
CS 134 Lecture 9:
Nested Lists

Announcements & Logistics
• HW 4 due Monday at 10 pm

• Lab 4 will be released today

• Prelab will be posted but no penalty if not completed by start of lab

• We will review the code for the prelab together at the start of lab

• Lab 2 graded feedback

• Let us know if you have questions or concerns

• Comments and coding style: comments (start with #) are one important
part of writing good code --- documentation is essential

• Comments vs docstrings: docstrings document the function interface (input
parameters, expected return), comments document the function body (logic
used to implement the interface

Do You Have Any Questions?

Last Time
• Introduced nested for loops

• Discussed how to trace the execution of loops

• Use more examples of the range sequence type

• Reviewed the role of return statements in code

Today's Plan
• Introduce and use nested lists
• More examples of iteration:

• Iterate over nested sequences and collect/filter useful statistics
• Module vs scripts (if time)

• How to import and test functions

• Role of the special if __name__ == "__main__": code
block

Nested Lists

Nested Lists
• Remember, any object can be an element of a list. This includes other lists!
• That is, we can have lists of lists (sometimes called a two-dimensional list)!

• Suppose we have a list of lists of strings called myList

Nested Lists
• Remember, any object can be an element of a list. This includes other lists!
• That is, we can have lists of lists (sometimes called a two-dimensional list)!

• Suppose we have a list of lists of strings called myList
• word = myList[row][element] (# word is a string)

• row is index into “outer” list (identifies which inner list we want). In other
words, defines the “row” you want.

• element is index into “inner” list (identifies which element within the
inner list). In other words, defines the “column” you want.

myList = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

row

element myList[1][0]?
'dog’

Lists and Data Types
• Python is a loosely typed programming language

• We don’t explicitly declare data types of variables
• But every value still has a data type!

• It’s important to make sure we pay attention to what a function
expects, especially with lists and strings! (remember this in Lab 4)

• Lists of lists of strings versus list of strings:

myList = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

myList[1][0] is 'dog'

myList = ['cat’, 'frog',
 'dog’, 'toad',
 'cow’, 'duck']

myList[1][0] is 'f'

Sequence Operations
characters = [['Elizabeth Bennet', 'Fitzwilliam Darcy'],
 ['Harry Potter', 'Ron Weasley'],
 ['Frodo Baggins', 'Samwise Gamgee'],
 ['Julius Ceasar', 'Brutus']]

>>> len(characters) # what is this?
4

>>> len(characters[0]) # what is this?
2

>>> characters += ['Rhett Butler', 'Scarllet O Hara']
[['Elizabeth Bennet', 'Fitzwilliam Darcy'],
 ['Harry Potter', 'Ron Weasley'],
 ['Frodo Baggins', 'Samwise Gamgee'],
 ['Julius Ceasar', 'Brutus'],
 'Rhett Butler',
 'Scarllet O Hara']

Be careful when concatenating lists of
two different types

Looping Over Nested Lists
characters =
[['Elizabeth Bennet', 'Fitzwilliam Darcy', 'Charles Bingley'],
['Harry Potter', 'Ron Weasley', 'Hermoine Granger'],
['Frodo Baggins', 'Samwise Gamgee', 'Gandalf']]

for char_list in characters:
 print(char_list)
 for name in char_list:
 print(name)

Loops over the "outer lists"

Prints each inner list one by one

Loops over the names in each "inner list"

Prints each individual name one by one

• Nested Lists are useful to represent tabular data
• Example: data stored in google sheets

• Each inner list is a row
• List of lists: collection of all rows (the whole table)
• Lets take an example of real data that we can store as list of lists

Why Nested Lists?

Oscar 2024 Example

• So far, we have seen examples of accumulation variable
• Count number of occurrences of something: count_vowels
• Collect sequences: vowel_seq, madlibs_puzzle_solution

• Often, we need to find more information about a list of data we are
storing such as:

• find the earliest publication date in a data about books
• find the largest stat in data about sports, etc.

• To do so, we need to iterate through the list and maintain a new type
of accumulation variable that keeps track of this information

• We need to update it as we find out more information

Accumulation Pattern: most_so_far

Exercise: count_nominations

Write a function that takes a table and returns the
number of times a target string appears as an entry in

that table.

Exercise: most_nominations

Write a function that takes a table and returns the string
that appears as an entry in that table the most times.

Modules vs Scripts

Importing Functions vs Running as a Script
• Question. If you only have function definitions in a file funcs.py,

and run it as a script, what happens?
% python3 funcs.py

• For testing functions, we want to call /invoke them on various test
cases, in Labs, we do this in a separate file called runtests.py
• To add function calls in runtests.py, we put them inside the

guarded block if __name__ == "__main__":
• The statements within this special guarded are only run when the file is

run as a script but not when it is imported as a module

• Let's see an example

shikhasingh@Shikhas-iMac cs134 % python3 foo.py
__name__ is set to __main__

shikhasingh@Shikhas-iMac cs134 % python3
Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin
Type "help", "copyright", "credits" or "license"
for more information.
>>> import foo
__name__ is set to foo

foo.py
test the role of __name__ variable
print("__name__ is set to", __name__)

Running foo.py as a script

Importing it as a module

Takeaway: if __name__ == "__main__"

• If you want some statements (like test calls) to be run ONLY when
the file is run as a script

• Put them inside the guarded if __name__ ==
"__main__" block

• When we run our automatic tests on your functions we import them
and this means name is NOT set to main

• So nothing inside the guarded if __name__ ==
"__main__" block is executed

• This way your testing /debugging statements do not get in the way

Nested Lists Additional
Examples

Nested Loops and Nested Lists
• Let us trace through the code below:

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row
[]

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row

[1]
[]

1

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row

[1]
[]

1

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row

[1]
[]

1

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]
[49] 7
[][7,8,9]

[7,8,9] 8[49,64]
[7,8,9] 9[49,64,81]

[[1 ,4 ,9],
 [16,25,36],
 [49,64,81]]

Nested Loops

def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

new_rownew_lstlsts row

[1]
[]

1

lst_lsts = [[1,2,3],
 [4,5,6],
 [7,8,9]]

item
[][1,2,3]

[1,2,3] 2[1,4]
[1,2,3] 3[1,4,9][[1,4,9]]

[16] 4
[][4,5,6]

[4,5,6] 5[16,25]
[4,5,6] 6[16,25,36][[1 ,4 ,9],

 [16,25,36]]
[49] 7
[][7,8,9]

[7,8,9] 8[49,64]
[7,8,9] 9[49,64,81]

[[1 ,4 ,9],
 [16,25,36],
 [49,64,81]]

Nested Loops
def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Accumulation variable

Accumulation variable

Note the []
Why?!

Nested Loops
def mystery2(lst_lsts):
 new_lstlsts = []
 for row in lst_lsts:
 new_row = []
 for item in row:
 new_row = new_row + [item*item]
 new_lstlsts = new_lstlsts + [new_row]
 return new_lstlsts

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print(mystery2(list_of_lists))

Accumulation variable

Accumulation variable

Note the []
Why?!

The square brackets ensure that we're
adding a list to a list!Why 2 accumulation variables?!

The inner loop accumulates the items for the
row, the outer loop accumulates the rows

What would be a good function name for mystery2?

Something like power_table

