

Announcements

- Programming Assignment 2 in progress
- How to find coding partners

Announcements
- Programming Assignment 2 in progress
- How to find coding partners

Today's Lecture

- Markov Decision Processes
- Value Iteration

Deterministic Gridworld

Value of a State (cont'd)

- Don't want to restrict ourselves to a finite horizon.
- For an infinite horizon:
- Additive: $\mathrm{V}\left(\left[\mathrm{s}_{1}, \mathrm{~s}_{2}, \cdots\right]\right)=\mathrm{R}\left(\mathrm{s}_{1}\right)+\mathrm{R}\left(\mathrm{s}_{2}\right)+\cdots$
- Discounted: $\mathrm{V}\left(\left[s_{1}, s_{2}, \cdots\right]\right)=R\left(s_{1}\right)+\gamma R\left(s_{2}\right)+\gamma^{2} R\left(s_{3}\right)+\cdots$
$-\gamma$ is a discount factor between 0 and 1
- If environment has no terminal state or if agent never reaches one, undiscounted rewards will generally lead to infinite value
- Discounted rewards result in finite state values

Markov Decision Processes

An MDP consists of

- S: a set of states
- A: a set of actions
- $P\left(s^{\prime} \mid s, a\right)$: the probability of ending up in sate s^{\prime}, given that the agent is in state s and takes action a
- $\mathrm{R}(\mathrm{s})$: the immediate reward at state s
- A designated start state
- [Sometimes] a designated terminal state
"Markov" = given the present state, the future and the past are independent

Value of a State

- Value (Utility) of being in a state is not the same as the reward
- First consider the utility of a state history. Can be
- Additive: $\mathrm{V}\left(\left[\mathrm{s}_{1}, s_{2}, \cdots s_{n}\right]\right)=\mathrm{R}\left(\mathrm{s}_{1}\right)+\mathrm{R}\left(\mathrm{s}_{2}\right)+\cdots \mathrm{R}\left(\mathrm{s}_{\mathrm{n}}\right)$
- Discounted: $V\left(\left[s_{1}, s_{2}, \cdots s_{n}\right]\right)=R\left(s_{1}\right)+\gamma R\left(s_{2}\right)+\gamma^{2} R\left(s_{3}\right)$
$+\cdots \gamma^{n} R_{n+1}$
- Where
- γ is a discount factor between 0 and 1

Utility is directly linked to policy

Optimal Policies

- Want optimal policy
- π^{*} : S-> A
- If followed, optimal policy maximizes expected utility (i.e., expected value)

- Find the expected value (expected utility) of each state
- Choose the action that maximizes expected value
- Optimal values define optimal policies

Action Policy

- Deterministic policy: π : S -> A
$-\pi(s)$ gives the action to take in state s
- Probabilistic policy: π : S x A -> [0, 1].
$-\pi(s, a)$ specifies a probability for choosing action a in state s
- We'll focus on the former for now
$\underset{\text { Note slight (but not significant) differences in S\&B and R\&N formulations }}{\text { Optimal }}$
- Define $\mathrm{V}^{*}(\mathrm{~S})$ to be the expected utility of acting optimally from S .
- Define $Q^{*}(S$, a) to be the expected utility of taking action a from state S and from there acting optimally.
$\mathrm{V}^{*}(\mathrm{~s})=\max _{\mathrm{a}} \mathrm{Q}^{*}(\mathrm{~s}, \mathrm{a})$
$Q^{*}(s, a)=\Sigma P\left(s^{\prime} \mid s, a\right) \cdot\left[R\left(s^{\prime}\right)+\gamma \cdot V^{*}\left(s^{\prime}\right)\right]$, where the sum is over all s^{\prime}

Bellman Equations

$V^{*}(s)=\max _{a} Q^{*}(s, a)$
$Q^{*}(s, a)=\Sigma P\left(s^{\prime} \mid s, a\right) \cdot\left[R\left(s^{\prime}\right)+\gamma \cdot V^{*}\left(s^{\prime}\right)\right]$,
where the sum is over all s^{\prime}

Definition of value (utility) leads to a simple onestep lookahead relationship among optimal utilities
Total optimal reward = optimize over choice of (first action + optimal future)

Computing Optimal Values

- Calculating $\mathrm{V}^{*}(\mathrm{~s})$ just once won't give you the optimal value
- Like doing a 1-step lookahead in expectimax
- If we look ahead ∞ steps, then we approach the true optimum, V^{*} (s)
- But we won't do an expectimax search

Value Iteration

- Will calculate successive estimates $\mathrm{V}_{\mathrm{k}}{ }^{*}$ of V^{*}
- Start with $\mathrm{V}_{0}{ }^{*}(\mathrm{~s})=0$ for all s
- Given $\mathrm{V}_{\mathrm{i}}{ }^{*}$, calculate the values for all states for depth $\mathrm{i}+1$
$V_{i+1}{ }^{*}(s)=\max _{\mathrm{a}} \Sigma \mathrm{P}\left(\mathrm{s}^{\prime} \mid \mathrm{s}, \mathrm{a}\right) \cdot\left[R\left(\mathrm{~s}^{\prime}\right)+\gamma \cdot V_{\mathrm{i}}{ }^{*}\left(\mathrm{~s}^{\prime}\right)\right]$
- Throw out old vector $\mathrm{V}_{\mathrm{i}}{ }^{*}$
- Repeat until convergence
- Called value update or Bellman update
[Adapted from CS 188 Berkeley]

Value Iteration Demos

- All rewards are 1
- The value of a state is either the value itself or the value + the penalty if you got there by running into a wall (so in this case we aim to minimize expected "reward")
- PJOG = how badly you go off course - 0 means your action does what you intended - 0.3 means 70% of the time your action does what's intended; splits the 30\% evenly among the remaining options
- Discount rate (gamma) is always 1

Value Iteration: Exercise 1

- Smallest maze
- PJOG = 0
- Demo

Value Iteration: Exercise 2

- Smallest maze
- PJOG = 0.75
- For any action, have .25 probability of taking any of the four possible actions
- Notice what happens with the policy!
- Demo

Value Iteration: Exercise 3

- Smallest maze
- PJOG = 0.3
- For any action, have .7 probability of taking that action; .1 probability of taking each of the others
- Demo

Things to notice in the demos

- Value approximations get refined toward optimal values
- Information propagates outward from the terminal states until all states have correct information
- The policy may converge long before the values do

