
CS 134 Lecture 8:
Nested Loops

Announcements & Logistics
• Lab 3 due today/tomorrow at 10 pm

• More involved than previous labs, so please utilize help hours

• Reminder: do NOT use techniques not discussed in class

• We've carefully designed the labs to require only functions & concepts
discussed in class meetings

• We've intentionally ordered material to emphasize algorithmic thinking
and benefit your development as a computer scientist rather than as a
Python-specific programmer

• This means no string.index() or list.index()! (Why?)

• Lab 2 graded feedback will be returned today

• HW 4 posted today on Glow

Do You Have Any Questions?

Last Time
• for loops allow us to look at each element in a sequence

• The loop variable defines what the name of that element will be
in the loop

• An optional accumulator variable is useful for keeping a running
tally of properties of interest

• Indentation works the same as with if--statements: if it's indented
under the loop, it's executed as part of the loop

• Extract subsequences with [start:end:step] syntax (slicing)

• range is a type of sequence that is often useful for indexing

Different problems may require different decisions with respect to loop
variables, accumulator variables, and whether you need to index/slice or not!

Today’s Plan
• Use more examples of the range sequence type

• Explore different combinations of loops
• Loop(s) within a loop (called nesting)

• Exiting loops early

• break vs. return

Nested Loops

• A for loop body can contain one (or more!) additional for loops:
• Called nesting for loops

• Conceptually similar to nested conditionals
• Example: What do you think is printed by the following Python code?

Nested Loops

What does this do?
def mystery_print(word1, word2):
 '''Prints something'''
 for char1 in word1:
 for char2 in word2:
 print(char1 + char2)

mystery_print('123', 'abc')

char1 = 1 char2 = a

char2 = c
char2 = b

char1 = 2 char2 = a

char2 = c
char2 = b

char1 = 3 char2 = a

char2 = c
char2 = b

Inner loop (w/ char2
and word2) runs to
completion on each

iteration of the outer
loop

What does this do?
def mystery_print(word1, word2):
 '''Prints something'''
 for char1 in word1:
 for char2 in word2:
 print(char1 + char2)

mystery_print('123', 'abc')

1a
1b
1c
2a
2b
2c
3a
3b
3c

• What is printed by the nested loop below?

Nested Loops

What does this print?
for char1 in ['b', 'd', 'r', 's']:
 for suffix in ['ad', 'ib', 'ump']:
 print(char1 + suffix)

What does this print?
for char1 in ['b', 'd', 'r', 's']:
 for suffix in ['ad', 'ib', 'ump']:
 print(char1 + suffix)

Inner for loop runs to
completion on each

iteration of the
outer for loop

char1= 'b' suffix = 'ad'
'ib'
'ump'

bad
bib
bump

char1= 'd' suffix = 'ad'
'ib'
'ump'

dad
dib
dump

char1= 'r' suffix = 'ad'
'ib'
'ump'

rad
rib
rump

char1= 's' suffix = 'ad'
'ib'
'ump'

sad
sib
sump

Nested Loops and Ranges

We previously used a single for loop and a single range to repeat a task.

• What if we had multiple for loops and multiple ranges? The following loops
print a pattern to the screen. (Look closely at the indentation!)

•

Loops and Ranges to Print Patterns

what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

What are the values of i
and j?

Iterating Over Ranges
what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

j = 0
j = 1
j = 2
j = 3
j = 4

i = 0
i = 1
i = 2
i = 3
i = 4

$
$$
$$$
$$$$

*
**

We've seen this for loop
and pattern before

Same pattern, but with
'*' instead

These for loops are sequential.
One follows after the other.

Iterating Over Ranges

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

i = 0
i = 1
i = 2
i = 3
i = 4
j = 0
j = 1
j = 2
j = 3
j = 4

$
$$
$$$
$$$$

*
**

$

$$

*
$$$

*
**
$$$$

*
**

On right, for loops are nested.
One loop is inside the other.

Iterating Over Ranges

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

$

$$

*
$$$

*
**
$$$$

*
**

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * i)

$
*
$$
**
**
$$$

$$$$

i, not j!

Knowing How and
When to Leave

Leaving a Function: return
We exit from a function using a return statement.

