CSI134 Lecture 25;

Inheritance anc

Boarc

Class

Announcements & Logistics

HW 8 will be released today (due Mon 10 pm)
Lab 6 graded feedback returned
Lab 8 due tonight 10 pm (~Mon lab), Thurs 10 pm (~Tues lab)

Lab 9 (two week) lab: strongly encourage you work in pairs
"™Mini project” : different from standard labs in length/complexity
Il out Lida's partner form by noon tomorrow

TA applications due Friday:
https://csclwilliams.edu/tatutor-application/

Please give feedback on CS134 TAs by Friday:
https://forms.gle/n/SPcwbaP3WCVWXaEA

Do You Have Any Questions?

https://csci.williams.edu/tatutor-application/
https://forms.gle/nZSPcwbaP3WCWxqEA

L ast [Ime

+ Designed a Library class that stores a sorted shelf of Book objects

« Learnt how to:

- call sorted() function in Python by specifying the key function
* how to pass a function as an argument to another function

» define/call functions with optional arguments

- Reviewed some useful (bullt-in) string and list methods:

- s (str): s.strip(), s.split(), s.join(), s.format()

- 1 (list): 1l.append(), 1l.remove()

Jloday's Plan

- Continue discussing some of the important OOP principles
 Abstraction - handle complexity by ignoring/hiding messy details

* Inheritance - derive a class from another class that shares a set of
attributes and methods

* Encapsulation bundling data & methods that work together in a class

* Polymorphism - using a single method or operator for different uses

* Focus on Inheritance

- Start implementing a text-based board game

INnheritance

Introduction to Inheritance

Inheritance is the capability of one class to derive or inherit the

properties from another class
Benefits of inherrtance:

Often represents real-world relationships well

Code reuse: avoid writing the same code again and again

Allows us to add more features to a class without modifying it

Inheritance Is transitive In nature: if class B inherits from class A, then all
the subclasses of B would also automatically inherit from class A

When a class inherits from another class, all methods and a

tributes are

accessible to subclass, except private attributes (indicated with __)

Inheritance loy Example

» Suppose we have a base (or parent) class F1sh
+ F1sh defines several methods that are common to all fish:
- eat(), swim()
+ F1sh also defines several data attributes with default values:

- _length,_weight, _lifespan

Inheritance loy Example

All fish have some features in common

But not all fish are the same!

Fach F1sh instance will specify different values for attributes
(_length, _weight, _Llifespan)

Some fish may still need extra functionality!

Inheritance loy Example

For example, Sharks might need an attack() method
Pufferfish might need a puff() method

VWe might even want to override an existing method with a different
(more specialized) implementation

Inheritance allows for all of this!

Inheritance: Constructor

class Rectangle:
def __init__ (self, length, width):

self._length = length
self. width width

Parent (super class)

Calls constructor of

class Square(Rectangle):
super class

def __init_ (self, length):

super().__init__ (length, length)

Inheritance represents "is a" relationship.
A Square is a Rectangle.

‘ n herltan Ce: M ethOdS calls draw of square

class Rectangle: sq = Square(12)

def __init_ (self, length, width):
self._length = length
self. width = width

sg.draw()

"draws a square"

def draw(self):
print('draws a rectangle')

class Square(Rectangle):

def __init__ (self, length):
super().__init__ (length, length)

def draw(self):
print('draws a square')

‘ n herltan Ce: M ethOds calls draw of square

class Rectangle:

def __init_ (self, length, width):
self._length = length
self. width = width

def draw(self):
print('draws a rectangle')

class Square(Rectangle):

def __init__ (self, length):
super().__init__ (length, length)

def draw(self):
print('draws a square')

sq = Squere(12)
sg.draw()

"draws a square"

draw method of Square
overrides that of Rectangle

INnherrtance: Methods

class Rectangle:

def __init_ (self, length, width):
self._length = length
self. width = width

def draw(self):
print('draws a rectangle')

class Square(Rectangle):

def __init__ (self, length):
super().__init__ (length, length)

draw(self):
print ()

sq = Square(12)
sg.draw()

"draws a rectangle”

If Square has no draw method,
it calls draw of SUper class

INnheritance anc

word-basec

boarc

OOP;

games

Word Games

Tic lac loe

Suppose we want to implement Tic Tac Toe

Teaser demo...

