CSI34 Lecture I9: Recursion

Announcements \& Logistics

- Lab 6 due Wed/Thurs at 10 pm
- Uses dictionaries, plotting, CSV files
- HW 6 will be out today, due Mon at IOpm
- Lab 7, 8, and 9 are partner labs
- Fill out google form sent by Lida by noon tomorrow (Thursday)!
- Pair programming is an important skill as well as a vehicle for learning
- Pick up your graded midterm exam at the end of class
- Will use last few mins of lecture to discuss the midterm

Do You Have Any Questions?

Last Time

- Worked through an example involving CSVs, dictionaries, and sets
- Discussed plotting with matplotlib
- Python is pretty useful for data processing and visualization!

Today's Plan

Intro To Recursion

- Discuss what we mean by the term recursion
- Practice translating recursive ideas into recursive programs
- Examining the relationship between recursive and iterative programs
- That is, how do recursive ideas relate to the iterative ideas (for loops, while loops) we've covered so far?

Where are We Going?

- First half of CSI 34: learned some fundamental programming concepts
- Functions, conditionals, loops, data types
- Built-in data structures and operations
- Looking ahead to the second half: more emphasis on algorithmic and conceptual topics: more "computational thinking"
- Recursion (~। week)
- Defining our own data types using classes and objects (~ 2 weeks)
- Object oriented programming topics
- Continue developing our intuition regarding efficient vs inefficient code

Why Learn About Recursion?

- Recursion is an important problem solving paradigm
- An alternative to iteration for repeatedly performing a task
- Process that lets us "divide, conquer, combine"
- Useful to build and maintain data structures (like trees and lists)
- Provides a different lens to view the world
- If you love procrastination - recursion is just the thing for you!

So What Is Recursion?

- We will explore recursion by first seeing some examples in action
- Let's revisit a familiar function: count_occurrences(elem, Ist)
- Goal is to return the number of times elem appears inside list Ist

```
def count_occurrences(elem, lst) :
    count = 0
    for item in lst :
        if item == elem :
                        count = count + 1
    return count
```

- This function is iterative: we iterate through the list using a for loop, and compare elem against each item in the list

So What Is Recursion?

- One of the keys to thinking recursively breaking down the problem:
- What is the smallest version of the problem that we can immediately solve?
- For larger versions of the problem, is there a small step we can take that brings us closer to the smallest version of the problem?
- Let's answer these questions for count_occurrences(elem, Ist)
- How many times does elem appear in an empty list?

```
def count_occurrences(elem, lst) :
    # smallest list we know the answer to is empty list!
    if len(lst) == 0:
        return 0
```


So What Is Recursion?

- How many times does elem appear in an empty list?

```
def count_occurrences(elem, lst) :
    # smallest list we know the answer to is empty list!
    if len(lst) == 0:
        return 0
```

- How many times does elem appear in a larger list?
- We don't know yet! But we do know that the list has at least one element in it, otherwise we would have returned 0...
- Idea: let's break the problem into two smaller problems
- Is the first item in the list equal to elem?
- How many times does elem appear in the rest of the list?

So What Is Recursion?

- Idea: let's break the problem into two smaller problems
- Is the first item in the list equal to elem?
- How many times does elem appear in the rest of the list?
def count_occurrences(elem, lst) :
\# smallest list we know the answer to is empty list! if len(lst) == 0: return 0
\# Is the first item in the list equal to elem? first = 1 if elem == lst[0] else 0
\# How many times does elem appear in the rest of the list? rest = count_occurrences(elem, lst[1:])
\# combine our results return first + rest

So What Is Recursion?

- Surprisingly, this function works!
- Some observations:
- Some paths through the function call the same function again
- This is what makes the function recursive
- Other paths through the function (the smallest case that we can solve immediately) simply return the answer
- This is called a base case. Ever recursive function must have at least one base case!
- It is important that our recursive calls move us closer to our base case(s), otherwise we may get stuck in an infinite loop!
- Now let's dive into the principles of recursive problem solving more formally to get a better feeling for what is going on...

