CS 134 Lecture |0:;
LiIst Comprehensions

Announcements & Logistics

HW 4 due Monday at |0 pm
Lab 4 Part | check point due Wed/Thurs 10 pm

VWe will review the code for the prelab together at the start of lab
Reminder that Midterm 1s March |4

Evening exam with two slots: 6-7.30 pm, 8-9.30 pm

Room TBD

We will have a midterm review earlier that week (in the evening)

How to study:

Review lectures

Practice past HW and labs on pencil and paper

Do You Have Any Questions?

L ast [Ime

Introduce and use nested lists
More examples of iteration:
'terate over nested sequences and collect/filter useful statistics

Discussed how to count using nested loops/lists

ntroduced idea of accumulation variable to find "most"

Jloday's Plan

Wrap up the oscars example
Introduce list comprehensions

Discuss modules vs scripts

Oscar 2024 Wrap Up

Helper Function: count_nominations

def count_nominations(movie, nomination_list):
''"'Function that takes two arguments: movie (str) and
nomination_list (list of lists) and returns the count
(int) of the number of times movie is nominated.'''

1nitialize accumulation variable
count = 0

1terate over list of nominations
for category 1in nomination_list:
for nominee 1n category:
1s the movie name a prefix of nomination?
if is_prefix(movie, nominee):
count += 1
return count

Exercise: most nominations

def most_nominations(movie_list, nomination_ 1list):
''"'Returns list of movies with most nominations'''
most_so_far = 0 # keeps track of most # nominations
most list = [] # remember the movie names
for movie in movie_ list:
num = count_nominations(movie, nomination_list)
found a movie with more nominations
if num > most_so_far:
most_so_far = num
remember the movie
most_list = [movie]

what to do 1if there 1s a tie?
elif num == most_so_far:

remember this movie as well
most list += [moviel
return most_so far

VWhat about least nominations!?

- When looking for the "maximum” among elements

Initialize a most_so_far variable to zero
Update every time we see a bigger value

How would we find the "least” among elements?

Initialize a least _so far variable to !

Update every time we see a smaller value

List Comprehensions

| Ist Patterns: Map & Filter

VWhen using lists and loops, there are common patterns that appear

Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

F.o, take a list of integers num_1st and return a new list which
contains only the even numbers in num_1st

Mapping: lterate over a list and return a new list that results from
performing an operation on each element of original list

E.o, take a list of integers num_1st and return a new list
which contains the square of each number in num_1lst

Python allows us to implement these patterns succinctly using
list comprehensions

Mapping Example: Using Loops

Mapping: Iterate over a list and return a new list that results from
performing an operation on each element of original list

Example: lterate through a sequence of numbers (e.g. list or range)
and creates a new list that contains the square of the numbers

result = [] Accumulate squares in result

for n in range(10):
result += [n*x2]

We can rewrite this loop a list comprehension in Python

Mapping: List Comprehensions

Mapping List Comprehension (perform operation on each element)

new_list = [expression for item 1in sequence]

(result = [1)
(for n in range(10):)
result +=([n**2])

result = [(n**ZX?or n in range(10)]

expression item sequence

Note: All list comprehensions are "short hands" common for loop patterns.

Filtering Example: Using Loops

Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

Example: [terate through a sequence of numbers (list or range) and
create a new list only containing even numbers

result = []
for n 1n range(10): Accumulate even numbers in result
1f n % 2 == 0:

result += [n]

We can rewrtite this loop a list comprehension in Python

Hitering: List Comprehensions

Filtering List Comprehension (only keep some elements)

new_list = [1tem for i1tem 1n sequence 1f

(result = [])
(for n in ranqe(l@):)
1f(n % @)
result += [n]
_—

/

\4

\4

result = [(n)for n in range(10)) @f n%2 == 0])

item sequence

Note: All list comprehensions are "short hands" common for loop patterns.

