CS |34 Lecture 12
Mutabllity

Announcements & Logistics

HW 5 due Mon March 4 at |0 pm on GLOW
Lab 4 Part | autograded feedback and Lab 3 feedback will be released today
Reminder that Midterm i1s March 14

Two exam slots: 6-7.30 pm, 8-9.30 pm

Room: Bronfman audrtorium
Midterm review Monday March | | evening /-9 pm in Bronfman
How to study: review lectures

Practice past HWV and labs on pencil and paper

Additional POGIL worksheets posted on course website (resources)

Do You Have Any Questions?

L ast [Ime

New Iteration statement: the loop

"Conditional” looping statement

Useful when we don't know a sequence or stopping condition
ahead of time

Jloday's Plan

Mutability and its consequences:

Mutability

| Ists are Mutable

- Lists are a mutable data type in Python:

- After a list Is created, we can change its value

» There are many ways to mutate a list, we will only discuss two of these
- Direct assignment (e.g, Lst[index] = item)

- Appending to list using . append(item) notation

Direct Assignment

* An assignment operation on an existing index of a list changes the value

stored at that index

Syntax: my_list[index] = item

>>> my_list = ['cat’, "dog’l my_list has changed
>>> my_Llist[1] = 'fish'

>>> my_Llist

['cat', 'fish']

>>> my_Llist[7] = 'oops'

IndexError: list assignment index out of range

>>>

Can only assign to existing indices

Appending Items to List

- We can mutate a list by appending an item to it

- Places the new item after the current last item, increasing length by |

Syntax: my_list.append(item)

Important:
Notice the new dot notation: this is No [] around item!

a special "method" of type l1st

>>> my_list = ['cat', 'dog']
>>> my_list.append('fish")
>>> my_list

['cat', 'dog', 'fish'] _
my_Llist has changed!

Sneaky Appending

- We've often updated "accumulator lists" by "appending” items in loops

» So far we have been using += (concatenation)

+ var += val normally is a shorthand for var = var + val

* But when var is a list, Python secretly calls
var.append(val)

>>> my_list = ['cat', 'dog']

>>> my_list += ['fish']
- Python actually replaces += with

>>> my_Llist append without telling us!

['cat', 'dog', 'fish']

Explicit A

bpending

+ If we instead explicitly use the .append(1tem) syntax, then the code

we execute Is the code that we actually wrote

- This also avoids one of the recurring errors that we've been running into

in our labs! (Type mismatches with +=)

>>> my_list = ['cat', 'dog']
>>> my_list += ['fish']

>>> my_list

[‘cat', 'dog', 'fish']

Brackets are needed here because we
are adding (+) a list (my_l1st) to
another list ([" fish'])

>>> my_list = ['cat', 'dog']

>>> my_list.append('fish"')

>>> my_list

[‘cat', 'dog', 'fish']

NO brackets needed here because we are
passing the ritem we want to append

(' fish") as an argument to the append
method (special type of function)

Appending to Accumulate In a List

- We need to be careful about the the type of item we provide to append

Syntax: my_list.append(item)

f item is a L1St, then the entire list is appended

You may use .append() instead of +=in
Lab 4 because they are equivalent in Python,
but no other list/string "dot methods”

[Aside| Objects, Iypes and Methods

+ We have discussed the following types In class:

- int, float, Boolean, string, list, range()

- Python Is an object-oriented language
* EBverything in Python is an object and has a type

- Each type has methods you can call on objects of that type, e.g,
» string objects have . f1nd(), . format(), .split(), etc

+ list objects have .append(), .extend(), etc

- We have intentionally not discussed these in class so far (will do so later)

- For lists, we are introducing .append() method as this is already

being used "behind the scenes” with +=

Strings are Immutable

- Other data types we have seen are immutable
» Strings, Ints, floats, range() are immutable data types

» Once created, we change the value of an immutable data type

Will this let us change
>>> my_string = 'cat' my_stringto 'bat'?