Recursive Approach to Problem Solving

- A recursive approach to problem solving has two main parts:
- Base case(s). When the problem is so small, we solve it directly, without having to reduce it any further (this is when we stop)
- Recursive step. Does the following things:
- Performs an action that contributes to the solution (take one step)
- Reduces the problem to a smaller version of the same problem, and calls the function on this smaller subproblem (break the problem down into a slightly smaller problem + one step)
- The recursive step is a form of "wishful thinking": assume the unfolding of the recursion will take care of the smaller problem by eventually reducing it to the base case
- In CSI 36/256, this form of wishful thinking will be introduced more formally as the inductive hypothesis

Understanding Recursive Functions

- Let's review a simple recursive function that gives us some intermediate feedback through print statements.
- Write a recursive function that prints integers from \mathbf{n} down to 1
- Recursive definition of countdown:
- Base case: $\mathrm{n}=1$, print(n)

Print and stop

- Recursive rule: print(n), call count_down(n-1)

Reduce the problem (or make the problem "smaller')

Understanding Recursive Functions

- Recursive definition of countdown:
- Base case: $\mathrm{n}=1$, print(n)
- Recursive rule: print(n), count_down(n-1)

```
def count_down(n):
    '''Prints numbers from n down to 1'''
    if n == 1: # Base case
        print(n)
    else: # Recursive case: n > 1:
        print(n)
        count_down(n-1)
>>> result = count_down(5)
5
4
3
2
1
```


Understanding Recursive Functions

- Recursive functions seem to be able to reproduce looping behavior without writing any loops at all
- To understand what happens behind the scenes when a function calls itself, let's review what happens when a function calls another function
- Conceptually we understand function calls through the function frame model

Most of the examples we're looking at today are easily written iteratively, but we'll be looking at problems on Friday where that may not be the case!

Review:
Function Frame Model

Review: Function Frame Model

- Consider a simple function square
- What happens when square (5) is invoked?
def square(x): return $x * x$

Review:
 Function Frame Model

>>> square(5)

square (5)
X

Summary:
 Function Frame Model

- When we return from a function frame "control flow" goes back to where the function call was made
- Function frame (and the local variables inside it) are destroyed after the return
- If a function does not have an explicit return statement, it returns None after all statements in the body are executed

Return value replaces the function call

square(5)

Review:
 Function Frame Model

- How about functions that call other functions?

```
def sum_square(a, b):
    return square(a) + square(b)
```

-What happens when we call sum_square (5, 3)?

```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum_square(5,3)
    \downarrow
sum_square(5, 3)
```



```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum_square(5,3)
```



```
sum_square(5, 3)
```



```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum_square(5,3)
    I
sum_square(5, 3)
```



```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum_square(5,3)
```



```
sum_square(5, 3)
```



```
def sum_square(a, b):
    return square(a) + square(b)
>>> sum 34 re(5,3)
    4
sum_square(5, 3)
```


Function Frame Model to Understand count_down

def count_down(n):
'''Prints ints from n down to 1'"'
if $n=1$:
print(n)
else:
print(n)
count_down(n-1)

```
>>> val = count_down(5)
5
4
3
2
1
```

>>> val = count_down(4)
4
3
2
1

count_down (3)

Base case reached!

count_down (3)

Base case reached!
count_down (2)

```
n
    if n == 1:
        print(n)
    else:
Mprint(n)
    count_down(n-1)
```

print(n)

print(n)
count_down (4)

count_down (3)

countDown (2)

n 2
if $n==1:$
print(n)
else:
print (n)
count_down(n-1)

Base case reached!

count_down (4)

$n \boxed{4}$
if $n=1:$
$\quad \operatorname{print}(n)$
else:
$\longrightarrow \begin{array}{l}\text { print }(n) \\ \operatorname{count}\end{array}$

countDown (3)

countDown (2)

$n \longdiv { 2 }$

print(n)
else:
print(n)
count_down(n-1)

Base case reached!

count_down(n-1)

TADA!

- Recursive functions may seem like magic at first glance, but they follow from the principles that we've been building all semester.
- It often takes several exposures to recursion before it "clicks", so we'll keep revisiting recursion in the coming lectures
- Drawing pictures and practicing are two tools that can help
- Our next lab is a partner lab so you can bounce your ideas off of a classmate and work though recursion stumbles