Mapping & riltering: Using Loops

Mapping & Filters: Iterate over a list and return a new list that
results from performing an operation on some elements of the
original list (that satisfy some condition)

Example: [terate through a sequence of numbers (list or range) and
create a new list only containing the squares of the even numbers

result = []
: _ Accumulate square of even
fOI". n in range(10): numbers in result
1f n % 2 == 0:

result += [nxx2]

We can rewrite this loop a list comprehension in Python

General List Comprehension

new_list = [expression for item 1in sequence 1f conditional]

I 1t = []
(for n in range(10):
(if n%2 == 0}
Can use functions or any 1f n%2

r&sult += (n*x2]

operations here

]

result = [(n**Z(ifor n in range(la)(if n%2 == Q]

expression item sequence conditional

Note: All list comprehensions are "short hands" common for loop patterns.

List Comprehensions

new_list = [expression for item in sequence 1if 1

* Important points:

List comprehensions always start with an expression (a variable name
ike 1tem is an expression)

A list comprehension Is used instead of a list accumulation variable
(that always needs to be inrtialized)

» S0, it always creates a new list that we store in var new_L1st

« We never use += Inside a list comprehension

We don't need to use a list comprehension: can always write a for
loop Instead

- Just a handy shortcut for common code patterns in Python

Using List Comprehensions

List comprehensions are convenient when working with sequences
Recall our list of movie names from the oscar data

Example: How can we find the list of movie names that begin with a
vowel!

Hint: we can use a helper function starts_with_vowel()
|dea:

terate over movies (list of strings)

For each name In list, check If first letter Is a vowel

If 1t 1s, add name to result list

Using List Comprehensions

List comprehensions are convenient when working with sequences

Assume we have a helper function starts_with_vowel

result = []
for m 1n movies:
if starts _with_vowel(m):
result += [m]

+

result = [m for m in movies if starts_with vowel(m)]

Using List Comprehensions

List comprehensions are convenient when working with sequences

Assume we have a helper function starts_with_vowel

item

seaquence
result = I 9

for m 1n movies:
if starts _with_vowel(m):
result += [m]

expression

item

result = [m for m in movies if starts_with vowel(m)]

' n
expression sequence

Helper Function

def starts with vowel(word):

''"'"Takes a word (string) as input and

returns True 1f it starts with a vowel,

otherwise returns False.'''

if len(word) != 0:
check first letter 1s a vowel
return word[0@] in 'aeiouAEIOU'

1f word 1s empty string

return False

Modules vs Scripts

Importing Functions vs Running as a Script

» Question. If you only have function definitions in a file Tuncs. py,
and run 1t as a script, what happens?

% python3 funcs.py

For testing functions, we want to call /invoke them on various test
cases, In Labs, we do this in a separate file called runtests.py

» To add function calls in runtests.py, we putthem inside the
gsuarded block 1f __name__ == "_main__":

- The statements within this special guarded are only run when the file is
run as a script but not when 1t Is imported as a module

- Let's see an example

foo.py
test the role of _ name__ variable
name__)

print("__name__ is set to",

Running foo.py as a script

shikhasingh@Shikhas—-1iMac c¢s134 % python3 foo.py
__hame__ 1s set to _ main__

shikhasingh@Shikhas—iMac cs134 % python3

Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin

Type "help", "copyright', "credits" or "license"
for more information.
>>> 1mport foo |
__hame__ 1s set to foo

Importing it as a module

Takeaway: 1f __name__ == "__main__
- If you want some statements (like test calls) to be run ONLY when

the file is run as a script

» Put them inside the guarded 1f __name__ ==
" main__" block

- When we run our automatic tests on your functions we import them

and this means name 1s NOT set to main

» So nothing inside the guarded 1f __name__ ==

__main__ " block is executed

- This way your testing /debugging statements do not get in the way

[akeaways

For loops let us Iterate over sequences a fixed number of items:
equal to the length of the sequence

They are useful to rterate over simple (e.g. strings) as well as nested
sequences (list of lists of strings)

Accumulation variables let us keep track of information as we
loop through sequences: e.g., counts, accumulating lists or strings,

as well stats such as max and min

- List comprehensions are loop expressions that you write within a list

Common shorthand for mapping and filtering code patterns
» "Pythonic" feature: not general to other languages

* Importing modules/functions does not run code In If name Is main
block (which is only run when the file is run as a script)

