
CS134:
Dictionaries

Announcements & Logistics
• Lab 6 Posted

• No pre-lab question, but relies on material covered Wednesday before
spring break (Files) and today (Dictionaries)

• Be sure to read through the way the data is organized before lab

• We can go over the "Organizing the Data" section if you have Q's

• Midterm will be returned on Wednesday

• Mostly graded, but a few up loose ends to tie up before we can return it
to everyone

Do You Have Any Questions?

http://cs.williams.edu/~cs134/labs/lab06.html#organizing-the-data

Last Time: Files and Plotting
• Data science-y things:

• File reading: Files are persistent data, usable between sessions and
applications!

• Comma-Separated Values Files are a common format for data

• Gave a template for plotting with matplotlib

• matplotlib is a plotting API that we will use in Lab

• you should be able to pattern match from the examples, but please
feel free to refer to any documentation that would be helpful.

• Note: Googling is OK for matplotlib-related questions
(not OK for the computational thinking parts of the lab---that is
where the computer science comes into play)

Today
• Discuss a new data structure: dictionary

• "Unordered" and mutable collection, just like sets
• Dictionaries are one of the most widely use ways to organize our data in

"real world" applications
• For many problems, dictionaries are often the most efficient (i.e., fast)

and most natural way to represent the relationships among data

Dictionaries

Sequences vs Unordered Collections
• Sequence: a group of items that come one after the other (there is

an implicit ordering of items)
• Sequences in Python: strings, lists, ranges

• Unordered Collection: a group of things bundled together for a
reason but without a specific ordering

• For some use cases, it is better to store an unordered collection
• Maintaining order between items is not always necessary
• Ordering items comes at a cost in terms of efficiency!

• Python has two data structures which are unordered:

• Dictionaries and sets: both of them are mutable

• We will discuss dictionaries today

Language Dictionaries
• What does an English dictionary store?

• A Python dictionary is a mutable collection that maps keys to values

• Enclosed with curly brackets, and contains comma-separated items

• Each item in the dictionary is a colon-separated key-value pair

• There is no ordering among the keys of a dictionary!

sample dictionary
zip_codes = {'01267': 'Williamstown', '60606': 'Chicago',
 '48202': 'Detroit', '97210': 'Portland'}

Python Dictionaries

key value key value

• Keys must be an immutable type such as ints, strings, or tuples

• Keys of a dictionary must also be unique: no duplicates allowed!

• Values can any Python type (ints, strings, lists, tuples, etc.)

• Dictionaries are unordered so we cannot access them by index: no notion
of first or second item, etc.

• We instead lookup values in a dictionary using the corresponding keys as
the subscript in [] notation

• If the key exists, its corresponding value is returned
• If the key is missing, the lookup produces a KeyError

>>> zip_codes = {"01267": "Williamstown", "60606": "Chicago",
 "48202": "Detroit", "97210": "Portland"}

Accessing Items in a Dictionary

value associated with key '60606'

value associated with key ‘48202'

value>>> # what US city has this zip code?
>>> zip_codes["60606"]
'Chicago'

>>> # what US city has this zip code?
>>> zip_codes["48202"]
'Detroit'

key

Adding a Key, Value Pair
• Dictionaries are mutable, so we can add, remove, and update items
• To add a new key-value pair, we can simply assign the key to the value

using: dict_name[key] = value

• If the key already exists, an assignment operation as above will overwrite its
value and associate the key with the new value

Add key, value pair '11777': 'Port Jefferson'

>>> zip_codes["11777"] = "Port Jefferson"
>>> zip_codes

{'01267': 'Williamstown',
 '60606': 'Chicago',
 '48202': 'Detroit',
 '97210': 'Portland',
 '11777': 'Port Jefferson'}

Adding a Key, Value Pair
• Dictionaries are mutable, so we can add items or remove items from it
• To add a new key, value pair, we can simply assign the key to the value

using: dict_name[key] = value

Add key, value pair '11777': 'Port Jefferson'

>>> zip_codes["11777"] = "Port Jefferson"
>>> zip_codes

{'01267': 'Williamstown',
 '60606': 'Chicago',
 '48202': 'Detroit',
 '97210': 'Portland',
 '11777': 'Port Jefferson'}
>>> zip_codes["01267"] = "Billsville"
>>> zip_codes

{'01267': 'Billsville', '60606': 'Chicago', '48202':
'Detroit', '97210': 'Portland', '11777': 'Port Jefferson'}

Operations on Dictionaries
• Just like sequences, we can use the len() function on dictionaries to find

out the number of keys it contains
• To check if a key exists or does not exist in a dictionary, we can use the
in or not in operator,’ respectively

Should always check if a key exists before
accessing its value in a dictionary

>>> zip_codes
{'01267': 'Williamstown',
 '60606': 'Chicago',
 '48202': 'Detroit',
 '97210': 'Portland',
 '11777': 'Port Jefferson'}
>>> len(zip_codes)
5

>>> "90210" in zip_codes
False
>>> "01267" in zip_codes
True

>>> "Williamstown" in zip_codes
False

in only checks the keys, not values!

