
CS 134 Lecture 5:
More Conditionals

Announcements & Logistics
• Homework 2 is due tonight at 10 pm

• Lab 2 was released on Friday
• Pre-lab due at the beginning of lab
• Full Assignment due Wed/Thur 10 pm

• You can work on lab machines any time (when there's not a class)
• Make sure to keep your work consistent with what is on evolene

• Always pull/clone when you start and add, commit and push to
evolene when done with a work session

Do You Have Any Questions?

Last Time
• Wrapped up functions

• Discussed return statements and variable scope

• Started learning about conditionals

• Boolean data type
• Making decisions in Python using if else statements

Today’s Plan
• Learn more about if else statements
• Look at more complex decisions in Python

• Boolean expressions with and, or, not

• Choosing between many different options in our code
• if elif else “chained” conditionals

• Using import for using functions across different .py files

• We are going to cover a lot of material in the next 3 lectures
• Make sure you are keeping up and getting help if needed!

Boolean Expressions and If Statement
• Python expressions that result in a True/False output are called

boolean expressions

• For example, checking if a user's entered number, num, is even

• How do we do this? (What is a property of even numbers that we can
use to test this condition?)

• Even numbers are evenly divisible by 2 (remainder of zero)

• Thus, num % 2 should be zero if and only if num is even

• Now we have a Boolean expression we can test for : num % 2 == 0

• We can implement "conditional statements" in Python using Boolean
expressions and an if-else statement

is_even.py

Python Conditionals (if Statements)
if <boolean expression>:

statement1

statement2

statement3

else:

 statement4

 statement5

If it is raining, then bring an umbrella.
Else, bring your sunglasses.

Note: (syntax) Indentation and
colon after if and else

Optional Else & Simplifying Conditionals
• The else block is optional: not a requirement (not always needed!)

• Sometimes we can simplify conditionals

• For example, all three below are equivalent inside the body of a
function that returns True if num is even, and False otherwise

if num % 2 == 0:

return True

else:

return False

return num % 2 == 0

if num % 2 == 0:

return True

return False

Python Conditionals (if Statements)
• Don’t forget proper indentation!

(Credit to u/ufoludek_ on r/ProgrammerHumor)

Let's See Some Examples

More Decisions
• Sometimes, we need a more complicated conditional structure with

more than 2 options but exactly one option is possible

• Example: Write a function that takes a temp value in Fahrenheit

• If temp is above 80, print "It is a hot one out there."

• If temp is between 60 and 80, print "Nice day out, enjoy!"

• If temp is below 60, print "Chilly day, don’t forget a jacket."

• Notice that temp can only be in one of those ranges

• If we find that temp is greater than 80, no need to check the rest!

Nested Conditionals
if booleanExpression1:

 statement 1

 ...

else:

 if booleanExpression2:

 statement 2

 ...

 else:

 statement 3

 ...

Attempt 1: Chained Conditionals
• We can nest if-else statements (using indentation to distinguish between

matching if-else blocks)

• Works, but this can quickly become unnecessarily complex (and
hard to read!) The code below is an example of what NOT to do!

Logical Operators
• Logical operators and, or, not are used to combine Boolean values

• For two Boolean expressions exp1 and exp2

• not exp1 (! in other languages) returns the opposite of exp1

• exp1 and exp2 (&& in other languages) is True iff
exp1 and exp2 are True

• exp1 or exp2 (|| in other languages) is True iff either
exp1 or exp2 are True

Truth Table for or Truth Table for and

Attempt 2: Sequence of Ifs
• What if we use a bunch of if statements (w/o else) one after the other

to solve this problem?

• What are the advantages/disadvantages of this approach?

if booleanExpression1:

 statement 1

 ...

elif booleanExpression2:

 statement 2

 ...

else:

 statement 3

 ...

If Elif Else Statements
• Fortunately, there is a simpler way to specify several options by

chaining conditionals

A better approach that avoids too
many indented blocks and improves

code readability

Can have any number of elif
conditions, but only one

(optional) else (at the end)

Attempt 3: Chained Conditionals
• We can chain together any number of elif blocks

• The else block is optional (not a required part of the syntax)

Flow Diagram: Chained Conditionals

Takeaways
• Chained conditionals avoid messy nested conditionals

• Chaining reduces complexity and improves readability

• Since at most one branch in a chained if-elif-else block can
be executed (the first condition that evaluates to True, or the else
if all conditions are false) using them avoids unnecessary checks
incurred by chaining if statements one after the other

Exercise: leapYear Function
• Let’s write a function leapYear that takes a year (int) as input, and

returns True if year is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years, if

they are exactly divisible by 400."

How do we structure this logic
using booleans and conditionals?

Exercise: leapYear Function
• Let’s write a function leapYear that takes a year (int) as input, and

returns True if year is a leap year, else returns False

• When is a given year a leap year? (wikipedia)

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years, if

they are exactly divisible by 400."

• If year is not divisible by 4: year is not a leap year

• Else (divisible by 4) and if not divisible by 100: is a leap year

• Else (divisible by 4 and by 100) and not divisible by 400: not a leap year

• Else (if we make it to here must be divisible by 400): is a leap year

Decomposition!

leap.py

https://en.wikipedia.org/wiki/Leap_year

Importing functions

Using functions in different files
Suppose you define a function is_leap() in the file leap.py

• If you want to use this function in a different file (e.g, main.py)

• You need to tell python about it using an import statement

• ex: from leap import is_leap

from <filename w/o extension> import <function name>

main.py

