
2/14/17	

1	

Games	

Andrea	Danyluk	
February	15,	2017	

Announcements	

•  Programming	Assignment	1:	Search	
– SCll	in	progress	
– A	note	about	designing	heurisCcs:	
•  Add	a	“feature”	at	a	Cme	
•  Consider	different	weights	for	different	features	
•  Think	beyond	adding	heurisCc	informaCon	together	
•  Once	you	have	a	funcCon	that	works	well,	remove	
elements	to	determine	whether	you	really	need	them	

Today	

•  Games	(repeated	from	last	Cme)	
– Planning/problem	solving	in	the	presence	of	an	
adversary	è	adversarial	search	

– Why	games?	
•  Easy	to	measure	success	or	failure	
•  States	and	rules	are	generally	easy	to	specify	
•  InteresCng	and	complex	

–  Space	and	Cme	complexity	
–  Uncertainty	of	adversaries’	acCon,	rolls	of	dice,	etc.	

Go	

•  AlphaGo	became	the	first	program	to	beat	a	
human	professional	Go	player	without	
handicaps	on	a	full	19x19	board.	

•  In	go,	b	>	300	
•  Uses	Monte	Carlo	tree	search	to	select	moves.	
•  Uses	knowledge	learned	from	a	combinaCon	
of	reinforcement	and	deep	learning.	

Backgammon	

•  TDGammon	uses	depth-2	search	+	very	good	
evaluaCon	funcCon	+	reinforcement	learning	
(Gerry	Tesauro,	IBM)	

•  World-champion	level	play	
•  1st	AI	world	champion	in	any	game!	

Poker	

•  Libratus	[Sandholm	and	Brown,	CMU]	won	
$1.7m	(in	chips)	from	4	professional	poker	
players	over	20	days	in	January	2017		

•  No-limit	Texas	Hold’em	
•  Hard	because	it’s	a	game	of	imperfect	
informaCon.		Can’t	see	the	opponent’s	hand.	

•  The	“final	fronCer”	in	games…	

[Adapted	from	CS	188	Berkeley]	

2/14/17	

2	

Types	of	Games	

Chess,	Checkers,	Go,	
Connect	Four	

Backgammon	

Bajleship,	Guess	
Who?	

Bridge,	Poker,	
Scrabble	

DeterminisCc	 Chance	

Perfect		
InformaCon	

Imperfect		
InformaCon	

[Adapted	from	Russell	and	from	CS	188	Berkeley]	

Types	of	Games	

Chess,	Checkers,	Go,	
Connect	Four	

Backgammon	

Bajleship,	Guess	
Who?	

Bridge,	Poker,	
Scrabble	

DeterminisCc	 Chance	

Perfect		
InformaCon	

Imperfect		
InformaCon	

[Adapted	from	Russell	and	from	CS	188	Berkeley]	

Want	algorithms	for	calcula1ng	a	strategy	(policy)	that	
recommends	a	move	in	each	state	

Connect	Four	Demo	

•  With	perfect	play,	first	player	can	force	a	win	by	
starCng	in	the	middle	column.	

•  By	starCng	in	one	of	the	two	adjacent	columns,	
the	first	player	allows	the	second	player	to	reach	
a	draw.	

•  By	starCng	in	any	of	the	four	outer	columns,	the	
first	player	allows	the	second	player	to	force	a	
win.			

•  There	exist	perfect	players	–	my	demo	program	is	
not	one	of	them.	

Game	Playing	as	a	Search	Problem	

Note	that	each	level	in	the	game	tree	(i.e.,	each	half	move)	is	called	a	ply.	

FormulaCng	Game	Playing	as	Search	

•  States	S	
–  DescripCon	of	the	current	state/configuraCon	of	the	game	

•  Players	P	=	{1,	2,	…,	n}	
–  Will	take	turns	in	the	games	we	consider	

•  AcCons	A	
–  Legal	acCons	may	depend	on	player	and	state	

•  TransiCon	model	
–  Defines	the	result	of	an	acCon	applied	to	a	state	for	a	parCcular	player	
–  Result	is	a	new	state	

•  Terminal	test	
–  FuncCon	on	states;	returns	T	if	state	is	a	terminal	state	and	F	

otherwise	
•  UClity	funcCon	S	x	P	->	value	

–  Also	called	objecCve	funcCon	or	payoff	funcCon	

[Adapted	from	CS	188	Berkeley]	

Games	vs	Search	Problems	

•  “Unpredictable”	opponent	⇒	soluCon	is	a	
strategy	

•  	Time	limits	⇒	unlikely	to	reach	terminal	
states.		
– Must	approximate	

2/14/17	

3	

Minimax	Search	

•  When	it’s	your	turn,	generate	(ideally)	the	
complete	game	tree.	

