Games: Expectimax
Introduction to Utility Theory
Andrea Danyluk
February 22, 2017

Announcements

- Assignment 1
- Code reviews today and tomorrow
- Sign up by 4:00 PM today
- Programming Assignment 2 in progress

Today's Lecture

Multi-Player Games

- Evaluation function might return/returns a vector of utilities
- Each player chooses the move that maximizes its utility.

Expectimax

- Introduce chance nodes into a minimax tree

Expectimax

- Introduce chance nodes into a minimax tree

Expectimax

- Introduce chance nodes into a minimax tree

Expectimax

- Introduce chance nodes into a minimax tree

Expectimax

- Introduce chance nodes into a minimax tree

Expectimax

- Introduce chance nodes into a minimax tree

Expectimax Pacman	
```def value(s) if s}\mathrm{ is a max node return maxValue(s) if s is an exp node return expValue(s) if }s\mathrm{ is a terminal node return eval(s) def maxValue(s) values = [value(s }\mp@subsup{}{}{1}\mathrm{ ) for s }\mp@subsup{}{}{1}\mathrm{ in succ(s)] return max(values) def expValue(s) values = [value(s }\mp@subsup{}{}{1}\mathrm{ ) for s }\mp@subsup{}{}{1}\mathrm{ in succ(s)] weights =[prob(s,s}\mp@subsup{}{}{1})\mathrm{ for s }\mp@subsup{}{}{1}\mathrm{ in succ(s)] return expectation(values, weights)```	



## Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: L = type of lunch you'd see me eat today
- Outcomes: Lin (LunchBox, Thai, Subway)
- Distribution : $\mathrm{P}(\mathrm{L}=\mathrm{LB})=0.85, \mathrm{P}(\mathrm{L}=\mathrm{T})=0.13, \mathrm{P}(\mathrm{L}=\mathrm{S})=0.02$
- Some laws of probability:
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to 1

He knows his score can go up by eating now.
He knows his score can go up by eating later.
Within this search window there are no other eating opportunities.

- As we get more evidence, probabilities may change $-\mathrm{P}(\mathrm{L}=\mathrm{T})=0.15, \mathrm{P}(\mathrm{L}=\mathrm{T} \mid \mathrm{l}$ lunch meeting $)=.9$
- But let's not worry about conditional probabilities for now
[Adapted from CS 188 Berkeley]


## Expectations

- We can define a function $f(X)$ of a random variable X
- The expected value of a function is its average value, weighted by the probability distribution over inputs
- How much money will be spent on lunch
$-M(\mathrm{LB})=\$ 2.00, \mathrm{M}(\mathrm{T})=\$ 12.00, \mathrm{M}(\mathrm{S})=\$ 5.00$
- What is my expected lunch payment? $\mathrm{E}(\mathrm{M}(\mathrm{L}))=\mathrm{M}(\mathrm{LB}) * \mathrm{P}(\mathrm{LB})+\mathrm{M}(\mathrm{T}) * \mathrm{P}(\mathrm{T})+\mathrm{M}(\mathrm{S}) * \mathrm{P}(\mathrm{S})$ $=2.00(.85)+12.00(.13)+5.00(.02)=\$ 3.36$
[Adapted from CS 188 Berkeley]


## Preferences <br> (in an uncertain world)

- An agent chooses among prizes (e.g., $\mathrm{X}, \mathrm{Y}$ ) and lotteries (situations with uncertain prizes)
- Lottery L = [p, X; 1-p, Y]
- Notation:


```
\(A \succ B \quad A\) preferred to \(B\)
\(A \sim B \quad\) indifference between \(A\) and \(B\)
\(A \succsim B \quad B\) not preferred to \(A\)
```

    [This and the following either taken or adapted from Russell]
    
## Rational Preferences

- Preferences of a rational agent must obey certain constraints

Constraints:
Orderability
$(A \succ B) \vee(B \succ A) \vee(A \sim B)$
Transitivity
$(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
Continuity
$A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
Substitutability
$A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
Monotonicity
$A \succ B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succsim[q, A ; 1-q, B])$

## Utilities

- A utility function captures an agent's preferences
- DD coffee with cream only: U(DD/C) = 200
- DD coffee with cream and sugar: U(DD/C\&S) = 1
- TC coffee with cream only: $\mathrm{U}(\mathrm{TC} / \mathrm{C})=100$
- TC coffee with cream and sugar: $U(T C / C \& S)=1$



## MEU Principle

Theorem [von Neumann and Morgenstern, 1944]

- Given preferences satisfying the constraints (axioms of utility theory), there exists a realvalued function U such that

$$
\begin{aligned}
& U(A) \geq U(B) \quad \Leftrightarrow \quad A \succsim B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

- An agent can act rationally (i.e., consistently with its preferences) only if it chooses an action that maximizes expected utility


## Class Exercise

St. Petersburg paradox [Nicolas Bernoulli,1713]
You have the opportunity to play a game in which a fair coin is tossed repeatedly until it comes up heads. If the first heads appears on the nth toss, you win $2^{n}$ dollars.

What is the expected monetary value of this game?
How much would you play to play the game?

## Paradox Resolved

Nicolas's cousin Daniel Bernoulli resolved the apparent paradox in 1738 by suggesting that the utility of money is measured on a log scale:
$U\left(S_{n}\right)=a \log _{2} n+b$, where
$S_{n}$ is the state of having $\$ n$

What is the expected utility of the game under this assumption?

## Paradox Resolved

Nicolas's cousin Daniel Bernoulli resolved the apparent paradox in 1738 by suggesting that the utility of money is measured on a log scale:
$U\left(S_{n}\right)=a \log _{2} n+b$, where
$S_{n}$ is the state of having \$n
What is the expected utility of the game under this assumption?
What is the maximum amount it would be rational to play to play?

## Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)

