CS 134 Lecture 23:
Classes & Objects

Announcements & Logistics

Lab 6 graded feedback: almost done, will return soon
Lab 8 will be released today
Partner lab, no prelab
Focuses on creating and using our own classes
Wil create our own autocomplete algorithm
HW 7 due Mon |0 pm: focuses on understanding recursive code

Fewer questions but a little brt tricky

Do You Have Any Questions!?

L ast [Ime

- Introduced the big idea of object oriented programming (OOP)
Everything in Python Is an object and has a type!

* We can create classes to define our own types

* Learned how to define and call methods on objects of a class

» first parameter in methods is always se LT (is a reference to the
object that the method Is called on)

« Quick aside: functions versus methods/’

Functions are not associated with a specific class

Methods are associated with a specific class and are invoked on
instances of the class (using dot notation)

Jloday's Plan

Implement a simple Book class and learn about the following:

- Learning about scope and naming conventions in Python

+ Using the __1n1t__() method to initialize objects with their

attribute values

- Defining accessor and mutator methods to interact with attributes
» Implementing and invoking methods in general

* Implementing __str__() method to provide meaningful print
statements for custom objects

Defining Our Own lype: Book class

class Book Class definition provides a “blueprint”

~—_ for creating specific books and
specify attributes of books

_title _title _title
Fellowship of Pride and Parable of o
the Ring Prejudice the Sower Providing values for

attributes of the
RS - Book class, such as
title, author; and
year, define key
features of
individual instances

_author _author _author

J.R.R. Tolkein Jane Austen Octavia

_year ‘ _year

_year

il
i

Specific instances of the
Book class

Defining Our Own Class: Book

Name of class (always capitalized by convention)

class Book:
""UThis class represents a book"""
1ndented body of class

. definition

Creating instances of the class:
bookl = Book()
book2 = Book()

book1 is an instance of class Book

book?2 is another (different) instance of class Book

Attributes

»+ Objects have state which is typically held in instance variables or (in
Pythonic terms) attributes

For the Book class, let's define attributes as

- title, _author, _year

- the leading underscore In the variable name indicates that they are
protected (these are not meant to used outside the class body)

» Every Book instance has different attribute values!

In Python, we typically declare and initialize attributes in a special
function known as the constructor

» The constructor has a special name: __1n1t__ and is typically defined
at the top of the class before all other method definrtions

Constructor: Defining __init__

class Book:
"""This class represents a book"""
attributes: author, title, year

def __init (self, book author, book_title, book_year):

selfT._author = book_author

self. _title = book _title

Implicitly calls
~_init (bookl, "Alcott",
"Little Women", 1869)

self._year = book _year

Creating instances of the class: |
bookl = Book("Alcott", "Little Women", 1869)
book2 = Book("Tolkein", "Lord of the Rings", 1954)

Class Methods

Methods and Data Abstraction

- |deally, we should not allow direct access to the object’s attributes:

>>> # creating book objects

>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)
>>> ps._title

'Parable of the Sower’

- Instead we control access to attributes through accessor and mutator

methods and avoid accessing the attributes directly

» Accessor methods: provide “read-only’ access to the object’s
attributes (‘'getter’ methods)

- Mutator methods: let us modify the object’s attribute values
(“setter’ methods)

- This is called encapsulation: the bundling of data with the methods that
operate on that data (another OOP principle)

class Book:
"""This class represents a book with attributes title, author, and year"""

__1nit__ is automatically called when we create new Book objects
we set the initial values of our attributes in __init
def _ init_ (self, book _title, book _author, book_year):

self. _title = book_title

self. _author = book author

self._year = book_year

(ﬁfaccessor (getter) methodE\\
def get_title(self):

return self._title

def get_author(self): ~u

return self. author
- N Accessor methods return values of

def get_year(self): attributes, but do not change them
\\¥ return self._year 4/)

mutator (setter) methods
def set _title(self, book title):
self. _title = book_title

def set author(self, book author):
self._author = book_author

def set _year(self, book_year):
self._year = int(book_year)

class Book:
"""This class represents a book with attributes title, author, and year"""

__1nit__ is automatically called when we create new Book objects
we set the initial values of our attributes in __init
def _ init_ (self, book _title, book _author, book_year):

self. _title = book_title

self. _author = book author

self._year = book_year

accessor (getter) methods
def get_title(self):
return self._title

def get_author(self):
return self._author

def get_year(self):
return self._year

—~ Mutator methods change the value of
/,f# mutator (setter) methods . .
def set title(self, book title): Aattributesbutdo not explicitly return

self._title = book_title anything

def set _author(self, book authot)]
self._author = book_author

def set_year(self, book _year):
\\; self._year = int(book year)g//

Using Accessor/Mutator Methods

, Use accessor methods to get the
>>> pp.get_tit le() values of the attributes (when outside of

'Pride and P rej udice' class implementation)

>>> emma.get_author()
'Jane Austen’

>>> psS.get_yea r() Use mutator methods to set or change

the values of the attributes (when outside
1993 . .
of class implementation)

>>> ps.set_year(1991;
>>> ps.get_year()
1991

Aside:
Naming Conventions in Python

Sco

be & Naming Conventions in Python

* Double leading underscore (__) in name (strictly private): e.g. __value

« “Invisible” from outside of the class

» Strong “you cannot touch this” policy (which is enforced)

* Single leading underscore (_) in name (private/protected): e.g. _value

- (Can be accessed from outside, but really shouldn't

“Don’t touch this (unless you are a subclass)” policy

* Most attributes in CS |34 should start with a single underscore

* No leading underscore (public):e.g. value

» (Can be freely used outside class

- These conventions apply to method names and attribute names

Attribute Naming Conventions

class TestingAttributes():

def _ init (self):

self.__val = "I am strictly private.”
self. _val = "I am private but accessible from outside."
self.val = "I am public."”

