
Name: _______________________________________ Partner: ________________________________
Python Activity 50: Iterative Search

Search is very central to how we use computers.

Concept Model:

CM1. List examples of when you search: __

__

 What would happen if any of these search activities took twice as long as you expected?

__

CM2. The text and diagram below represent two approaches to finding the word "octopus" in a

physical, paper dictionary.

a. What might be the best case for the approach on the left? _______________________________

 What might be the worst case for the approach on the left? _________________________

b. Is the approach on the left how you typically find a word in a physical dictionary? ____________

 What is your typical approach?

__

__

 Is your approach more efficient than the one described on the left? ____________

 What might be the best case for your approach? _______________________________

 What might be the worst case for your approach? _________________________

Learning Objectives

Students will be able to:

Content:

• Identify best case and worst case scenarios for searching algorithms

• Predict how changes in a searching algorithm impacts efficiency

• Describe the linear and binary searching algorithms for sorted vs. unsorted data

Process:

• Write code that implements linear search and binary search iteratively

Prior Knowledge

• Python concepts: computational thinking, lists, functions, while loops, conditionals

Finding a Word in a Dictionary – Two Ways

For each page in our dictionary book:

 Check to see if our word is on that page

 If it is, then we've found the word!

 If it isn't, then turn the page.

c. Which of these approaches would work better for finding a word in an unsorted order? Why?

__

__

Critical Thinking Questions:

1. Examine the following partially complete code for searching for an item in a list:

a. Complete the code above where the comments scaffold a linear search of a list.

b. Which searching algorithm is this most similar to from CM2? __________________

c. What is the best case scenario for this algorithm? ________________________________

d. What is the worst case scenario for this algorithm? ______________________________

2. Examine the following partially complete code for searching for an item in a sorted list:

FYI: A best case scenario is when the minimum number of operations is required (i.e., when an

approach will take the fewest number of steps). A worst case scenario is when the maximum

number of operations is required (i.e., most number of operations over all possible inputs). An

average case scenario is when the average/typical number of operations is required.

linear.py
 def linear_search(mylist, item):

 # (i) for each item in our list

 # (ii) check to see if it's our item and…?

 # (iii) otherwise…return False

binary.py
def binary_search(target_list, item):

 # initialize vars determining what portion of the list we look at

 left_index = 0

 right_index = len(target_list) - 1

 # search until we've exhausted all relevant halves of the list

 while left_index <= right_index:

 mid_index = (left_index + right_index) // 2

 if item == target_list[mid_index]:

 return True

 # case where the item may be in the left half of the list

 if item < target_list[mid_index]:

 right_index = mid_index - 1

 # case where the may be in the right half of the list

 else:

 # (iv) what should be here?

 # if we're here, we haven't found the element!

 return False

a. Step through the code, and explain what the following sections do:

def binary_search(target_list, item):

left_index = 0

right_index = len(target_list) - 1

while left_index <= right_index:

mid_index = (left_index + right_index) // 2

if item == target_list[mid_index]:

 return True

if item < target_list[mid_index]:

 right_index = mid_index - 1

(iv) what should be here?

return False

b. Which searching algorithm is this most similar to from CM2? __________________

c. Write one lines of code to complete the (iv) comment section:

 __

d. What is the best case scenario for this algorithm? ________________________________

e. What is the worst case scenario for this algorithm? ______________________________

f. Will this code work on an unsorted list? Why or why not?

__

3. When we compare the run-times of these two algorithms, and plot them with the number of

elements on the X-axis and time on the Y-axis, we see the following chart:

a. According to the graph above, which Search Algorithm is faster? ______________________

b. Which search algorithm would be faster for unsorted data? ______________________

c. Which search algorithm might be better for small datasets? ______________________

d. If you had to fit the empirical runtimes above to a more generalized runtime plot from the ones

shown below, what would you you choose?

Linear Search: O(n2) or O(n) or O(log n) or O(1) ?

Binary Search: O(n2) or O(n) or O(log n) or O(1) ?