>>> my_string[0] = 'b'
TypeError Traceback (most recent call last)
Cell In[25], line 2
1l my_string = 'cat’
————> 2 my_string[@] = 'b'

TypeError: 'str' object does not support item assignment

Cannot change a string!

vscode-notebook-cell:?execution_count=25&line=2
vscode-notebook-cell:?execution_count=25&line=1
vscode-notebook-cell:?execution_count=25&line=2

Mutability has Consequences!

- Mutablility of data types can have unintended consequences

» Consider the Python code on the left (involving strings which are

immutable) vs right (involving lists which are mutable)

>>> word
>>> COpy
>>> word

>>> Copy
'hello’

Changing wo rd does not change copy

"hello"
word
word + "world"

>>2>

>>>

>>2>

>>2>

word_list = ["hello"]
copy = word_list
word_list.append("world")
copy

["hello', 'world']

Changingword_1Llist also
changes copy

Allasing:
Side-eftect of Mutability

Clone vs Alias

- What is the difference between a clone and an alias !
» Clones appear the same but are actually different objects
- Alias Is another name for the same object

- lo define whether something is a clone or alias in Python, we need to
revisit variables and how their values are stored "under the hood"

O RO

@ew23 phelia

4

An identical copy Alternate name

Name, Value anc

C

- Consider an assignment operation such as num

entrty

= 5

» The variable name num is a way to refer to a unique address In

memory where the value 5 is stored

- This address is called the identity of this object

>>> num = 5 num

Value of num: 5

—

5 C

J1

0x4480937008

Identity of num: memory address
where 5 Is stored (e.g., Ox448693/008)

Value vs |ldenr

Ity

- An object’s identity never changes once it has been created

- On the other hand, an object’s value may be changeable

» Objects whose values can change are called mutable

- Objects whose values cannot change are called immutable

>>=> Num

5

B«

/0x4486937008

num

Memory address

Variable names like num point to memory
addresses of stored value

Clone and Alias in Python

A clone of an object has the same value but different identities
- Mutating a clone does not change the original object
 An alias of an object has the same value and the same identity

- Mutating an alias also mutates the original object

O RO

Different identities (locations in memory) Same identity (same location iIn memory)

Clones and Aliases in Python

- Giving a new name to an existing immutable object creates a clone

- Giving a new name to an existing mutable object creates an alias

>>> word = "hello"

>>> Copy = word

>>> word = word + "world"
>>> COopy

"hello"

copy is a clone of word, changing
word does not change COPY

>>> word_list = ["hello"]
>>> copy = word_list
>>> word_list.append("world")

>>> Copy
["hello', 'world']

copy is an alias of word__list,
changing word changes COpPY

Strings are Immutable

>>> word = "hello"
>>> Ccopy = word

copy is a clone of word

word

Ccopy

—pC 'hello' ©
q J1
—p° 'hello' ©

Strings are Immutable

>>> word = "hello"
>>> COopy = word
>>> word = word + "world"

>>> COopy
"hel Lo"

Instead of mutating wo rd, create a new object

word

with a different identity and value

changing word does not change copy

Attempts to change an immutable object create a new object

Ccopy

&

J1

%ello wor ld a

_J

—

—

'hello’

C

Ints, Floats are Immutable

>SS num 5 Trying to change the value of num creates
>SS num num 1 a new object with a different identity

1d: 0x4486937008
D) 5 C
num ﬁj 6 L

J

1d: 0x4486937040

Attempts to change an immutable object create a clone

List Aliasing

* Any assignment or operation that creates a new name for an existing
mutable object implicitly creates an alias

>>> word_list = ["hello"]

>>> copy = word_list > ["hello'] ©

f

word_l1ist copy

Since a list Is mutable, we are not creating a clone, but rather an alias

List Aliasing

* Any assignment or operation that creates a new name for an existing
mutable object implicitly creates an alias

>>> word_list = ["hello"] 0X4486937@08
>>> copy = word_Llist

'%ello , worlé;]

>>> word_list.append("world")

>>> COpY
["hello', 'world']

word_l1ist copy

Changingword_list changes copy

‘hon

Summary: Mutability in Py

Strings, Ints, Floats are Immutable

Once you create them, their value cannot be changed

Referring to these objects by a new variable name creates a clone

All expressions that manipulate these objects yield a new object. They

do not modify the original object

Lists are Mutable

List values can be changed

Can mutate a list (using direct assignment or . app

end())