>>> python3 tttgame.py

X WINS!
X
O | X
O X

RESET EXIT

Decomposition

Let’s try to identify the “layers’ of this game

Through abstraction and encapsulation, each
layer can ignore what's happening in the
other layers

What are the layers of Tic Tac Toe!

Decomposition

Bottom layer: Basic board w/buttons, text

areas, mouse click detection (not specific to
Tic Tac Toel)

Lower middle layer: Extend the basic board

with Tic Tac Toe specific features (3x3

orid, of TTTLetters, initial board state: all Game
letters start blank)

TTTLetter
Upper middle layer: Tic Tac Toe “cubes”
or “letters” (9 in total!); set text to X or O TTTBoard
- Top layer: Game logic (alternating turns, Board

checking for valid moves, etc)

Board class

Let’s start at the bottom: Board class

What are basic features of all game boards!

- Think generally...many board-based games have the similar

basic requirements

-+ (For example, Boggle, TicTacloe,
Scrabble, etc)

Upper text area

Text area

Lower text area: hi!

RESET

EXIT

Board class

Let's start at the bottom: Board class
+ What are basic features of all game boards?
- Text areas: above, below, right of grid

- Grid of squares of set size: rows x cols

« Reset and Exit buttons

Upper text area

-+ React to mouse clicks (less obvious!)

Text area

These are all graphical (GUI) components

- Code for graphics Is a Iittle messy
at times

Lower text area: hi!

- Lot's of things to specify: color; size,
location on screen, etc

RESET EXIT

INnhertance

Board Class: (super class)

Basic board w/buttons, text areas, mouse

C

ick detection

« Tic

ac Toe (sub class)

Inherrts from Board and extends it to T 1T
specific features and methods

Doesn't have to recreate a Board

L ooking ahead: Boggle (Lab 9)

BN

imilar grid-based board game, also

inherits from Board and extends It to
Boggle features and methods

Game

TTTLetter
TTTBoard

Board

Graphics Module

Graphics Package for Board

We are going to use a simple graphics

>>> from graphics import package to implement our game board
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400) 400 pixels
=
Create a window with title “Name™ and 4y © Name

size 400x400 (measured In pixels)

400 pixels

A pixel is one of the small dots or
squares that make up an image on a
computer screen. v

Graphics Package for Board

We are going to use a simple graphics

>>> from graphics import package to implement our game board
>>> # takes title and size of window
>>> Win = GraphWin("Name", 400, 400) 400 pixels
< >
Create a window with title “Name™ and 4y @ Name
size 400x400 (measured In pixels) (0 : 0)
400 pixels

Window coordinates (X, y)

A pixel is one of the small dots or
squares that make up an image on a

computer screen. v (4@@ ’ 4@@)

Graphics Package for Board

>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)

>>> # create circle w center at pt and radius 100
>>> Cc = Circle(pt, 100)

>>> # draw the circle on the window

>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

Graphics Package for Board

>>> # create point obj at x,y coordinate i1n window

>>> pt = Point(200, 200)

>>> # create circle w center at pt and radius 100

>>> ¢ = Circle(pt, 100)
>>> # draw the circle on the window

>>> c.draw(win)
Circle(Po1nt(200.0, 200.0), 100)

We can draw other shapes as well.

We'll want to draw Rectangles in our
Board class.

Window coordinates (X, y)

(0.0)

(0,400)

(200,200)
®

(400,C

(400,4C

Graphics Package for Board

>>> # set color to blue

>>> c.setFi1l1("blue™)

>>> # Pause to view result
>>> win.getMouse()
Point(76.0, 322.0)

>>> # close window when done

>>> win.close()
Detecting “events’ like mouse clicks are an
important part of a graphical program.

win.getMouse() is a blocking method call
that “‘blocks” or waits until a click is detected.