• return causes the execution of your code to resume at the location
where the function was called (or invoked)

• return(ed) value "replaces" the function call

If there is no explicit return, the function is exited when the reaches
the end of the function body, and the function implicitly returns None
• What happens when we have a return statement inside a loop?

• We exit the function, so we also exit the loop!
• What happens when we have a return statement inside a nested loop?

• We exit the function, so we exit every loop!

Example: first_index_of()

def first_index_of(word, char):
 '''Takes as input a string word and a character
 char and returns the index in word where the
 char first appears. If the char does not appear
 in word, return -1.'''

 for i in range(len(word)):
 # if the ith letter in word same as char

 if word[i] == char:
 # found first index

 return i
 return -1

Summary
• Range() is a function that returns a sequence of ints

• Often used for indexing or for executing a loop a certain number
of times

• Loops can be nested inside other loops
• Inner loops execute once per iteration of their containing loop

• Return is how we exit a function
• Return inside loops/conditionals, means you exit out of everything

Modules vs Scripts

Importing Functions vs Running as a Script
• Question. If you only have function definitions in a file funcs.py,

and run it as a script, what happens?
% python3 funcs.py

• For testing functions, we want to call /invoke them on various test
cases, in Labs, we do this in a separate file called runtests.py
• To add function calls in runtests.py, we put them inside the

guarded block if __name__ == "__main__":
• The statements within this special guarded are only run when the file is

run as a script but not when it is imported as a module

• Let's see an example

shikhasingh@Shikhas-iMac cs134 % python3 foo.py
__name__ is set to __main__

shikhasingh@Shikhas-iMac cs134 % python3
Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin
Type "help", "copyright", "credits" or "license"
for more information.
>>> import foo
__name__ is set to foo

foo.py
test the role of __name__ variable
print("__name__ is set to", __name__)

Running foo.py as a script

Importing it as a module

Takeaway: if __name__ == "__main__"

• If you want some statements (like test calls) to be run ONLY when
the file is run as a script

• Put them inside the guarded if __name__ ==
"__main__" block

• When we run our automatic tests on your functions we import them
and this means name is NOT set to main

• So nothing inside the guarded if __name__ ==
"__main__" block is executed

• This way your testing /debugging statements do not get in the way

Nested Lists

Nested Lists
• Remember, any object can be an element of a list. This includes other lists!
• That is, we can have lists of lists (sometimes called a two-dimensional list)!

• Suppose we have a list of lists of strings called myList

Nested Lists
• Remember, any object can be an element of a list. This includes other lists!
• That is, we can have lists of lists (sometimes called a two-dimensional list)!

• Suppose we have a list of lists of strings called myList
• word = myList[row][element] (# word is a string)

• row is index into “outer” list (identifies which inner list we want). In other
words, defines the “row” you want.

• element is index into “inner” list (identifies which element within the
inner list). In other words, defines the “column” you want.

myList = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

row

element myList[1][0]?
'dog’

Nested Loops
• Trace through the code below:

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row
[]

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row

[1]
[]

1

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row

[1]
[]

1

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row

[1]
[]

1

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]
[49] 7
[][7,8,9]

[7,8,9] 8[49,64]
[7,8,9] 9[49,64,81]

[[1 ,4 ,9],
 [16,25,36],
 [49,64,81]]

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row

[1]
[]

1

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]
[49] 7
[][7,8,9]

[7,8,9] 8[49,64]
[7,8,9] 9[49,64,81]

[[1 ,4 ,9],
 [16,25,36],
 [49,64,81]]

Nested Loops
def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Accumulation variable

Accumulation variable

Note the []
Why?!

Nested Loops
def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Accumulation variable

Accumulation variable

Note the []
Why?!

The square brackets ensure that we're
adding a list to a list!Why 2 accumulation variables?!

The inner loop accumulates the items for the
row, the outer loop accumulates the rows

What would be a good function name for mystery2?

Something like power_table

Loops Takeaways
• for loops allow us to look at each element in a sequence

• The loop variable defines what the name of that element will be
in the loop

• An optional accumulator variable is useful for keeping a running
tally of properties of interest

• Indentation works the same as with if--statements: if it's indented
under the loop, it's executed as part of the loop

• Nested for loops allow us to do the same for multiple lists (often
lists of lists or lists of strings)

Different problems may require different decisions with respect to loop
variables, accumulator variables, and whether you need a nested loop or not!

