
Name: _______________________________________ Partner: ________________________________
Python Activity 24: Sets

An unordered sequence of unique items enables us to do some operations very efficiently!

Critical Thinking Questions:

1. Examine the sample code in interactive python below.

Sample Code

a. Circle what is new to us in this sample code.

b. How many elements does flwrs contain on line 0? _________________

c. What do you think will be returned by the code on line 1?

d. What is actually returned is {'violet', 'daisy', 'rose'}. How is this output

different from what you expected in part (c)?

e. What does the output in part (d) suggest about the uniqueness of elements in this new

data structure? (Hint: How many times does the element "rose" appear in line 0?)

f. What does the output in part (d) suggest about the ordering of elements in this new data

structure?

2. Examine the following code which continues to use this new data structure:

a. What is the type of elements in flColors? _________________________

How does it compare to the type of elements in flwrs in Quesiton 1? _______________

b. Is the data structure in fl_colors mutable or immutable? ___________________

c. How might your response to (b) relate to the error thrown on line 1?

 __
d. What might this say about the mutability of elements in this new data structure?

 __

Learning Objectives

Students will be able to:

Content:

• Define a set

• List example acceptable types for elements in a set

• Explain how order, uniqueness, and mutability apply to sets

Process:

• Write code that creates a set

• Write code to iterate over sets

• Write code that uses set theory methods to manipulate sets

Prior Knowledge

• Python concepts: mutability, lists, indexing, operators, for..loops, len(..), in, types

0 >>> flwrs = {"rose", "daisy", "violet", "rose"}

1 >>> flwrs

0 >>> fl_colors = {["rose", "red"], ["daisy", "white"]}

1 TypeError: unhashable type: 'list'

3. Examine the following code which continues to use this new data structure:

a. What type of object is flwrs? _________________________

b. What might be returned by the statement on line 1?

 __
d. What is output after line 1 is TypeError: 'set' object is not

subscriptable. What might this error suggest about using numerical indices to

access elements of unordered collections?

 __

4. If you had to guess, what do you think each of these set operators and functions do?

(i.e., what might the code on the left do?)

Operator / Function What the function/operator does

len(my_set)

empty_set = set()

my_list = list(my_set)

my_set = set(my_list)

"rose" not in my_set

for element in my_set:

5. Examine the sample code in interactive python below.

a. Why might line 0 (below) not throw an error, and line 2 does?

__

0 >>> set([2, 0, 23])

1 {0, 2, 23}

2 >>> {[2, 0, 23]}

3 TypeError: unhashable type: 'list'

b. What additional python tests might we run to determine why line 0 (below) is False?

 (Hint: Are we sure that empty curly brackets are a set?)

__

__

0 >>> set() == {}

1 False

FYI: Sets are mutable, unordered collections of unique, immutable objects.

0 >>> flwrs = {"rose", "daisy", "violet", "rose"}

1 >>> flwrs[1]

6. Circle the set operation on the right that describes what’s happening with the code and its output

on the left:

banana = {"yellow", "sweet", "fruit"}

lemon = {"fruit", "sour", "yellow"}

Code Operation Description

a. >>> banana | lemon Union Intersection Difference

{'fruit', 'sweet', 'sour', 'yellow'}

b. >>> lemon & banana Union Intersection Difference

{'fruit', 'yellow'}

c. >>> banana – lemon Union Intersection Difference

{'sweet'}

d. >>> lemon – banana Union Intersection Difference

{'sour'}

6. Examine the following code in interactive python:

a. Circle the new operator in this code.

It’s actually 2 operators we’ve seen before! What are they? __________ and ____________

b. What might be the output of lemon | banana? ______________________________

What might be the value of lemon after you execute lemon | banana? (Hint: 5a)

__

c. What is the value of lemon after the code above is executed?

__

d. What might the difference between your responses in (b) and (c) indicate about the mutability

of sets?

__

FYI: Sets, in Python, are essentially mathematical sets and support operations of mathematical set theory like union

(|), intersection (&), and difference (-). If we combine those operators with an assignment operator, they will

overwrite the variable on the left-hand side of of operator

(i.e., s1 |= s2 is the same as s1 = s1 | s2).

0 >>> banana = {"yellow", "sweet", "fruit"}

1 >>> lemon = {"fruit", "sour", "yellow"}
2 >>> lemon |= banana

3 >>> lemon

4 {'sour', 'fruit', 'sweet', 'yellow'}

Application Questions: Use the Python Interpreter to check your work

1. Write a function, is_one_row(word), that takes a string, word, as an argument and returns

True if and only if the given word can be typed all in one single row of keyboard key rows

(qwertyuiop, asdfghjkl, zxcvbnm). The word "type" is an example of this.

(Hint: use sets!)
def is_one_row(word):

2. Write a function, is_isogram(word), that takes a string, word, as an argument and returns

True if that word contains letters that appear only once. (Hint: use sets!)
def is_isogram(word):

3. Write a function, is_subset(word, hive), that takes two string arguments, word and

hive, and returns True if all the letters in word appear in hive. (Hint: use sets!)
def is_subset(word, hive):

4. Write a function, spelling_game(required, hive, word_list), that takes 3 string

arguments, and returns a list of all words in word_list that are (1) at least 4 letters long, (2)

use the letter required, (3) only have letters that appear once, and (4) have only letters that

appear in hive. (Hint: use your functions is_isogram and is_subset!)
def spelling_game(required, hive, word_list):

Note: spelling_game is essentially the NYTimes Spelling Bee Game: https://www.nytimes.com/puzzles/spelling-bee

https://www.nytimes.com/puzzles/spelling-bee