Creating Dictionaries
• Direct assignment: provide key, value pairs delimited with { }
• Start with empty dict and add key, value pairs

• Empty dict is {} or dict()
• Apply the built-in function dict() to a list of paired items

Note: keys may be listed in any
order, since dictionaries are

unordered

direct assignment
scrabble_score ={'a':1, 'b':3, 'c':3, 'd':2, 'e':1,
 'f':4, 'g':2, 'h':4, 'i':1, 'j':8,
 'k':5, 'l':1, 'm':3, 'n':1, 'o':1,
 'p':3, 'q':10,'r':1, 's':1, 't':1,
 'u':1, 'v':8, 'w':4, 'x':8, 'y':4, 'z': 10}

• Direct assignment: provide key, value pairs delimited with { }
• Start with empty dict and add key, value pairs

• Empty dict is {} or dict()
• Apply the built-in function dict() to a list of paired items

Creating Dictionaries

>>> counts
{'let it be': 5, 'there will be an answer': 1}
use dict() function
>>> dict([['a', 5], ['b', 7], ['c', 10]])
{'a': 5, 'b': 7, 'c': 10}

Note: keys may be
listed in any order

accumulate in a dictionary
verse = "let it be,let it be,let it be,let it be,there will be an answer,let it be"
counts = {} # empty dictionary
for line in split(verse, ','):
 if line not in counts:
 counts[line] = 1 # initialize count
 else:
 counts[line] += 1 # update count
print(counts)

Example:
Frequency

• One common use of a dictionary is to store frequencies.
• Let’s write a function frequency() that takes as input a list of strings
word_lst and returns a dictionary freq_dict with the unique
strings in word_lst as keys, and their number of occurrences (ints) in
word_lst as values

• For example if word_lst is:

['hello', 'world', 'hello', 'earth', 'hello', 'earth']

the function should return a dictionary with the following items:

 {'hello': 3, 'world': 1, 'earth': 2}

Example: frequency

Example: frequency
• Let’s write a function frequency() that takes as input a list of strings
word_lst and returns a dictionary freq_dict with the unique
strings in word_lst as keys, and their number of occurrences (ints) in
word_lst as values

• How can we do this?

Example: frequency
• Let’s write a function frequency() that takes as input a list of strings
word_lst and returns a dictionary freq_dict with the unique
strings in word_lst as keys, and their number of occurrences (ints) in
word_lst as values

• Pseudocode:
• # for each word in our word_lst:

• # if the word isn't already in our
freq_dict, then add with count of 1

• # otherwise, update the count
• # return freq_dict when done

Example: frequency
• Let’s write a function frequency() that takes as input a list of strings
word_lst and returns a dictionary freq_dict with the unique
strings in word_lst as keys, and their number of occurrences (ints) in
word_lst as values

def frequency(word_lst):
 """Given a list of words, returns a dictionary
 of word frequencies"""
 freq_dict = {} # initialize accumulator as empty dict
 for word in word_lst:
 if word not in freq_dict:
 freq_dict[word] = 1 # add key with count 1
 else:
 freq_dict[word] += 1 # update count
 return freq_dict

Example:
Data Analysis w

Dictionaries of Dictionaries

Exercise: Python code
You are a talent scout for an English football (soccer) club. The club
you work for has a good defense, but a weak offense. So, you've
been tasked with identifying a star striker to help score more goals!

So you decide to identify candidates in a data-driven manner.

What we’re aiming to produce
• We will plot bar charts showing

the most frequent goal scorers
in various years, and use them
to determine who to try and
recruit to our team

Reading-in Data from a File to Dict
• First, let's take a look at our data, seasons2018-2022.csv
• In a spreadsheet viewer, it looks like the screenshot on the left
• However, we'll be reading-in the data with python, so it will look more

like the text on the right:
2018,Pierre-Emerick Aubameyang,22,692,13
2018,Sadio Mané,22,1,34
2018,Mohamed Salah,22,1,25
2018,Sergio Agüero,21,771,21
2018,Jamie Vardy,18,416,19
2018,Eden Hazard,16,1,12
2018,Callum Wilson,14,440,41
2018,Raúl Jiménez,13,1,42
2018,Alexandre Lacazette,13,771,51
2018,Glenn Murray,13,606,80

season,name,goals,passes,fouls

Reading-in Data from a File to Dict
• Need to write a function that reads-in this file and creates a data

structure for plotting
• Want performance across seasons, names, and goals scored.

• Outer dictionary, season_table: maps season as keys (ints) to an
inner dictionary (as values) that maps player names as keys (strings) to
goals as values (ints).