Board Class

Board class: Getting Started

ylnset ...

- Attributes:

_win: graphical window on which we will draw our board
_xInset: avoids drawing in corner of window

_yInset: avoids drawing in corner of window

_rows: number of rows in grid of squares

_cols: number of columns in grid of squares

_size: edge size of each square

><|nset<_>I

- (We will add a few more attributes later)

- We need to draw the grid, text areas, and buttons

. M|ght need some helper methods to orgamze our code - -
Lets start by dr'awmg the gr'|d on our board em————

Board Class:
__Init__ and getters

class Board:

_win: graphical window on which we will draw our board
_xinset: avoids drawing in corner of window

_yinset: avoids drawing in corner of window

_rows: number of rows in grid of squares

_cols: number of columns in grid of squares

_size: edge size of each square

__slots__ = ['_xinset', '_yinset', '_rows', '_cols', '_size', \
' win', ' _exit _button', ' _reset _button', \
' text_area', '_lower_word', '_upper_word']

def __init__(self, win, xinset=50, yinset=50, rows=3, cols=3, size=50):
update class attributes
self._xinset = xinset; self._yinset = yinset
self. _rows = rows; self. _cols = cols
self._size = size
self._win = win

self.draw board() Notice the default values

getter methods for attributes
def get_win(self):
return self._win

def get_xinset(self):
return self._xinset

def get_yinset(self): ylnset
return self._yinset t

x|nset <>

def get_rows(self):
return self._rows

def get_cols(self):
return self. _cols

def get_size(self):
return self._size

def get_board(self):
return self

Board class: Drawing the grid

def _make_rect(self, pointl, point2, fillcolor="white", text=""):
"""Creates a rectangle with text in the center"""
rect = Rectangle(pointl, point2, fillcolor)
rect.draw(self._win)
text = Text(rect.getCenter(), text)
text.setTextColor("black")
text.draw(self._win)

We always need a window (_win) on which to draw.
return rect

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares"""
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xinset + self._size x* X,
self._yinset + self._size % y)
create second point
p2 = Point(self._xinset + self._size *x (x + 1),
self._yinset + self._size x (y + 1))
create rectangle and add to graphical window
self._make_rect(pl, p2)

Board class: Drawing the grid

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xinset + self._size x* X,
self._yinset + self._size x y)
create second point
p2 = Point(self._xinset + self._size x (x + 1),
self._yinset + self._size x (y + 1))
create rectangle and add to graphical window
self._make_rect(pl, p2)

X=0, y=0:
pl: |1
xInset + (size *x x) = xInset P .
yInset + (size *x y) = yInset —7
p2: pZ////

xInset + size
yInset + size

xInset + (size x (x+1))
yInset + (size x (y+1))

Board class: Drawing the grid

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xinset + self._size x* X,
self._yinset + self._size x y)
create second point
p2 = Point(self._xinset + self._size x (x + 1),
self._yinset + self._size x (y + 1))
create rectangle and add to graphical window
self._make_rect(pl, p2)

x=0, y=1:
pl:
xInset + (size x x) = xInset |
yInset + (size x y) = yInset + size P
p2:
xInset + (size x (x+1)) = xInset + size n2

yInset + (size x (y+1)) = yInset + 2 % size

Board class: Drawing the grid

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xinset + self._size x* X,
self._yinset + self._size x y)
create second point
p2 = Point(self._xinset + self._size x (x + 1),
self._yinset + self._size x (y + 1))
create rectangle and add to graphical window
self._make_rect(pl, p2)

