
CS1 34 Lecture 4:
Functions, Booleans, and

Conditionals

Announcements & Logistics
• Homework 2 is due Monday 10 pm

• Ten multiple-choice questions on Glow

• Try to answer them using pencil and paper first

• Can verify answers using interactive Python if you wish

• Lab 2 posted today, due Wed 10pm / Thur 10pm

• Prelab: warm-up pencil-and-paper exercise due at the start of lab

• Read/think/work on the assignment ahead of your scheduled lab section

• Personal machine setup: reminder that you can (optionally) setup your machine

• Setup instructions under Resources on Course Webpage

Do You Have Any Questions?

Last Time
Discussed functions in greater detail (or so I was told!)

• Useful functions return values, change the state of the world, or both
• Note: Some functions return an explicit value

• int(), input(), our definition of square()
• Other functions “do something useful” but don’t explicitly return

• Note that print() and other functions without explicit return
statements actually return a None value (more on this today!)

• Well-written code will almost always return a value with the same
type for all paths through the function

Today’s Plan
• Wrap up discussion of functions

• Discuss return statements and variable scope in more detail
• Functions with multiple arguments

• Introduce conditionals and Boolean data type
• Making decisions in Python using if else statements

Variable Scope
• Local variables: An assignment to a variable within a function

definition creates/modifies a local variable

• Local variables only exist within a function’s body, and cannot be
referred to outside of the function’s body

• Parameters are also local variables that are assigned a value when the
function is invoked

def square(num):

return num*num

>>> square (5)
25
>>> num
NameError: name 'num' is not defined

Variable Scope: A Tricky Example
def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

What is printed here?

What is printed here?

What is returned?

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

Variable Scope: A Tricky Example

my_func
Some
code

val

newVal

Global Scope

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

Variable Scope: A Tricky Example

my_func
Some
code

val 3

newVal

Global Scope

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

3

my_func frame

val

print('local', val)

return val

my_func
Some
code

val 3

newVal eww

Variable Scope: A Tricky Example

val = val + 1

Global Scope

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

3

my_func frame

val

val = val + 1

4

return val 4

my_func
Some
code

val 3

newVal eww

Variable Scope: A Tricky Example

print('local', val)

Global Scope

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

3

myfunc frame

val

val = val + 1

4

return val 4

my_func
Some
code

val 3

newVal 4

Information flow out of a function is only through return statements!

Function frame destroyed
(and all local variables lost)

after return from call

Variable Scope: A Tricky Example

print('local', val)

Global Scope

def my_func (val):
 val = val + 1
 print('local val', val)
 return val

val = 3
new_val = my_func(val)
print('global val', val)

3

myfunc frame

val

val = val + 1

4

return val 4

my_func
Some
code

val 3

newVal 4

Variable Scope: A Tricky Example

print('local', val)
What is printed here?

scope.py

Global Scope

Functions with Multiple
Parameters

• Functions can take any number of parameters:
• Listed one by one in the definition, separated by commas
• Order matters! Order of parameters in definition maps to order

of arguments at function call

• How to call this function to compute the 10th power of 2?

Function Parameters

def exp(num, k):
 """Return the kth power of given number num"""
 return num ** k

Review: Return Statements
• return only has meaning inside of a function body

• A function definition may have multiple return statements, but only
the first one encountered is executed! (Why?)

• We will see functions with multiple returns very soon

• Code that exists after a return statement is unreachable and will not
be executed (Why?)

• Functions without an explicit return statement implicitly return None

• Be careful when None returning functions are used in expressions
or within other function calls

Function Calls are Expressions
• Return value of a function “replaces” the function call

def three():
 return 3

x = three()
print(x)
print(three())

two_x = three() + three()
print(two_x)
print(three() + three())

y = print(three())
print(y)
print(print(three())

>>> x = three()
>>> print(x)
3
>>> print(three())
3

>>> two_x = three()+three()
>>> print(two_x)
6
>>> print(three() + three())
6

>>> y = print(three())
3
>>> print(y)
None
>>> print(print(three()))
3
Nonesnippets.py

Moving On:
Making Decisions

Making Decisions

If it is raining, then bring an umbrella.

If the light is yellow, slow down. If it is red, stop.

If you are testing positive for COVID, wear a mask.

Making Decisions

If it is raining, then bring an umbrella.

If the light is yellow, slow down. If it is red, stop.

If you are testing positive for COVID, wear a mask.

Making Decisions

If it is raining, then bring an umbrella.

If the light is yellow, slow down. If it is red, stop.

If you are testing positive for COVID, wear a mask.

Is it raining?

Is it yellow? red? green?

Is your test positive? Has it been less than 10 days?

Boolean Types
• Python has two values of bool type, written True and False

• These are called logical values or Boolean values, named after 19th
century mathematician George Boole

• True and False must be capitalized!