•  Select	the	move	that	is	best	for	you,	assuming	
that	your	opponent	will,	at	each	opportunity,	
select	the	move	that	is	worst	for	you	(and	thus	
best	for	him/her/itself)	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

-1	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

-1	

-1	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

-1	

-1	

1	

2/14/17	

4	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

-1	

-1	

1	

1	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

-1	

-1	

1	

1	

1	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

-1	

-1	

1	

1	

1	

1	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

-1	

-1	

1	

1	

1	

1	 -1	

An	Example:	2-player	zero-sum	game	

1	 -1	

-1	 1	

-1	1	 1	

-1	 1	 -1	

Max	

min	

Max	

min	

Max	

min	

-1	

-1	

-1	

1	

1	

1	

1	 -1	

Minimax	Search	revisited	

•  A	state-space	search	tree	
•  Players	alternate	turns	
•  Each	node	has	a	minimax	value:	best	
achievable	uClity	against	a	raConal	adversary	

[Adapted	from	CS	188	Berkeley]	

2/14/17	

5	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

3	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

3	

0	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

3	

0	 6	

2/14/17	

6	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

3	

0	 6	

0	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

3	

0	 6	

0	

6	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

3	

0	 6	

0	

6	 9	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

3	

0	 6	

0	

6	 9	

6	

Another	Example	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

7	 3	

3	

0	 6	

0	

6	 9	

6	

But	really	done	depth-first	

2/14/17	

7	

Really…	 Really…	

Really…	

7	

Really…	

7	

Really…	

6	

7	

Really…	

7	

2/14/17	

8	

Really…	

7	

Really…	

7	

Really…	

7	

2	

Really…	

7	

2	

Really…	

7	

2	

3	

Really…	

7	

3	

2/14/17	

9	

Really…	

3	

Really…	
3	

Really…	
3	

Really…	
3	

function MINIMAX-DECISION(state) returns an action a
return arg max a in ACTIONS(state) MIN-VALUE(RESULT(state, a))

function MIN-VALUE(state) returns a utility value v
 if TERMINAL-TEST(state) then return UTILITY(state)
 v = infinity
 for each a in ACTIONS(state) do
 v = MIN(v, MAX-VALUE(RESULT(state, a)))
 return v

function MAX-VALUE(state) returns a utility value v
 if TERMINAL-TEST(state) then return UTILITY(state)
 v = -infinity
 for each a in ACTIONS(state) do
 v = MAX(v, MIN-VALUE(RESULT(state, a)))
 return v

Minimax	Reality	
•  Can	rarely	explore	enCre	search	space	to	terminal	nodes.	

–  DFS	has	good	space	complexity,	but	bad	Cme	complexity	
•  Choose	a	depth	cutoff	–	i.e.,	a	maximum	ply	
•  Need	an	evaluaCon	funcCon	

–  Returns	an	esCmate	of	the	expected	uClity	of	the	game	from	a	
given	posiCon	

–  Must	order	the	terminal	states	in	the	same	way	as	the	true	
uClity	funcCon	

–  Must	be	efficient	to	compute	
•  Trading	off	plies	for	heurisCc	computaCon	
•  More	plies	makes	a	difference	

•  Consider	iteraCve	deepening	

2/14/17	

10	

EvaluaCon	FuncCons	

•  Ideal:	returns	the	uClity	of	the	posiCon	
•  In	pracCce:	typically	weighted	linear	sum	of	
features:	

•  Eval(s)	=	w1f1(s)	+	w2f2(s)	+	…	+	wnfn(s)	

Exercise	

•  EvaluaCon	funcCon	for	Connect	Four?	