>>> a = TestingAttributes()

>>> ad.__val

Y

Attributekrror: 'TestingAttributes' object has no attribute '__val'’

>>> a._val
'T am private but accessible from outside.’

>>> a.val . .
Note: Although we can access attributes directly
using dot notation, it's bad practice: should almost

always use methods to access/manipulate attributes

'T am public.’

Class Methods:
More!

Defining More Methods

» Beyond the accessor and mutator methods, we can define other

methods in the class definition of BOook to manipulate or answer
questions about our book objects:

- num_words_in title(): returns the number of words in
the title of the book

- years_since_pub(current_year) : takes in the current

year and returns the number of years since the book was
published

- same_author_as(other_book) : takes another Book

object as a parameter and checks If the two books have the same
author

num words in title()

« Returns the number of words in the title of the book

class Book:

methods for manipulating Books

def num words in_title(self):
"H"HReturns the number of words in title of book"™™"
return len(self._title.split())

years_since_pub(current_year)

- Takes in the current year and returns the number of years since the
book was published

class Book:

def years_since pub(self, current_year):
"HHReturns the number of years since book was published"""
return current_year - self._year

same_author_as(other_book)

- Jakes another Book object as a parameter and checks if the two
books have the same author

class Book:

def same_author_as(self, other _book):
""1Check 1f self and other_book have same author
return self._author == other_book.get_author()

class Book:
"""This class represents a book with attributes title, author, and year"""

__init__ is automatically called when we create new Book objects
we set the initial values of our attributes in __init__
def __init__ (self, book_title, book_author, book_year):
self._title = book_title
self._author = book_author
self._year = int(book_year)

accessor (getter) methods
def get_title(self):
return self._title

def get_author(self):
return self._author

def get_year(self):
return self._year

mutator (setter) methods
def set _title(self, book_ title):
self._title = book_title

def set_author(self, book author):
self._author = book_author

def set_year(self, book_year):
self._year = int(book_year)

methods for manipulating Books
def num_words_in_title(self):
"""Returns the number of wores in title of book"""
return len(self._title.split())

def years_since_pub(self, current
"""Returns the number of years since book was published"""
return current_year - self._year

def same_author_as(self, other_book)%
"""Check if self and other_book have same author"""
return self._author == other_book.get_author()

Invoking Class Methods

- We invoke methods on specific instances of our class

* In this example, we are invoking Book methods on specific Book objects

>>> # creating book objects

>>> pp = Book("Pride and Prejudice", "Jane Austen", 1813)
>>> emma = Book("Emma'", '"Jane Austen'", 1815)

>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)
>>> ps.num_words_in_title()

4

>>> emma.years_since_pub(2023)

208

>>> ps.years_since_pub(2023)

30

>>> ps.same_author_as(emma)

False

>>> emma.same_author_as(pp)

True

Class Methods:
Printing

Print Representation of an Object

class Book():

def __init (self, title):
self. _title title

By default, if we print an object,

>>> test = Book('"testing") .
the output is not helpful

>>> print(test)
<_main__.Book object at 0x105eecca0>

» Special method __Str__ is automatically called when we ask to print
a class object In Python

str

must always return a string

+ We can customize how the object Is printed by writing a custom
__Str__ method for our class

» Very useful for debugging!

__str__ for Book class

* What is a useful string representation of a Book?

- Something that combines the attributes in a meaningful way

__str__ 1is used to generate a meaningful string representation for Book objects
__str__ 1s automatically called when we ask to print() a Book object

def _str_ (self):
return "'"+self._title+"', by "+self._author+", in "+ str(self._year)

» Now when we ask to print a specific instance of a BOOK, we get
something useful

>>> print(emma)

'Emma‘, by Jane Austen, in 1815

Other Special Methods

There are many other “special” methods in Python.

__eq__ (self, other): X y
__ne__ (self, other): X y
__1t__ (self, other): X <Y
_gt__ (self, other): X >y
__add__(self, other) X + Yy
__sub__(self, other): X — Y
_mul__(self, other): X kY
- __truediv__(self, other): X Yy
« __pow__(self, other): X y

» There are others, and we can reimplement any of these for our class!

Summary

» Today we built a simple BOOK class

(Briefly) Learned about about scope and naming conventions in Python

- Usedthe __init__ () method to initialize Book objects with their
attribute values

Defined accessor and mutator methods to interact with attributes and
avold accessing attributes directly

 Im

* Im

Note about mutators: If an attribute should not change, no need to
define a setter method for it!

blemented a few more “interesting” Book methods

blemented the ___str__ () method so that we get meaningful print

statements for our Book objects

