursive function that prints integers from 1 up to n

• Recursive definition of countUp:
• Base case: n = 1, print(n)
• Recursive rule: call count_up(n-1), print(n)

count_up(n)

>>> count_up(5)

1
2
3
4
5

>>> count_up(4)

1
2
3
4

>>> count_up(3)

1
2
3

We swapped the order of recursing
(calling count_up) and printing

• Note that unlike count_down(n) we moved our print
statement to be after the recursive function call

• By printing after the recursive call, the print statement gets
executed “on the way back” from recursive calls

countUp(n)

def count_up(n):
 '''Prints out integers from 1 up to n'''
 if n == 1:
 print(n)
 else:
 count_up(n-1)
 print(n)

>>> count_up(5)
1
2
3
4
5

Function Frame Model to
Understand count_up

count_up(4)

4n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(3)

3n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(2)

2n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

count_up(1)

1n

if n == 1:
 print(n)
else:
 count_up(n-1)
 print(n)

>>> count_up(4)

1
2
3
4

Base case reached!

Recursion GOTCHAs!

• If the problem that you are solving recursively is not getting

smaller, that is, you are not getting closer to the base case ---
infinite recursion!

• Never reaches the base case

GOTCHA #1

def count_down_gotcha(n):
 '''Prints ints from 1 up to n’''
 if n == 1: # Base case
 print(n)
 else: # Recursive case
 print(n)
 count_down_gotcha(n)

Subproblem not getting smaller!

• Missing base case/unreachable base case--- another way to
cause infinite recursion!

GOTCHA #2

def print_halves_gotcha(n):
 """Prints n, n/2, down to ... 1"""
 if n > 0:
 print(n)
 return print_halves_gotcha(n/2)

Always true!

• In practice, the infinite recursion examples will terminate
when Python runs out of resources for creating function
call frames, leads to a "maximum recursion depth
exceeded" error message

"Maximum recursion
depth exceeded"

• Intro to turtle module and graphical recursion
• Comparing iterative and recursive programs

Next Lectures