Attempts to refer to a list by a new variable name creates an alias

How to Avold
Allasing Side-eftects

Using Immutable lypes

Aliases are never created for immutable data types

VWe can safely make clones and not worry about accidentally
modifying the original

Thus any operation on strings, ints, or floats Is safe from aliasing

Sequence operations such as slicing ([start:end]) and

concatenation (+) always create new strings as it Is Impossible
to mutate strings

We will see an immutable alternative to lists next week

tup le (an immutable sequence)

Avoiding Aliasing with Lists

When using lists, we can avoid aliasing by being careful

An assisnment of a literal value (1.e., an expression with no variables)
to a variable creates a new object

An assisnment of a new list (i.e., an expression enclosed with []) to a
variable creates a hew object

var = [item] always creates a new list ° 1, 2, 3] ©

. J1)
>>> list1l [1, 2, 3] / \

listl list2

>>> ist? listl
>>> my_lst = [1, 2, 3] :)

ny_lst m———pl [1, 2, 3] °

J'1

Sequence Operations on Lists

* We can force Python to create a clone of a list instead of an alias by
using sequence operations

- Sequence operations such as slicing [1] and concatenation (+) on
Ists create new lists

- They do not create an alias or mutate the original list

f \ >>> NUMS [42, 11]
° [42, 11] ¢

e

nums

Sequence Operations on Lists

* We can force Python to create a clone of a list instead of an alias by
using sequence operations

- Sequence operations such as slicing [1] and concatenation (+) on
Ists create new lists

- They do not create an alias or mutate the original list

(42, 11, 3]

J1

f \ >>> NUMS [42, 11]
> (42, 11] © >>> nums = nums + [3]

J1

nums

Sequence Operations on Lists

* We can force Python to create a clone of a list instead of an alias by
using sequence operations

- Sequence operations such as slicing [1] and concatenation (+) on
Ists create new lists

- They do not create an alias or mutate the original list

>>> NUMS [42, 11]

° [42, 11] ¢

e

nums

Sequence Operations on Lists

* We can force Python to create a clone of a list instead of an alias by
using sequence operations

- Sequence operations such as slicing [1] and concatenation (+) on
Ists create new lists

- They do not create an alias or mutate the original list

° 142, 11] ©

J1

f \ >>> NUMS [42, 11]
> 142, 11] © >>> new nums [:]

\ new is a clone but not an alias!

new

J1

nums

Sequence O

herations on Lists

* We can force Python to create a clone of a list instead of an alias by
using sequence operations

- Sequence operations such as slicing [1] and concatenation (+) on
Ists create new lists

+ They do not create an a

las or mutate the original list

(42, 11, 3]

J1

J1

° [42, 11] ¢

S

nums

>>> NUMS [42, 11]
>>> new = nums|[:]
>>> new.append(3)

new is a clone but not an alias!
new

[akeaways

VWe cannot change the value of immutable objects such as strings
Attempts to copy or to modify them creates a new object
No need to worry about aliasing side effects
Ve can change the value of mutable objects such as lists
When using the += operator with lists mutates the list!
Python secretly calls . append ()
Need to be mindful of aliasing; be careful to avoid unintended aliases

You can create a "true clone” of a list using slicing or by creating a new
st containing the same items (e.g., using a loop or list comprehension)

Advanced:
Aliasing In Nested Lists

Nested Lists: Aliasing Nightmare

Nested lists create more complicated aliasing side effects

An assisnment to a new variable creates a new list

>>> listl [1, 2, 3]

>>> 1ist?2 [list1] /

listl

(Crazy) Aliasing Examples

>>> NUMS [23, 19]
>>> words ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

>>> words += ["sky"]
>>> mixed

77

(Crazy) Aliasing Examples

>>> nums = [23, 19]
>>> words ["hello", "world"]
>>> mixed [12, nums, "nice", words]

["hello', 'world']

words

[23, 19] /

nums

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples

>>> words += ["sky"]

[23, 19]

["hello', 'world', 'sky']

f

nums

/

words

[12, , 'nice',]

mixed

