
2/24/17	

1	

Markov	Decision	Processes	
Value	Itera9on	

Andrea	Danyluk	
February	24,	2017	

Announcements	

•  Programming	Assignment	2	in	progress	
•  How	to	find	coding	partners	

Today’s	Lecture	

•  Markov	Decision	Processes	
•  Value	Itera9on	

Determinis9c	Gridworld	

Determinis9c	Gridworld	

N	

N	 E	

N,	E,	E,	S	
Or	
N,	E,	S,	E	

Stochas9c	Gridworld	

N	 How	to	plan	in	a	
stochas9c	world?	



2/24/17	

2	

Policies,	not	Plans	 Markov	Decision	Processes	
An		MDP	consists	of:	
•  S:	a	set	of	states	
•  A:	a	set	of	ac9ons	
•  P(s’	|	s,	a):	the	probability	of	ending	up	in	sate	s’,	given	
that	the	agent	is	in	state	s	and	takes	ac9on	a	

•  R(s):	the	immediate	reward	at	state	s	
•  A	designated	start	state	
•  [Some9mes]	a	designated	terminal	state	
	
“Markov”	=	given	the	present	state,	the	future	and	the	
past	are	independent	

Gridworld	State	Rewards	

R(s)	=	+1,	if	s	is	“apple	state”	
										-.05	otherwise	
	

If	our	goal	is	to	maximize	the	sum	of	the	rewards	(or		
something	like	that),	

	nega9ve	reward	will	help	us	reach	our	
		 	goal	as	efficiently	as	possible.	

Value	of	a	State	

•  Value	(U9lity)	of	being	in	a	state	is	not	the	
same	as	the	reward	

•  First	consider	the	u9lity	of	a	state	history.		Can	
be	
– Addi9ve:	V([s1,s2,···sn])=R(s1)+R(s2)+···R(sn)	
– Discounted:	V([s1,s2,···sn])=R(s1)+γR(s2)+γ2R(s3)	
+···γnRn+1	

– Where	
•  γ	is	a	discount	factor	between	0	and	1	

Value	of	a	State	(cont’d)	

•  Don’t	want	to	restrict	ourselves	to	a	finite	
horizon.	

•  For	an	infinite	horizon:	
– Addi9ve:	V([s1,s2,···])=R(s1)+R(s2)+···	
– Discounted:	V([s1,s2,···])=R(s1)+γR(s2)+γ2R(s3)	+···	
–  γ	is	a	discount	factor	between	0	and	1	

•  If	environment	has	no	terminal	state	or	if	agent	
never	reaches	one,	undiscounted	rewards	will	
generally	lead	to	infinite	value	
– Discounted	rewards	result	in	finite	state	values	

Why	infinite	horizon?	

•  Op9mal	policy	for	a	finite	horizon	is	non-
sta9onary	
– Op9mal	ac9on	from	a	state	can	change	

•  Op9mal	policy	for	an	infinite	horizon	is	
sta9onary	
– No	reason	to	behave	differently	in	the	same	state	
at	different	9mes	



2/24/17	

3	

U9lity	is	directly	linked	to	policy	

Ac9on	Policy	

•  Determinis9c	policy:	π:	S	->	A	
– π(s)	gives	the	ac9on	to	take	in	state	s	

•  Probabilis9c	policy:	π:	S	x	A	->	[0,	1].	
– π(s,	a)	specifies	a	probability	for	choosing	ac9on	a	
in	state	s	

•  We’ll	focus	on	the	former	for	now	

Op9mal	Policies	

•  Want	op9mal	policy	
–  π*:	S	->	A	

•  If	followed,	op9mal	
policy	maximizes	
expected	u9lity	(i.e.,	
expected	value)	

•  Find	the	expected	value	(expected	u9lity)	of	each	
state	

•  Choose	the	ac9on	that	maximizes	expected	value	
•  Op9mal	values	define	op9mal	policies	
	

Op9mal	Values	(U9li9es)	
Note	slight	(but	not	significant)	differences	in	S&B	and	R&N	formula9ons	

•  Define	V*(S)	to	be	the	expected	u9lity	of	ac9ng	
op9mally	from	S.	

