
CS134:
Range & Nested Lists/Loops

Announcements & Logistics
• Lab 3 due today/tomorrow

• More involved than previous labs, so please utilize help hours

• Reminder: do NOT use utilities not discussed in class

• We've carefully designed the labs to require only functions & concepts
discussed in class meetings

• We've intentionally ordered material to emphasize algorithmic thinking
and benefit your development as a computer scientist rather than as a
Python-specific programmer

• This means no string.index() or list.index()! (Why?)

• HW 4 posted today on Glow

Do You Have Any Questions?

Last Time
• for..Loops allow us to look at each element in a sequence

• The loop variable defines what the name of that element will
be in the loop

• An optional accumulator variable is useful for keeping a
running tally of properties of interest

• Indentation works the same as with if--statements: if it's indented
under the loop, it's executed as part of the loop

• Can extract subsequences using [start:end:step] syntax (slicing)

• range is a type of sequence that is often useful for indexing

Different problems may require different decisions with
respect to loop variables, accumulator variables, and

whether you need to index/slice or not!

Today’s Plan
• Use more examples of the range sequence type

• Explore different combinations of loops
• Loop(s) within a loop (called nesting)

• Exiting loops early

• break vs. return

Review: Sequences in Python

• Sequences in Python represent ordered collections of elements:
e.g., lists, strings, ranges, etc.

• Strings are immutable sequences of characters

• Ranges are immutable sequences of numbers

• Lists can be heterogenous (strings, ints, floats, etc)

• Example: my_list = ["Hello", 42, 23.5, True]

• In CS, we use zero-indexing, so we say that 'Hello' is at
index 0, 42 is at index 1, and so on

• We can access each character of a list using these indices

Sequence Operations
Operation Result

seq[i] The i'th item of seq, when starting with 0

seq[si:ee] slice of seq from si to ee

seq[si:ee:s] slice of seq from si to ee with step s

len(seq) length of seq

seq1 + seq2 The concatenation of seq1 and seq2

x in seq True if x is contained within seq

x not in seq False if x is contained within seq

Iterating Over Ranges

i = 0
i = 1
i = 2
i = 3
i = 4

what does this print?

for i in range(5):
 print('$' * i)

$
$$
$$$
$$$$

Looks a lot like [0, 1, 2, 3, 4]

A common use of a range is to repeatedly execute some task

• With a for loop and range(n), can repeat a loop n times

Using Range For Parallel Iteration
• Ranges also give a convenient way for iterating over two lists in parallel
• Say we wanted to iterate over two lists:
• chars = ['a', 'b', 'c'] and nums = [1, 2, 3]
• And form a new list ['a1', 'b2', 'c3']
• Here’s how we’d do it

chars = ['a', 'b', 'c']
nums = [1, 2, 3]

for each item in chars
 # add current char to matching num
 # accumulate in a list

initialize accumulation variable

>>> char_nums
['a1', 'b2', 'c3']

Using Range For Parallel Iteration
• This also a really convenient way for iterating over two lists in parallel
• Say we wanted to iterate over two lists
• chars = ['a', 'b', 'c'] and nums = [1, 2, 3]
• And form a new list ['a1', 'b2', 'c3']
• Here’s how we’d do it

chars = ['a', 'b', 'c']
nums = [1, 2, 3]
char_nums = []

for i in range(0, len(chars)):
 cnum = chars[i] + str(nums[i])
 char_nums = char_nums + [cnum]

Accumulator Variable

Loop Variable

>>> char_nums
['a1', 'b2', 'c3']

Nested Loops

• A for loop body can contain one (or more!) additional for loops:
• Called nesting for loops

• Conceptually similar to nested conditionals
• Example: What do you think is printed by the following Python code?

Nested Loops

What does this do?
def mystery_print(word1, word2):
 '''Prints something'''
 for char1 in word1:
 for char2 in word2:
 print(char1 + char2)

mystery_print('123', 'abc')

char1 = 1 char2 = a

char2 = c
char2 = b

char1 = 2 char2 = a

char2 = c
char2 = b

char1 = 3 char2 = a

char2 = c
char2 = b

Inner loop (w/ char2
and word2) runs to
completion on each

iteration of the outer
loop

What does this do?
def mystery_print(word1, word2):
 '''Prints something'''
 for char1 in word1:
 for char2 in word2:
 print(char1 + char2)

mystery_print('123', 'abc')

1a
1b
1c
2a
2b
2c
3a
3b
3c

• What is printed by the nested loop below?

Nested Loops

What does this print?
for letter in ['b', 'd', 'r', 's']:
 for suffix in ['ad', 'ib', 'ump']:
 print(letter + suffix)

What does this print?
for letter in ['b', 'd', 'r', 's']:
 for suffix in ['ad', 'ib', 'ump']:
 print(letter + suffix)

Inner loop (w/ suffixes)
runs to completion on
each iteration of the

outer loop (w/ prefixes)

letter = 'b' suffix = 'ad'
'ib'
'ump'

bad
bib
bump

letter = 'd' suffix = 'ad'
'ib'
'ump'

dad
dib
dump

letter = 'r' suffix = 'ad'
'ib'
'ump'

rad
rib
rump

letter = 's' suffix = 'ad'
'ib'
'ump'

sad
sib
sump

Nested Loops and Ranges

We previously used a single for loop and a single range to repeat a task.

