
CS 134 Lecture 9:
Nested Lists

Announcements & Logistics
• HW 4 due Monday at 10 pm

• Lab 4 will be released today

• Prelab will be posted but is not due at the start of lab

• We will review the code for the prelab together at the start of lab

• Lab 2 graded feedback

• Let us know if you questions

• Comments and coding style: comments (start with #) are an important
part of documenting your code

• Comments vs docstrings: docstrings document the function interface
(input parameters, expected return), comments document the function body
(logic used to implement the interface

Do You Have Any Questions?

Last Time
• Introduced nested for loops

• Discussed how to trace the execution of loop

• Use more examples of the range sequence type

• Reviewed the role of return statements in code

Today's Plan
• Introduce and use nested lists
• More examples of iteration:

• Iterate over nested sequences and collect/filter useful statistics
• Module vs scripts

• How to import and test functions
• Role of the special if name is main code block

Nested Lists

Nested Lists
• Remember, any object can be an element of a list. This includes other lists!
• That is, we can have lists of lists (sometimes called a two-dimensional list)!

• Suppose we have a list of lists of strings called myList

Nested Lists
• Remember, any object can be an element of a list. This includes other lists!
• That is, we can have lists of lists (sometimes called a two-dimensional list)!

• Suppose we have a list of lists of strings called myList
• word = myList[row][element] (# word is a string)

• row is index into “outer” list (identifies which inner list we want). In other
words, defines the “row” you want.

• element is index into “inner” list (identifies which element within the
inner list). In other words, defines the “column” you want.

myList = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

row

element myList[1][0]?
'dog’

Lists and Data Types
• Python is a loosely typed programming language

• We don’t explicitly declare data types of variables
• But every value still has a data type!

• It’s important to make sure we pay attention to what a function
expects, especially with lists and strings! (remember this in Lab 4)

• Lists of lists of strings versus list of strings:

myList = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

myList[1][0] is 'dog'

myList = ['cat’, 'frog',
 'dog’, 'toad',
 'cow’, 'duck']

myList[1][0] is 'f'

Sequence Operations
characters = [['Elizabeth Bennet', 'Fitzwilliam Darcy'],
 ['Harry Potter', 'Ron Weasley'],
 ['Frodo Baggins', 'Samwise Gamgee'],
 ['Julius Ceasar', 'Brutus']]

>>> len(characters) # what is this?
4

>>> len(characters[0]) # what is this?
2

>>> characters += ['Rhett Butler', 'Scarllet O Hara']
>>> characters
[['Elizabeth Bennet', 'Fitzwilliam Darcy'],
 ['Harry Potter', 'Ron Weasley'],
 ['Frodo Baggins', 'Samwise Gamgee'],
 ['Julius Ceasar', 'Brutus'],
 'Rhett Butler',
 'Scarllet O Hara']

Be careful when concatenating lists of
two different types

Looping Over Nested Lists
characters =
[['Elizabeth Bennet', 'Fitzwilliam Darcy', 'Charles Bingley'],
['Harry Potter', 'Ron Weasley', 'Hermoine Granger'],
['Frodo Baggins', 'Samwise Gamgee', 'Gandalf']]

for char_list in characters:
 print(char_list)
 for name in char_list:
 print(name)

Loops over the "outer lists"

Prints each inner list one by one

Loops over the names in each "inner list"

Prints each individual name one by one

• Nested Lists are useful to represent tabular data
• Example: data stored in google sheets

• Each inner list is a row
• List of lists: collection of all rows
• Lets take an example of real data that we can store as list of lists

Why Nested Lists?

Tabular Data: Oscars 2024

• We will defer some of the initial components:
• How to write python code to read in the file
• You will do this soon: in Lab 6

• For now, lets imagine we are able to store the data as follows:

• Entire table: list of lists oscar_data
• 0th row of the table: list at index 0
• 1st row of the table: list at index 1
•
• ith row of the table: list at index i

Storing this Data

• Question. How do we access the list of all movies?

• Its the 0th line in the file 0th list of our list of lists

>>> movies = oscar_data[0]

• Question. How do we access the list of lists of all nominations?

• Its the 0th line in the file 0th list of our list of lists

>>> nominations = oscar_data[1:]

→

→

Extracting Movie Data

Give me the 0th element
(single list)

Give the entire list of lists
excluding the 0th list

• Now that we have the data stored, we can find out use it to extract
some useful information, e.g.
• Finding out which movie(s) got the most nominations

• most_nominations(movie_list,
nomination_list)

• Before we code, lets figure out an algorithm for solving this problem
• How do we solve this problem?

• Helper function: count how many nominations a movie got

• count_nominations(movie, nomination_list)

Oscar 2024 Trivia

Helper Function: count_nominations

def count_nominations(movie, nomination_list):
 '''Function that takes two arguments: movie (str) and
 nomination_list (list of lists) and returns the count
 (int) of the number of times movie is nominated.'''

 # initialize accumulation variable
 count = 0

 # iterate over list of nominations
 for category in nomination_list:
 for nominee in category:
 # is the movie name a prefix of nomination?
 if is_prefix(movie, nominee):
 count += 1
 return count

Exercise: most_nominations
def most_nominations(movie_list, nomination_list):
 '''Returns list of movies with most nominations'''
 most_so_far = 0 # keeps track of most # nominations
 most_list = [] # remember the movie names
 for movie in movie_list:
 num = count_nominations(movie, nomination_list)
 # found a movie with more nominations
 if num > most_so_far:
 most_so_far = num
 # remember the movie
 most_list = [movie]

 # what to do if there is a tie?
 elif num == most_so_far:

 # remember this movie as well
 most_list += [movie]
 return most_so_far

Modules vs Scripts

Importing Functions vs Running as a Script
• Question. If you only have function definitions in a file funcs.py,

and run it as a script, what happens?
% python3 funcs.py

• For testing functions, we want to call /invoke them on various test
cases, in Labs, we do this in a separate file called runtests.py
• To add function calls in runtests.py, we put them inside the

guarded block if __name__ == "__main__":
• The statements within this special guarded are only run when the file is

run as a script but not when it is imported as a module

• Let's see an example

shikhasingh@Shikhas-iMac cs134 % python3 foo.py
__name__ is set to __main__

shikhasingh@Shikhas-iMac cs134 % python3
Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin
Type "help", "copyright", "credits" or "license"
for more information.
>>> import foo
__name__ is set to foo

foo.py
test the role of __name__ variable
print("__name__ is set to", __name__)

Running foo.py as a script

Importing it as a module

Takeaway: if __name__ == "__main__"

• If you want some statements (like test calls) to be run ONLY when
the file is run as a script

• Put them inside the guarded if __name__ ==
"__main__" block

• When we run our automatic tests on your functions we import them
and this means name is NOT set to main

• So nothing inside the guarded if __name__ ==
"__main__" block is executed

• This way your testing /debugging statements do not get in the way