•  Define	Q*(S,	a)	to	be	the	expected	u9lity	of	taking	
ac9on	a	from	state	S	and	from	there	ac9ng	
op9mally.	

V*(s)=max	a	Q*(s,	a)	
Q*(s,	a)	=	Σ	P(s’	|s,a)·[R(s’)	+	γ·V*(s’)]	,	
	where	the	sum	is	over	all	s’	

	
	

Bellman	Equa9ons	

V*(s)=max	a	Q*(s,	a)	
Q*(s,	a)	=	Σ	P(s’	|s,a)·[R(s’)	+	γ·V*(s’)]	,	
	where	the	sum	is	over	all	s’	

	
Defini9on	of	value	(u9lity)	leads	to	a	simple	one-
step	lookahead	rela9onship	among	op9mal	
u9li9es	

Total	op9mal	reward	=	op9mize	over	choice	of	(first	
ac9on	+	op9mal	future)	

[Adapted	from	CS	188	Berkeley]	

Compu9ng	Op9mal	Values	

•  Calcula9ng	V*(s)	just	once	won’t	give	you	the	
op9mal	value	
– Like	doing	a	1-step	lookahead	in	expec9max	

•  If	we	look	ahead	∞	steps,	then	we	approach	
the	true	op9mum,	V*(s)	
– But	we	won’t	do	an	expec9max	search	



2/24/17	

4	

Value	Itera9on	

•  Will	calculate	successive	es9mates	Vk*	of	V*	
•  Start	with	V0*(s)	=	0	for	all	s	
•  Given	Vi*,	calculate	the	values	for	all	states	for	
depth	i+1	
	Vi+1*(s)	=	max	a	Σ	P(s’	|s,a)·[R(s’)	+	γ·Vi*(s’)]		
•  Throw	out	old	vector	Vi*	
•  Repeat	un9l	convergence	
•  Called	value	update	or	Bellman	update	

[Adapted	from	CS	188	Berkeley]	

Value	Itera9on	Demos	
•  All	rewards	are	1	
•  The	value	of	a	state	is	either	the	value	itself	or	
the	value	+	the	penalty	if	you	got	there	by	
running	into	a	wall	(so	in	this	case	we	aim	to	
minimize	expected	“reward”)	

•  PJOG	=	how	badly	you	go	off	course	
–  0	means	your	ac9on	does	what	you	intended	
–  0.3	means	70%	of	the	9me	your	ac9on	does	what’s	
intended;	splits	the	30%	evenly	among	the	remaining	
op9ons	

•  Discount	rate	(gamma)	is	always	1	

Value	Itera9on:	Exercise	1	

•  Smallest	maze	
•  PJOG	=	0	

•  Demo	

8	 7	 6	

4	5	 3	

1	2	

Value	Itera9on:	Exercise	2	

•  Smallest	maze	
•  PJOG	=	0.75	
– For	any	ac9on,	have	.25	probability	of	taking	any	
of	the	four	possible	ac9ons	

•  No9ce	what	happens	with	the	policy!	

•  Demo	

Value	Itera9on:	Exercise	3	

•  Smallest	maze	
•  PJOG	=	0.3	
– For	any	ac9on,	have	.7	probability	of	taking	that	
ac9on;	.1	probability	of	taking	each	of	the	others	

	
•  Demo	



2/24/17	

5	

Things	to	no9ce	in	the	demos	

•  Value	approxima9ons	get	refined	toward	
op9mal	values	

•  Informa9on	propagates	outward	from	the	
terminal	states	un9l	all	states	have	correct	
informa9on	

•  The	policy	may	converge	long	before	the	
values	do	

	