• A dictionary of dictionaries!

2018

...

2022

Pierre-Emerick Aubameyang

Sadio Mané

Mohamed Salah

...

Gylfi Sigurdsson

Erling Haaland

Harry Kane

Ivan Toney

...

Bukayo Saka

Key

Key

Key

Value
Value

22
22
22

13

Value

36
30
20

14

Reading-in Data from a File to Dict
• Iterate over lines, after we've parsed them...

• dictionary stuff!

season,name,goals,passes,fouls

def read_file(filename):
 with open(filename) as in_file:

 # iterate over each line of the file
 for line in in_file:
 # remove extra newline at end
 line = strip(line)
 line_list = split(line, ',')
 # "unpack" the list
 season = int(line_list[0])
 name = line_list[1]
 goals = int(line_list[2])
 passes = line_list[3]
 fouls = line_list[4]

2018,Pierre-Emerick Aubameyang,22,692,13
2018,Sadio Mané,22,1,34
2018,Mohamed Salah,22,1,25
2018,Sergio Agüero,21,771,21
2018,Jamie Vardy,18,416,19
2018,Eden Hazard,16,1,12
2018,Callum Wilson,14,440,41
2018,Raúl Jiménez,13,1,42
2018,Alexandre Lacazette,13,771,51
2018,Glenn Murray,13,606,80

Reading-in Data from a File to Dict
• Iterate over lines, after we've parsed them...

• dictionary stuff!
def read_file(filename):
 with open(filename) as in_file:
 # make a new empty dictionary (accumulation variable)
 season_table = dict()
 # iterate over each line of the file
 for line in in_file:
 line_list = split(strip(line), ',')
 # "unpack" the list
 season = int(line_list[0])
 name = line_list[1]
 goals = int(line_list[2])
 # if season in table, grab it, otherwise use empty dict
 name_table = dict()
 if season in season_table:
 name_table = season_table[season]
 # we could check to see if name is in name_table,
 # but we know each name only appears once per season
 name_table[name] = goals # add name -> goals inner dictionary

 # add name_table back to season_table
 season_table[season] = name_table

 return season_table

Reading-in Data from a File to Dict
• Iterate over lines, after we've parsed them...

• dictionary stuff!
• Can call the function, double-check output seems reasonable:

>>> season_table = read_file("seasonStats/seasons2018-2022.csv")
>>> print(len(season_table[2018]))
13

Splitting Values into X & Y lists
• Want to plot season-by-season...
• With matplotlib, we'll need a list of x and associated y values

selected_season = 2018 # season we'll produce list for
top_scorers2018 = []
num_goals2018 = []
if selected_season in season_table: # check it exists
 name_table = season_table[selected_season]
 for name in name_table:
 top_scorers2018 += [name]
 num_goals2018 += [name_table[name]]
>>> print(len(top_scorers2018), ':', top_scorers2018)
>>> print(len(num_goals2018), ':', num_goals2018)

13 : ['Pierre-Emerick Aubameyang', 'Sadio Mané', 'Mohamed Salah', 'Sergio
Agüero', 'Jamie Vardy', 'Eden Hazard', 'Callum Wilson', 'Raúl Jiménez',
'Alexandre Lacazette', 'Glenn Murray', 'Paul Pogba', 'Richarlison', 'Gylfi
Sigurdsson']

13 : [22, 22, 22, 21, 18, 16, 14, 13, 13, 13, 13, 13, 13]

Plotting
• Now, we plot!
import matplotlib.pyplot as plt
the x axis values are just num of names to provide even spacing for each bar
x_values = list(range(len(top_scorers2018)))

the y axis values are determined by the number of goals scored
y_values = num_goals2018

Create a new figure:
plt.figure()
Make it a bar chart
plt.bar(x_values, y_values)

Set x tick labels from names
rotate by 90 so labels are vertical and do not overlap
plt.xticks(x_values, top_scorers2018, rotation=90)
Set title and label axes
plt.title("Top scorers of 2018-19")
plt.xlabel("Name")
plt.ylabel("Goals")
specify y axis range
plt.ylim([0, 30])

Show our chart:
plt.show()

Plotting
• Now, we plot!
import matplotlib.pyplot as plt
the x axis values are just num of names to provide even spacing for each bar
x_values = list(range(len(top_scorers2018)))

the y axis values are determined by the number of goals scored
y_values = num_goals2018

Create a new figure:
plt.figure()
Make it a bar chart
plt.bar(x_values, y_values)

Set x tick labels from names
rotate by 90 so labels are vertical and do not overlap
plt.xticks(x_values, top_scorers2018, rotation=90)
Set title and label axes
plt.title("Top scorers of 2018-19")
plt.xlabel("Name")
plt.ylabel("Goals")
specify y axis range
plt.ylim([0, 30])

Show our chart:
plt.show()

