
CS 134 Lecture 11:
While Loops

Announcements & Logistics
• HW 5 will be released today on GLOW

• Lab 4 Part 1 due Wed/Thurs 10 pm

• We will return feedback (including tests not found in runtests.py)

• Reminder that Midterm is Thursday March 14

• Two exam slots: 6-7.30 pm, 8-9.30 pm

• Room: Bronfman auditorium

• Midterm review Monday March 11 evening 7-9 pm in Bronfman Auditorium

• How to study: review lectures

• Practice past HW and labs (using pencil and paper)

• Additional POGIL worksheets posted on course website (resources)

Do You Have Any Questions?

http://cs.williams.edu/~cs134/pogils/pogils.html
http://cs.williams.edu/~cs134/resources.html

Last Time
• Wrapped up examples of nested for loops and nested lists
• Discussed the difference between importing functions vs running

python code as a script
• Role of special variable __name__

• Introduced list comprehensions
• Short-hand expressions for common looping patterns
• "Pythonic feature": anything we can do with list comprehensions,

we can do with standard looping patterns

Today's Plan
• New iteration statement: the while loop

• Discuss the mutability of different data types and the implications

When you don't know when to stop
(ahead of time):

While Loop

Story so far : for loops
• for loops in Python are meant to iterate directly over a fixed sequence

• No need to know the sequence's length ahead of time
• Interpretation of for loops in Python:

 for each item in given sequence:
 (do something with item)

• Other programming languages (like Java) have for loops that require you
to explicitly specify the length of the sequence or a stopping condition

• Thus Python for loops are sometimes called “for each” loops
• Takeaway: For loops in Python are meant to iterate directly over each

item of a given iterable object (such as a sequence)

What If We Don’t Know When to Stop?
• Stopping condition of for loop: no more elements in sequence

["A", "chilly", "autumn", "day"]

• What if we don’t know when to stop?
• Suppose you had to write a program to ask a user to enter a

name, repeatedly, until the user enters “quit”, in which case you
stop asking for input and print “Goodbye"

item

• How many times should the loop execute?
• Under what condition should the loop end?

while loop
• while loops keep iterating until a continuation condition holds
• Syntax:

while boolean_expression:
 <loop body>
 <loop body>

 Indentation defines the loop body

Repeat loop body as long as this evaluates to True

while True:
 print("never leaves")

while False:
 print("never enters")

"Infinite" loop! Loop body never executes

While Loop Example
• Example of a while loop that depends on user input

prompt = "Please enter a name (type quit to exit): "
name = input(prompt)

while (name != "quit"):
 print("Hi,", name)
 name = input(prompt)
print("Goodbye")

Stopping condition

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by two

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by two

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

What about this loop?

While Loop to Print Halves
• Given a number, print all the positive “halves” : keep dividing n by two

and printing the quotient until it becomes smaller than 0

100
50
25
12
6
3
1

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

def print_halves(n):
 while n > 0:
 print(n)
 n = n//2

print_halves(100)

Infinite loop! Indentation matters!

if boolean_expresion:

statement 1

statement 2

....

....

end of if

while and if side by side
while boolean_expresion:

statement 1

statement 2

....

....

end of while

Execute this once if the boolean
expression evaluates to true

Keep executing this while the
boolean expression (continues) to

evaluate to true

Side by Side: for and while loops

All these steps are implicit in a Python
for loop: i takes on values 0, 1, 2, 3, 4

Explicitly initialize variable

for i in range(5):
 print('$' * i)

i = 0
while i < 5:
 print('$' * i)
 i += 1

Update value of variable
used in test condition

Test stopping condition

Common while loops steps:
• Initialize a variable used in the test condition
• Test condition that causes the loop to end when False
• Within the loop body, update the variable used in the test condition

Side by Side: for and while loops

Iterate directly over
elements of sequence

Explicitly initialize variable

Update value of variable
used in test condition

Test stopping condition

for char in vowels:
 print(char)

vowels = 'aeiou'

i = 0
while i < len(vowels):
 print(vowels[i])
 i += 1

No need to find len or to
index using []

Common while loops steps:
• Initialize a variable used in the test condition
• Test condition that causes the loop to end when False
• Within the loop body, update the variable used in the test condition

Breaking out of loops
• Stopping condition of for loop: no more elements in sequence
• What if we want to stop (break out) early: how did we handle this?
• Let's recap one such example: index_of(elem, l)

• Write a function index_of(elem, l) that takes two
arguments (elem of any type and list l) and returns the first
index of elem if elem is in the list l otherwise returns -1

>>> index_of('blue', ['red', 'blue', 'blue'])
1
>>> index_of(14, [23, 1, 10, 11, 14])
4
>>> index_of('a', ['b', 'c', 'd', 'e'])
-1

Side by Side: index_of
def index_of(elem, l):

 for i in range(len(l)):
 # match?
 if l[i] == elem:
 # stop loop!
 return i

 # if not found
 return -1

def index_of(elem, l):

 found = False # flag
 index_of_elem = -1
 i = 0

 while not found and i < len(l):
 # match?

 if elem == l[i]:
 # stop the loop!

 found = True
 index_of_elem = i
 # keep going
 i += 1

 return index_of_elem

• New iteration statement: while loop as an alternative to for loops are
meant to iterate for a fixed number of times

• Used when the stopping condition is determined "on the fly"

• Keeps iterating as long as Boolean condition evaluates to True

Takeaways