• Boolean values naturally result when answering a yes or no question

• Is 10 greater than 5? Yes/True

• Is 23 an even number? No/False

• Does 'Williams' begin with a vowel? No/False

• Boolean values result naturally when using relational and logical
operators

Relational Operators
< (less than), > (greater than)

<= (less than or equal to), > = (greater than or equal to)

== (equal to), ! = (not equal to)

>>> 3 > 5
False
>>> 5 != 6
True
>>> 5 == 5
True

Reminder that the single = is an assignment, double == is equality

Relational Operators
< (less than), > (greater than)

<= (less than or equal to), > = (greater than or equal to)

== (equal to), ! = (not equal to)

>>> 0 == True
False
>>> True == True
True
>>> int(False)
0
>>> int(True)
1

Reminder that the single = is an assignment, double == is equality

Logical Operators
• Logical operators and, or, not are used to combine Boolean values

• For two Boolean expressions exp1 and exp2

• not exp1 (! in other languages) returns the opposite of exp1

• exp1 and exp2 (&& in other languages) is True iff
exp1 and exp2 are True

• exp1 or exp2 (|| in other languages) is True iff either
exp1 or exp2 are True

Truth Table for or Truth Table for and

Boolean Expressions and If Statement
• Python expressions that result in a True/False output are called

boolean expressions

• For example, checking if a user's entered number, num, is even

• How do we do this? (What is a property of even numbers that we can
use to test this condition?)

• Even numbers are evenly divisible by 2 (remainder of zero)

• Thus, num % 2 should be zero if and only if num is even

• Now we have a Boolean expression we can test for : num % 2 == 0

• We can implement "conditional statements" in Python using Boolean
expressions and an if-else statement

is_even.py

Python Conditionals (if Statements)
if <boolean expression>:

statement1

statement2

statement3

else:

 statement4

 statement5

If it is raining, then bring an umbrella.
Else, bring your sunglasses.

Note: (syntax) Indentation and
colon after if and else

Optional Else & Simplifying Conditionals
• The else block is optional: not a requirement (not always needed!)

• Sometimes we can simplify conditionals

• For example, all three below are equivalent inside the body of a
function that returns True if num is even, and False otherwise

if num % 2 == 0:

return True

else:

return False

return num % 2 == 0

if num % 2 == 0:

return True

return False

Python Conditionals (if Statements)
• Don’t forget proper indentation!

(Credit to u/ufoludek_ on r/ProgrammerHumor)

Let's See Some Examples

Nested Conditionals
• Sometimes, we need a more complicated conditional structure with

more than 2 options

• Example: Write a function that takes a temp value in Fahrenheit

• If temp is above 80, print "It is a hot one out there."

• If temp is between 60 and 80, print "Nice day out, enjoy!"

• If temp is below 60, print "Chilly day, don’t forget a jacket."

• Notice that temp can only be in one of those ranges

• If we find that temp is greater than 80, no need to check the rest!

Nested Conditionals
if booleanExpression1:

 statement 1

 ...

else:

 if booleanExpression2:

 statement 2

 ...

 else:

 statement 3

 ...

Attempt 1: Chained Conditionals
• We can nest if-else statements (using indentation to distinguish between

matching if-else blocks)

• Works, but this can quickly become unnecessarily complex (and
hard to read!) This is an example of what NOT to do!

Attempt 2: Chained Ifs
• What if we use a bunch of if statements (w/o else) one after the other

to solve this problem?

• What are the advantages/disadvantages of this approach?

if booleanExpression1:

 statement 1

 ...

elif booleanExpression2:

 statement 2

 ...

else:

 statement 3

 ...

If Elif Else Statements
• Fortunately, there is a simpler way to specify several options by

chaining conditionals

A better approach that avoids too
many indented blocks and improves

code readability

Can have any number of elif
conditions, but only one

(optional) else (at the end)

Attempt 3: Chained Conditionals
• We can chain together any number of elif blocks

• The else block is optional (not a required part of the syntax)

Flow Diagram: Chained Conditionals

Takeaways
• Chained conditionals avoid messy nested conditionals

• Chaining reduces complexity and improves readability

• Since only one branches in a chained if-elif-else block
evaluates to True, using them avoids unnecessary checks incurred by
chaining if statements one after the other

CS Colloquium Today

• Almost Every Friday
• Time: 2:35pm
• Normal Location: TCL 123 (Wege Auditorium)
• Today: Thesis Proposals (Part 2)

Next Time:
Leap Year Function

Exercise: leapYear Function
• Let’s write a function leapYear that takes a year (int) as input, and

returns True if year is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years, if

they are exactly divisible by 400."

How do we structure this logic
using booleans and conditionals?

Exercise: leapYear Function
• Let’s write a function leapYear that takes a year (int) as input, and

returns True if year is a leap year, else returns False

• When is a given year a leap year?

• "Every year that is exactly divisible by four is a leap year, except for years

that are exactly divisible by 100, but these centurial years are leap years, if

they are exactly divisible by 400."

• If year is not divisible by 4: year is not a leap year

• Else (divisible by 4) and if not divisible by 100: is a leap year

• Else (divisible by 4 and by 100) and not divisible by 400: not a leap year

• Else (if we make it to here must be divisible by 400): is a leap year

Decomposition!