• What if we had multiple for loops and multiple ranges? The following loops
print a pattern to the screen. (Look closely at the indentation!)

•

Loops and Ranges to Print Patterns

what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

What are the values of i
and j???

Iterating Over Ranges
what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

j = 0
j = 1
j = 2
j = 3
j = 4

i = 0
i = 1
i = 2
i = 3
i = 4

$
$$
$$$
$$$$

*
**

We've seen this for loop
and pattern before

Same pattern, but with
'*' instead

These for loops are sequential.
One follows after the other.

Iterating Over Ranges

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
for j in range(5):
 print('*' * j)

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

i = 0
i = 1
i = 2
i = 3
i = 4
j = 0
j = 1
j = 2
j = 3
j = 4

$
$$
$$$
$$$$

*
**

$

$$

*
$$$

*
**
$$$$

*
**

On right, for loops are nested.
One loop is inside the other.

Iterating Over Ranges

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * j)

$

$$

*
$$$

*
**
$$$$

*
**

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

what does this print?

for i in range(5):
 print('$' * i)
 for j in range(i):
 print('*' * i)

$
*
$$
**
**
$$$

$$$$

i, not j!

Knowing How and When
to Leave

Leaving a Function
We exit from a function using a return statement.

• return causes the execution of your code to resume at the location
where the function was called (or invoked)

• return can also communicate a value that "replaces" the function call

When we do not include an explicit return statement, we exit the
function when our execution reaches the end of the function body, and the
function implicitly returns None
• What happens when we have a return statement inside a loop?

• We exit the function, so we also exit the loop!
• What happens when we have a return statement inside a nested loop?

• We exit the function, so we exit every loop!

Leaving a Loop
We can exit from a loop using a break statement.

• break causes the execution of your code to resume at the location
immediately following the loop body

• If your code breaks out of a nested loop, execution may begin a new
iteration of the "outer" loop

def first_locations_of(string_list, char) :
 '''Returns a list that contains the index
 where char first appears within each string
 in string_list'''
 locations = []
 for string in string_list :
 i = 0
 for c in string :
 if c == char :
 break # we've found the index
 i += 1
 locations += [i]
 return locations

Leaving a Loop

>>> first_locations_of(["eat", "more", "vegetables"], "e")
[0, 3, 1]

def first_locations_of(string_list, char) :
 '''Returns a list that contains the index
 where char first appears within each string
 in string_list'''
 locations = []
 for string in string_list :
 i = 0
 for c in string :
 if c == char :
 break # we've found the index
 i += 1
 locations += [i]
 return locations

break Controversy
• break is a part of python, but its use is often discouraged for stylistic

reasons
• "Jumping" around in our code makes it hard to reason about what

our program is doing
• We can often structure our code in a way that using break is

unnecessary, so avoid it if possible
• Part of becoming a good programmer is understanding the spirit of

the rules (and when to break them!)
def first_locations_of(string_list, char) :
 '''Returns a list that contains the index
 where char first appears within each string
 in string_list'''
 locations = []
 for string in string_list :
 locations += [first_location_of(string, char)]
 return locations

break Controversy
def first_location_of(string, char) :
 '''Returns the index where char first
 appears within string. If it does
 not appear, returns len(string)'''
 i = 0
 for c in string :
 if c == char :
 return i
 i += 1
 return i

def first_locations_of(string_list, char) :
 '''Returns a list that contains the index
 where char first appears within each string
 in string_list'''
 locations = []
 for string in string_list :
 locations += [first_location_of(string, char)]
 return locations

By making the "loop" a
"function", we can return

instead of "break"

Importing Functions vs Running as a Script
• Question. If you only have function definitions in a file funcs.py,

and run it as a script, what happens?
% python3 funcs.py

• For testing functions, we want to call /invoke them on various test
cases, in Labs, we do this in a separate file called runtests.py
• To add function calls in runtests.py, we put them inside the

guarded block if __name__ == "__main__":
• The statements within this special guarded are only run when the file is

run as a script but not when it is imported as a module

• Let's see an example

shikhasingh@Shikhas-iMac cs134 % python3 foo.py
__name__ is set to __main__

shikhasingh@Shikhas-iMac cs134 % python3
Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin
Type "help", "copyright", "credits" or "license"
for more information.
>>> import foo
__name__ is set to foo

foo.py
test the role of __name__ variable
print("__name__ is set to", __name__)

Running foo.py as a script

Importing it as a module

Takeaway: if __name__ == "__main__"

• If you want some statements (like test calls) to be run ONLY when
the file is run as a script

• Put them inside the guarded if __name__ ==
"__main__" block

• When we run our automatic tests on your functions we import them
and this means name is NOT set to main

• So nothing inside the guarded if __name__ ==
"__main__" block is executed

• This way your testing /debugging statements do not get in the way

Summary
• Range is a flexible sequence type often used for indexing or for

executing a loop a certain number of times
• Loops can be nested inside other loops

• Inner loops execute once per iteration of their containing loop
• Return is how we exit a function
• Break is how we exit a loop

• We can often rewrite our code to avoid using break

