Games: Expectimax Introduction to Utility Theory

Andrea Danyluk February 22, 2017

Announcements

- Assignment 1
 - Code reviews today and tomorrow
 - Sign up by 4:00 PM today
- Programming Assignment 2 in progress

- Expectimax
- Utility Theory

Multi-Player Games

- Evaluation function might return/returns a vector of utilities
- Each player chooses the move that maximizes its utility.

Expectations

- We can define a function f(X) of a random variable X
- The expected value of a function is its average value, weighted by the probability distribution over inputs
- · How much money will be spent on lunch - M(LB) = \$2.00, M(T) = \$12.00, M(S) = \$5.00
 - What is my expected lunch payment? E(M(L)) = M(LB)*P(LB)+M(T)*P(T)+M(S)*P(S)= 2.00(.85)+12.00(.13)+5.00(.02) = \$3.36

[Adapted from CS 188 Berkeley]

Utilities

- · A utility function captures an agent's
 - DD coffee with cream only: U(DD/C) = 200
 - DD coffee with cream and sugar: U(DD/C&S) = 1
 - TC coffee with cream only: U(TC/C) = 100
 - TC coffee with cream and sugar: U(TC/C&S) = 1

Class Exercise St. Petersburg paradox [Nicolas Bernoulli,1713]

- You have the opportunity to play a game in which a fair coin is tossed repeatedly until it comes up heads. If the first heads appears on the nth toss, you win 2ⁿ dollars.
- What is the expected monetary value of this game?
- How much would you play to play the game?

Paradox Resolved

Nicolas's cousin Daniel Bernoulli resolved the apparent paradox in 1738 by suggesting that the utility of money is measured on a log scale:

 $U(S_n) = a \log_2 n + b$, where S_n is the state of having \$n

What is the expected utility of the game under this assumption?

Paradox Resolved

Nicolas's cousin Daniel Bernoulli resolved the apparent paradox in 1738 by suggesting that the utility of money is measured on a log scale:

 $U(S_n) = a \log_2 n + b$, where S_n is the state of having \$n

What is the expected utility of the game under this assumption?

What is the maximum amount it would be rational to play to play?

Money

 Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)