X=0, y=2:
pl:
xinset + (size x x)
yinset + (size x y)

p2: p| g
xinset + (size *x (x+1)) = xinset + size
yinset + (size x (y+1)) = yinset + 3 * size n2

xinset
yinset + 2 % size

Board class: Drawing the grid

def __draw_grid(self):
"""Creates a row x col grid, filled with empty squares
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xinset + self._size x* X,
self._yinset + self._size x y)
create second point
p2 = Point(self._xinset + self._size x (x + 1),
self._yinset + self._size x (y + 1))
create rectangle and add to graphical window
self._make_rect(pl, p2)

x=1, y=0:
pl: Dl —
xinset + (size * x) = xInset + size !
yinset + (size *x y) = yInset P
p2: D2

xinset + (size *x (x+1)) = xInset + 2 % size
yinset + (size x (y+1)) = yInset + size

And so on...

Board Class: lext Areas

We need to draw the grid, text areas, and buttons
Might need some helper methods to organize our code

Now let's draw the text areas (we need 3
» Text areas are just called Text objects in our graphics package

Can customize the font size, color, style,
and size and call “setText"to add text upper

right

lower

def

def

Board class: Drawing the lext Areas

We'll add attributes for the text areas:
_text_area, _lower_word, _upper_word

_make_text_area(self; pOint, fOﬂtSize:]_S’ Co'l_orz'lblacku’ teXt:un): upper

"""Creates a text area"""
text_area = Text(point, text)
text_area.setSize(fontsize)
text_area.setTextColor(color)
text_area.setStyle("normal")
text_area.draw(self._win)
return text_area

right

lower

__draw_text_areas(self):

"""Draw the text areas to the right/lower/upper side of main grid"""

draw main text area (right of grid)

self._text_area = self.__make_text_area(Point(self._xinset * self._rows + self._size x 2,
self._yinset + 50), 14)

#draw the text area below grid

self._lower_word = self.__make_text_area(Point (160, 275))

#draw the text area above grid

self._upper_word = self.__make_text_area(Point (160, 25), color="red")

Board Class: Draw Buttons

We need to draw the grid, text areas, and buttons
Might need some helper methods to organize our code
Finally, let's draw the buttons!

Buttons are just more rectangles. ..

RESET

def

def

Board Class: Draw Buttons

__draw_buttons(self):

"""Create reset and exit buttons"""

pl = Point(50, 300); p2 = Point(130, 350)
self._reset_button = self._make_rect(pl, p2, text="RESET")
p3 = Point(170, 300); p4 = Point (250, 350)
self._exit_button = self._make_rect(p3, p4, text="EXIT")

draw_board(self):

"""Create the board with the grid, text areas, and buttons"""
self._win.setBackground("white smoke")

self.__draw_grid()

self. draw_text _areas()

self. draw_buttons()

RESET

EXIT

Putting It all together

Upper text area

Text area

Lower text area:

RESET EXIT

Board Helper Methods

Helper Methods

Now that we have a board with a grid, buttons, and text areas, it
would be useful to define some methods for interacting with these
objects

Helpful methods!

Helper Methods

Now that we have a board with a grid, buttons, and text areas, it
would be useful to define some methods for interacting with these
objects

Helpful methods!
Get grid coordinate of mouse click
Determine if click was In grid, reset, or exit buttons

Set text to one of 3 text areas

Note that none of this Is specific to Tic Tac Toe (yet)!

Always good to start general and then get more specific

Helper
Methods

>>> pydoc3 board

Public methods!

CLASSES

builtins.object

Board

class Board(builtins.object)

Board(win, xinset=50, yinset=50, rows=3, cols=3, size=50)
Methods defined here:

__init__(self, win, xinset=50, yinset=50, rows=3, cols=3,
Initialize self. See help(type(self)) for accurate sit

draw_board(self)
Create the board with the grid, text areas, and button:

get_board(self)
get_cols(self)
get_position(self, point)
Converts a window location (Point) to a grid position
Note: Grid positions are always returned as col, row.
get_rows(self)

get_size(self)

get_string_from_lower_text(self)
Get text from text area below grid.

get_string_from_text_area(self)
Get text from text area to right of grid.

get_string_from_upper_text(self)
Get text from text area above grid.

